Aproximace a numerická realizace kontaktních úloh s daným třením a koeficientem tření, závislým na řešení v 3D
Approximation and numerical realization of contact problems with given friction and a coefficient of friction depending on the solution in 3D.
rigorous thesis (RECOGNIZED)

View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/13674Identifiers
Study Information System: 44909
Collections
- Kvalifikační práce [10353]
Author
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Computational mathematics
Department
Department of Numerical Mathematics
Date of defense
27. 9. 2007
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
Czech
Grade
Recognized
Three-dimensional contact problems with given friction and a coeficient of friction depending on the solution are studied. By means of the xed-point approach, the existence of at least one solution is proved provided that the coeficient of friction F is represented by a continuous, positive and bounded function. Under an additional assumption, namely the Lipschitz continuity of F with a suficiently small modulus of the Lipschitz continuity, the uniqueness of the solution is shown. The problem is discretized by the nite element method. The existence and uniqueness of the solution to the discrete problems are investigated in a similar way as it has been done in the continuous setting. Convergence of solutions to the discrete models in an appropriate sense is established. The method of successive approximations is used for nding xed-points. Each iterative step leads to a contact problem with given friction and a coeficient of friction which does not depend on the solution. We introduce a mixed variational formulation of this problem from which the dual formulation used in computations can be derived. Numerical results of model examples are presented.