Gröbnerovy báze
Groebner bases
bachelor thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/173873Identifiers
Study Information System: 91525
Collections
- Kvalifikační práce [11968]
Author
Advisor
Referee
Příhoda, Pavel
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
General Mathematics
Department
Department of Algebra
Date of defense
16. 6. 2022
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
Czech
Grade
Very good
Keywords (Czech)
polynomiální okruh|ideál|Gröbnerova báze|Buchbergerův algoritmus|standardní báze|Syzygie modulůKeywords (English)
polynomial rings|ideals|Gröbner basis|Buchberger's algorithm|Standard basis|Syzygies of modulesGröbnerova báze je konkrétní množina generátorů ideálu v okruhu polynomů S = K[x1, . . . , xn]. Tento pojem je zaveden vzhledem k monickému uspořádání. V práci zave- deme tyto pojmy a představíme Buchbergerovo kritérium, které nám umožní efektivně ověřit, zda je množina generátorů Gröbnerova báze. Ukážeme Buchbergerův algoritmus, který nám z konečné množiny generátorů vytvoří Gröbnerovu bázi. Podíváme se na speciální případ lineárně homogenních ideálů, kdy lze Gröbnerovu bázi spočítat jednoduše Gaussovou eliminací. Nakonec tuto teorii rozšíříme na podmoduly volných modulů a stručně naznačíme, jak použít Gröbnerovy báze pro důkaz Hilbertovy věty o syzygiích. 1
Gröbner basis is a particular kind of a generating set of an ideal in the polynomial ring S = K[x1, . . . , xn]. This notion is based upon the concept of a monomial order. We define these concepts and present Buchberger's criterion, that enables us to effectively verify whether a generating set is a Gröbner basis. We introduce Buchberger's algorithm, that produces a Gröbner basis from a finite set of generators. We consider a special case of linear homogeneous ideals, where Gröbner basis can be computed simply by the Gaussian elimination. Finally, we extend this theory to submodules of free modules and briefly indicate how to use Gröbner bases to prove Hilbert's syzygy theorem. 1
