Rozkládání některých tříd kostičkových mnohostěnů
Unfolding some classes of polycubes
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/174615Identifikátory
SIS: 247411
Kolekce
- Kvalifikační práce [11991]
Autor
Vedoucí práce
Oponent práce
Tiwary, Hans Raj
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Informatika se specializací Obecná informatika
Katedra / ústav / klinika
Katedra aplikované matematiky
Datum obhajoby
23. 6. 2022
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Klíčová slova (česky)
kostičkový mnohostěn|rovinná síť|rozkládání mnohostěnů|řezání a skládáníKlíčová slova (anglicky)
polycube|planar net|unfolding polyhedra|cutting and foldingRozklad mnohostěnu je tvořen řezy jeho povrchu takovými, že rozřezaný povrch je možné rozložit do roviny, aniž by vznikl překryv. Hranový rozklad je omezený typ roz- kladu, ve kterém je povolené řezy vést jen po hranách mnohostěnu. Kostičkový mno- hostěn je speciální druh mnohostěnu, který je tvořen jednotkovými krychlemi slepenými k sobě celými stěnami. V případě kostičkových mnohostěnů můžeme v hranovém roz- kladu řezat po hranách všech jednotkových krychlí. V této práci se zabýváme zejména jednovrstvými kostičkovými mnohostěny a popíšeme několik algoritmů pro rozklad růz- ných speciálních tříd. Ukážeme, že je možné hranově rozložit jednovrstvé krychličkové mnohostěny s krychlovými dírami, tenkými horizontálními dírami a oddělitelnými ob- délníkovými dírami. Otázka hranového rozkladu obecných jednovrstvých krychličkových zůstává otevřena. Také se krátce zabýváme rozklady některých tříd vícevrstvých krych- ličkových mnohostěnů. 1
An unfolding of a polyhedron is a cutting along its surface such that the surface remains connected and it can be flattened to the plane without any overlap. An edge- unfolding is a restricted kind of unfolding, we are only allowed to cut along the edges of the faces of the polyhedron. A polycube is a special case of orthogonal polyhedron formed by glueing several unit cubes together face-to-face. In the case of polycubes, the edges of all cubes are available for cuts in edge-unfolding. We focus on one-layer polycubes and present several algorithms to unfold some classes of them. We show that it is possible to edge-unfold any one-layer polycube with cubic holes, thin horizontal holes and separable rectangular holes. The question of edge-unfolding general one-layer polycubes remains open. We also briefly study some classes of multi-layer polycubes. 1
