Modely vícerozměrných finančních časových řad v úloze optimalizace portfolia
Multivariate financial time series models in portfolio optimization
diploma thesis (DEFENDED)

View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/120573Identifiers
Study Information System: 219517
Collections
- Kvalifikační práce [11322]
Author
Advisor
Referee
Prášková, Zuzana
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Probability, mathematical statistics and econometrics
Department
Department of Probability and Mathematical Statistics
Date of defense
7. 9. 2020
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
Czech
Grade
Very good
Keywords (Czech)
MGARCH, BEKK, GO-GARCH, CCC, DCC, optimalizace portfoliaKeywords (English)
MGARCH, BEKK, GO-GARCH, CCC, DCC, portfolio optimizationTato diplomová práce se zabývá modelováním mnohorozměrné volatility ve finančních časových řadách. Cílem práce je detailně popsat vybrané přístupy k modelování mnohorozměrné volatility, včetně verifikace příslušných modelů, a následně je aplikovat v empirické studii úlohy optimalizace portfolia aktiv. Vý- sledky jsou porovnány s klasickým přístupem teorie optimalizace portfolia za- loženém na nepodmíněných odhadech. Vyhodnocení probíhalo na základě čtyř známých optimalizačních úloh, a to minimalizace rozptylu, Markowitzova mo- delu, maximalizace Sharpeho poměru a minimalizace CVaR. Výsledná portfolia byla porovnána pomocí šesti metrik, které odráží výnosnosti i rizika portfolií. Vý- sledky ukázaly, že s použitím mnohorozměrných modelů volatility získáme oproti klasickému přístupu větší očekávané výnosy s menším očekávaným rizikem. 1
This master thesis deals with the modeling of multivariate volatility in finan- cial time series. The aim of this work is to describe in detail selected approaches to modeling multivariate financial volatility, including verification of models, and then apply them in an empirical study of asset portfolio optimization. The results are compared with the classical approach of portfolio optimization theory based on unconditional moment estimates. The evaluation was based on four known op- timization problems, namely minimization of variance, Markowitz's model, ma- ximization of the Sharpe ratio and minimization of CVaR. The output portfolios were compared by using four metrics that reflect the returns and risks of the port- folios. The results demonstrated that employing the multivariate volatility models one obtains higher expected returns with less expected risk when comparing with the classical approach. 1