dc.contributor.advisor | Šikudová, Elena | |
dc.creator | Ramesh, Vishal | |
dc.date.accessioned | 2022-10-04T16:58:20Z | |
dc.date.available | 2022-10-04T16:58:20Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/176110 | |
dc.description.abstract | Accurate iris image segmentation is crucial to a range of proposed medical diagnosis and treatment systems. Previous models have worked well with healthy eye images but do not generalize to diseased eye images. We work with a dataset where many subjects have eye diseases or deformities. We analyse the performance of the U-Net, a deep learning architecture for semantic segmentation. Our model was trained on a hand-annotated dataset and tuned to generalise on unseen images. Our model achieves a pixel accuracy of 0.8913 on the test set with a relatively short training time. 1 | en_US |
dc.description.abstract | Přesná segmentace obrazu duhovky je nezbytná pro řadu navrhovaných lékařských di- agnostických a léčebných systémů. Předchozí modely fungovaly dobře s obrázky zdravých očí, ale nezobecňují na obrázky nemocných očí. Pracujeme se souborem dat, kde má mnoho subjektů oční onemocnění nebo deformity. Analyzujeme výkon U-Net, architek- tury hlubokého učení pro sémantickou segmentaci. Náš model byl trénován na ručně anotovaném souboru dat a vyladěn tak, aby zobecnil na neviditelných obrázcích. Náš model dosahuje pixelové přesnosti 0,8913 na testovací sadě s relativně krátkou dobou tréninku. 1 | cs_CZ |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | eye|iris|segmantation|machine learning | en_US |
dc.subject | oko|duhovka|segmentace|strojové učení | cs_CZ |
dc.title | Iris segmentation | en_US |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2022 | |
dcterms.dateAccepted | 2022-09-12 | |
dc.description.department | Department of Software and Computer Science Education | en_US |
dc.description.department | Katedra softwaru a výuky informatiky | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 246993 | |
dc.title.translated | Segmentace duhovky | cs_CZ |
dc.contributor.referee | Rittig, Tobias | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Computer Science with specialisation in Artificial Intelligence | en_US |
thesis.degree.discipline | Computer Science with specialisation in Artificial Intelligence | cs_CZ |
thesis.degree.program | Computer Science | en_US |
thesis.degree.program | Computer Science | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra softwaru a výuky informatiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Software and Computer Science Education | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Computer Science with specialisation in Artificial Intelligence | cs_CZ |
uk.degree-discipline.en | Computer Science with specialisation in Artificial Intelligence | en_US |
uk.degree-program.cs | Computer Science | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Dobře | cs_CZ |
thesis.grade.en | Good | en_US |
uk.abstract.cs | Přesná segmentace obrazu duhovky je nezbytná pro řadu navrhovaných lékařských di- agnostických a léčebných systémů. Předchozí modely fungovaly dobře s obrázky zdravých očí, ale nezobecňují na obrázky nemocných očí. Pracujeme se souborem dat, kde má mnoho subjektů oční onemocnění nebo deformity. Analyzujeme výkon U-Net, architek- tury hlubokého učení pro sémantickou segmentaci. Náš model byl trénován na ručně anotovaném souboru dat a vyladěn tak, aby zobecnil na neviditelných obrázcích. Náš model dosahuje pixelové přesnosti 0,8913 na testovací sadě s relativně krátkou dobou tréninku. 1 | cs_CZ |
uk.abstract.en | Accurate iris image segmentation is crucial to a range of proposed medical diagnosis and treatment systems. Previous models have worked well with healthy eye images but do not generalize to diseased eye images. We work with a dataset where many subjects have eye diseases or deformities. We analyse the performance of the U-Net, a deep learning architecture for semantic segmentation. Our model was trained on a hand-annotated dataset and tuned to generalise on unseen images. Our model achieves a pixel accuracy of 0.8913 on the test set with a relatively short training time. 1 | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra softwaru a výuky informatiky | cs_CZ |
thesis.grade.code | 3 | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |