Zobrazit minimální záznam

Properties and construction of core problem in data fitting problems with multiple observations
dc.contributor.advisorHnětynková, Iveta
dc.creatorDvořák, Jan
dc.date.accessioned2021-07-14T06:54:04Z
dc.date.available2021-07-14T06:54:04Z
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/20.500.11956/127492
dc.description.abstractV této prací studujeme řešení lineárních aproximačních problémů s násobným pozo- rováním. Konkrétně se zaměříme na metodu úplných nejmenších čtverců, která spadá mezi ortogonálně invariantní úlohy. Pro uvažovaný problém bude popsána tak zvaná core redukce. Jejím cílem je zredukovat problém na úlohu menších rozměrů při zachování stejného řešení, pokud existuje. Uvedeme dva způsoby konstrukce core problému, jeden přímý pomocí singulárního rozkladu a druhý využívající zobecněnou Golub-Kahanovu iterační bidiagonalizaci. Dále prozkoumáme vlastnosti core problému a metod pro jeho numerický výpočet. Na závěr provedeme numerické experimenty v prostředí Matlab za účelem otestování spolehlivosti uvažovaných algoritmů. 1cs_CZ
dc.description.abstractIn this work we study the solution of linear approximation problems with multiple observations. Particulary we focus on the total least squares method, which belogs to the class of ortogonaly invariant problems. For these problems we describe the so called core reduction. The aim is to reduce dimesions of the problem while preserving the solution, if it exists. We present two ways of constructing core problems. One is based on the singular value decomposition and the other uses the generalized Golub-Kahan iterative bidiago- nalization. Further we investigate properties of the core problem and of the methods for its construction. Finally we preform numerical experiments in the Matlab enviroment in order to test the reliability of the discussed algorithms. 1en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectlineární aproximační problémcs_CZ
dc.subjectnásobná pozorovánícs_CZ
dc.subjectcore problémcs_CZ
dc.subjectGolub-Kahanova iterační bidiagonalizacecs_CZ
dc.subjectblokové metodycs_CZ
dc.subjectlinear aproximation problemen_US
dc.subjectmultiple observationsen_US
dc.subjectcore problemen_US
dc.subjectGolub-Kahan iterative bidiagonalizationen_US
dc.subjectblock methodsen_US
dc.titleVlastnosti a konstrukce core problému v úlohách fitování dat s násobným pozorovánímcs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2021
dcterms.dateAccepted2021-06-23
dc.description.departmentDepartment of Numerical Mathematicsen_US
dc.description.departmentKatedra numerické matematikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId222964
dc.title.translatedProperties and construction of core problem in data fitting problems with multiple observationsen_US
dc.contributor.refereePlešinger, Martin
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineNumerical and computational mathematicsen_US
thesis.degree.disciplineNumerická a výpočtová matematikacs_CZ
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra numerické matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Numerical Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csNumerická a výpočtová matematikacs_CZ
uk.degree-discipline.enNumerical and computational mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV této prací studujeme řešení lineárních aproximačních problémů s násobným pozo- rováním. Konkrétně se zaměříme na metodu úplných nejmenších čtverců, která spadá mezi ortogonálně invariantní úlohy. Pro uvažovaný problém bude popsána tak zvaná core redukce. Jejím cílem je zredukovat problém na úlohu menších rozměrů při zachování stejného řešení, pokud existuje. Uvedeme dva způsoby konstrukce core problému, jeden přímý pomocí singulárního rozkladu a druhý využívající zobecněnou Golub-Kahanovu iterační bidiagonalizaci. Dále prozkoumáme vlastnosti core problému a metod pro jeho numerický výpočet. Na závěr provedeme numerické experimenty v prostředí Matlab za účelem otestování spolehlivosti uvažovaných algoritmů. 1cs_CZ
uk.abstract.enIn this work we study the solution of linear approximation problems with multiple observations. Particulary we focus on the total least squares method, which belogs to the class of ortogonaly invariant problems. For these problems we describe the so called core reduction. The aim is to reduce dimesions of the problem while preserving the solution, if it exists. We present two ways of constructing core problems. One is based on the singular value decomposition and the other uses the generalized Golub-Kahan iterative bidiago- nalization. Further we investigate properties of the core problem and of the methods for its construction. Finally we preform numerical experiments in the Matlab enviroment in order to test the reliability of the discussed algorithms. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematikycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV