Hodnocení lesní vegetace pomocí časových řad družicových snímků
Evaluation of forest vegetation based on time series of remote sensing data
rigorous thesis (RECOGNIZED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/126136Identifiers
Study Information System: 232839
Collections
- Kvalifikační práce [19609]
Author
Faculty / Institute
Faculty of Science
Discipline
Cartography and Geoinformatics
Department
Department of Applied Geoinformatics and Cartography
Date of defense
1. 6. 2021
Publisher
Univerzita Karlova, Přírodovědecká fakultaLanguage
Czech
Grade
Recognized
Keywords (Czech)
časové řady, Landsat, Sentinel-2, klasifikace, vegetační indexKeywords (English)
time series, Landsat, Sentinel-2, classification, vegetation indexPříloha k disertační práci: Abstrakt (Mgr. Josef Laštovička) Abstrakt Disertační práce se zabývá studiem lesních ekosystému na území střední Evropy pomocí časových řad družicových snímků, se zaměřením na zpracování optických multispektrálních dat. Právě lesní ekosystémy jsou poslední desetiletí pod četnými disturbancemi biotického i abiotického charakteru. Časové řady družicových dat s vysokým prostorovým rozlišením umožňují lesní disturbance podrobně zkoumat a analyzovat. V práci je kladen důraz na užití volně dostupných dat Landsat a Sentinel- 2, pro něž bylo provedeno detailní testování a porovnání. Vybrány byly diferenční metody časových řad. Práci lze rozdělit do dvou částí. První část zkoumá detekci lesních povrchů pomocí per-pixelových a sub-pixelových klasifikačních metod. Konkrétně bylo užito per-pixel klasifikátorů Neural Network, Support Vector Machine a Maximum Likelihood, které byly mezi sebou vzájemně otestovány a porovnány pro různé typy dat (s vysokým prostorovým rozlišením - Landsat a Sentinel; i velmi vysokým prostorovým rozlišením - WorldView-2) pro detekci land cover chráněných území. Z výše zmíněných klasifikátorů dosahoval nejvyšší přesnosti klasifikace Support Vector Machine. Z hlediska sub-pixelové klasifikace bylo využito Spectral Unmixing metod. Konkrétně byly pro tvorbu frakcí...
Příloha k disertační práci: Abstrakt v AJ (Mgr. Josef Laštovička) Abstract This dissertation thesis deals with the study of forest ecosystems in the central Europe with the time series of multispectral optical satellite data. These forest ecosystems have been influenced by biotic and abiotic disturbances for the last decade. The time series of the satellite data with high spatial resolution allow the detection and analysis of forest disturbances. This thesis is mainly focused primally on free available Landsat and Sentinel-2 data, these two data types were compared. From methods, the difference time series analyses / algorithms were used. The whole thesis can be divided into two main parts. The first one analyses usability of classifiers for detection of forest ecosystems with per-pixel and sub-pixel methods. Specifically, the Neural Network, the Support Vector Machine and the Maximum Likelihood per-pixel classifiers were used and compared for different types of data (for data with high spatial resolution - Landsat or Sentinel-2; very high spatial resolution - WorldView-2) and for classification of protected forest areas. The Support Vector Machine were selected as the most suitable method for forest classifications (with most accurate outputs) from the list of selected per-pixel classifiers. Also, Spectral...