Non-Autoregressive Neural Machine Translation
Neautoregresivní neuronový strojový překlad
dizertační práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/174086Identifikátory
SIS: 156231
Kolekce
- Kvalifikační práce [11981]
Autor
Vedoucí práce
Oponent práce
Duh, Kevin
Popel, Martin
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Matematická lingvistika
Katedra / ústav / klinika
Ústav formální a aplikované lingvistiky
Datum obhajoby
9. 2. 2022
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Prospěl/a
Klíčová slova (česky)
strojový překlad|hluboké učení|zpracování přirozených jazykůKlíčová slova (anglicky)
machine translation|deep learning|natural language processingV poslední době nabídl výzkum strojového překladu nové metody pro zrych- lení generování. Jedním z navrhovaných metod je takzvaný neautoregresivní neuronový strojový překlad. V klasických autoregresivních překladových sys- témech jsou výstupní pravděpodobnostní rozdělení modelována podmíněně na předchozích výstupech. Tato závislost umožňuje modelům sledovat stav překlá- dání a obvykle vede ke generování velmi plynulých textů. Autoregresivní postup je však ze své podstaty sekvenční a nelze jej paralelizovat. Neautoregresivní sys- témy modelují pravděpodobnosti jednotlivých cílových slov jako navzájem pod- míněně nezávislé, což znamená, že dekódování lze paralelizovat snadno. Nevýho- dou je ovšem nízká kvalita překladu ve srovnání s modely autoregresivními. Cíl výzkumu neautoregresivních metod strojového překladu je zlepšit kvalitu pře- kladu a zároveň uchovat vysokou rychlost dekódování. Naše práce předkládá re- šerši publikovaných metod a poukazuje na některé nedostatky plynoucí z obecně přijímané evaluační metodologie. Popisujeme experimenty s neautoregresivními modely trénovaných pomocí takzvané " connectionist temporal classification". Z našich výsledků plyne, že i když dosahujeme nejlepších výsledků mezi neautore- gresivními modely na datech z WMT z roku 2014, při porovnání s nejnovějšími...
In recent years, a number of mehtods for improving the decoding speed of neural machine translation systems have emerged. One of the approaches that pro- poses fundamental changes to the model architecture are non-autoregressive models. In standard autoregressive models, the output token distributions are conditioned on the previously decoded outputs. The conditional dependence al- lows the model to keep track of the state of the decoding process, which improves the fluency of the output. On the other hand, it requires the neural network computation to be run sequentially, and thus it cannot be parallelized. Non- autoregressive models impose conditional independence on the output distri- butions, which means that the decoding process is parallelizable and hence the decoding speed improves. A major drawback of this approach is lower trans- lation quality compared to the autoregressive models. The goal of the non- autoregressive translation research is to find methods that improve the trans- lation quality, while retaining high decoding speed. In this thesis, we explore the research progress so far and identify flaws in the generally accepted eval- uation methodology. We experiement with non-autoregressive models trained with connectionist temporal classification. We find that even though our models...
