Show simple item record

Error detection in speech recognition
dc.contributor.advisorHajič, Jan
dc.creatorTobolíková, Petra
dc.date.accessioned2017-04-10T10:43:35Z
dc.date.available2017-04-10T10:43:35Z
dc.date.issued2008
dc.identifier.urihttp://hdl.handle.net/20.500.11956/14862
dc.description.abstractThis thesis tackles the problem of error detection in speech recognition. First, principles of recent approaches to automatic speech recognition are introduced. Various deficiencies of speech recognition that cause imperfect recognition results are outlined. Current known methods of "confidence score" computation are then described. The next chapter introduces three machine learning algorithms which where employed in the error detection methods implemented in this thesis: logistic regression, artificial neural networks and decision trees. This machine learning methods use certain attributes of the recognized words as input variables and predict an estimated confidence score value. The open source software "R" has been used throughout, showing the usage of the aforementioned methods. These methods have been tested on Czech radio and TV broadcasts. The results obtained by those methods are compared using ROC curves, standard errors and possible (oracle) WER reduction. Programming documentation of the code used in the implementation is enclosed as well. Finally, efficient word attributes for error detection are summarized.en_US
dc.description.abstractTématem této diplomové práce je detekce chyb v rozpoznávání mluvené řeči. Nejprve jsou stručně představeny principy současného rozpoznávání řeči. Jsou nastíněny problémy, se kterými se rozpoznávání řeči potýká a které způsobují, že stále nefunguje bezchybně. Dále jsou uvedeny stávající známé metody výpočtu tzv. skóre spolehlivosti. V následující části jsou popsány tři metody strojového učení, které byly využity pro implementovanou detekci chyb: logistická regrese, neuronové sítě a rozhodovací stromy. Poté jsou navrženy atributy slov v rozpoznaných větách, které jsou použity jako vstupní proměnné metod strojového učení. Výstupní proměnnou je odhad skóre spolehlivosti. Je zde předveden způsob, jakým byly využity implementace metod strojového učení v softwaru R. Metody byly testovány na nahrávkách českého rádia a televize. Výsledky jednotlivých metod jsou porovnány pomocí křivek ROC, směrodatné chyby detekce a možnosti redukce WER v rozpoznaných větách. Je připojen rovněž popis programu, který je součástí práce. Na závěr jsou shrnuty vlastnosti slova, které se osvědčily jako účinné atributy při detekci chyb.cs_CZ
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleDetekce chyb v rozpoznávání mluvené řečics_CZ
dc.typediplomová prácecs_CZ
dcterms.created2008
dcterms.dateAccepted2008-05-26
dc.description.departmentInstitute of Formal and Applied Linguisticsen_US
dc.description.departmentÚstav formální a aplikované lingvistikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId44108
dc.title.translatedError detection in speech recognitionen_US
dc.contributor.refereePeterek, Nino
dc.identifier.aleph001122013
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineComputational Linguisticsen_US
thesis.degree.disciplineMatematická lingvistikacs_CZ
thesis.degree.programInformatikacs_CZ
thesis.degree.programComputer Scienceen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická lingvistikacs_CZ
uk.degree-discipline.enComputational Linguisticsen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csTématem této diplomové práce je detekce chyb v rozpoznávání mluvené řeči. Nejprve jsou stručně představeny principy současného rozpoznávání řeči. Jsou nastíněny problémy, se kterými se rozpoznávání řeči potýká a které způsobují, že stále nefunguje bezchybně. Dále jsou uvedeny stávající známé metody výpočtu tzv. skóre spolehlivosti. V následující části jsou popsány tři metody strojového učení, které byly využity pro implementovanou detekci chyb: logistická regrese, neuronové sítě a rozhodovací stromy. Poté jsou navrženy atributy slov v rozpoznaných větách, které jsou použity jako vstupní proměnné metod strojového učení. Výstupní proměnnou je odhad skóre spolehlivosti. Je zde předveden způsob, jakým byly využity implementace metod strojového učení v softwaru R. Metody byly testovány na nahrávkách českého rádia a televize. Výsledky jednotlivých metod jsou porovnány pomocí křivek ROC, směrodatné chyby detekce a možnosti redukce WER v rozpoznaných větách. Je připojen rovněž popis programu, který je součástí práce. Na závěr jsou shrnuty vlastnosti slova, které se osvědčily jako účinné atributy při detekci chyb.cs_CZ
uk.abstract.enThis thesis tackles the problem of error detection in speech recognition. First, principles of recent approaches to automatic speech recognition are introduced. Various deficiencies of speech recognition that cause imperfect recognition results are outlined. Current known methods of "confidence score" computation are then described. The next chapter introduces three machine learning algorithms which where employed in the error detection methods implemented in this thesis: logistic regression, artificial neural networks and decision trees. This machine learning methods use certain attributes of the recognized words as input variables and predict an estimated confidence score value. The open source software "R" has been used throughout, showing the usage of the aforementioned methods. These methods have been tested on Czech radio and TV broadcasts. The results obtained by those methods are compared using ROC curves, standard errors and possible (oracle) WER reduction. Programming documentation of the code used in the implementation is enclosed as well. Finally, efficient word attributes for error detection are summarized.en_US
uk.publication-placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Ústav formální a aplikované lingvistikycs_CZ


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 3-5, 116 36 Praha; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV