Odhady K-funkcie bodového procesu využívajúce globálnu normalizáciu
Estimation of the K-function of a point process using global normalization
Odhady K-funkce bodového procesu využívající globální normalizaci
bachelor thesis (DEFENDED)

View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/174303Identifiers
Study Information System: 227128
Collections
- Kvalifikační práce [11325]
Author
Advisor
Referee
Prokešová, Michaela
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
General Mathematics
Department
Department of Probability and Mathematical Statistics
Date of defense
21. 6. 2022
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
Slovak
Grade
Very good
Keywords (Czech)
bodový proces|K-funkce|funkce intenzity|SOIRSKeywords (English)
point process|K-function|intensity function|SOIRSBodové procesy jsou náhodné lokálně konečné množiny bodů v prostoru, které slouží k modelování a následné analýze prostorových dat. Některé z jejich užitečných charak- teristik jsou párová korelační funkce a také K-funkce, které popisují bodové interakce vzhledem ke vzdálenosti mezi body. Pro nehomogenní procesy existuje několik způsobů, jak do odhadů těchto charakteristik začlenit informaci o nekonstantní funkci intenzity. Ve starším odhadu využíváme informace o hodnotě funkce intenzity pouze v místech, ve kterých se nachází bod procesu. Nový odhad však pracuje s hodnotou funkce intenzity z celého pozorovacího okna. V práci se zaměřujeme na srovnání těchto dvou odhadů. Ve třetí kapitole si tyto odhady teoreticky uvedeme a ve čtvrté kapitole porovnáváme jejich chování na základě simulací 8 modelů bodových procesů, přičemž zjišťujeme opti- mální hodnotu šířky jádra pro jejich jaderné odhady. 1
Point processes are random local finite sets of points in a space that are used for mod- elling and subsequent spatial data analysis. Same of their useful characteristics are the pair correlation function and also the K-function, which describe point interactions with respect to the distance between points. There are several ways to include informa- tion about the non-constant intensity function in the estimates of these characteristics for inhomogeneous processes. In the older estimate, we use information about a value of the intensity function only in places where the process points are located. However, the new estimate works with a value of the intensity function within the whole observation window. In this thesis we focus on the comparison of these two estimates. In the third chapter we theoretically present these estimates and in the fourth chapter we compare their behaviour based on simulations of 8 point process models, while finding the optimal value of bandwidth for their kernel estimates. 1