O rovnici div u=f
The equation div u = f
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/147781Identifikátory
SIS: 110010
Kolekce
- Kvalifikační práce [11978]
Autor
Vedoucí práce
Oponent práce
Kaplický, Petr
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra matematické analýzy
Datum obhajoby
7. 9. 2021
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Klíčová slova (česky)
Sobolevovy prostory|laminace|divergenceKlíčová slova (anglicky)
Sobolev spaces|laminates|divergenceV této práci dáváme odpověď na otázku, zda rovnice div u = f má řešení u s gradi- entem v Lp (Rn ) pro každou pravou stranu f ∈ Lp (Rn ). Dokážeme, že je to pravda pro 1 < p < ∞ a zkonstruujeme protipříklady pro p = 1 a p = ∞. In this thesis, we answer the question whether the equation div u = f has a solution u with gradient in Lp (Rn ) for each f ∈ Lp (Rn ). We prove that this is true for 1 < p < ∞ and construct counterexamples for p = 1 and p = ∞. 1
V této práci dáváme odpověď na otázku, zda rovnice div u = f má řešení u s gradi- entem v Lp (Rn ) pro každou pravou stranu f ∈ Lp (Rn ). Dokážeme, že je to pravda pro 1 < p < ∞ a zkonstruujeme protipříklady pro p = 1 a p = ∞. In this thesis, we answer the question whether the equation div u = f has a solution u with gradient in Lp (Rn ) for each f ∈ Lp (Rn ). We prove that this is true for 1 < p < ∞ and construct counterexamples for p = 1 and p = ∞. 1
