Studium terahertzového záření emitovaného pomocí spintronických jevů
Study of terahertz radiation emitted using spintronic effects
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/119791Identifikátory
SIS: 219330
Kolekce
- Kvalifikační práce [11987]
Autor
Vedoucí práce
Oponent práce
Kašpar, Zdeněk
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná fyzika
Katedra / ústav / klinika
Katedra chemické fyziky a optiky
Datum obhajoby
14. 7. 2020
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Klíčová slova (česky)
terahertzové záření, spintronika, spinový Hallův jevKlíčová slova (anglicky)
terahertz radiation, spintronics, spin Hall effectEfektivní emise pikosekundových terahertzových (THz) pulzů využitím optických fem- tosekundových pulzů je základem THz spektroskopie v časové doméně. Nedávné studie ukázaly, že ultrarychlá optická excitace tenkých kovových magnetických multivrstev vede k efektivní emisi THz pulzů pomocí konverze spinového proudu na elektrický proud. Tato práce se zaměřuje na určení absolutní emise a efektivity konverze spintronických emitorů od několika producentů. Ze srovnání plyne, že lze dosáhnout efektivity srovnatelné s vysoce optimalizovanými spintronickými emitory využitím růstových možností v rámci Matematicko-fyzikální fakulty UK. Práce zároveň demonstruje výrazný vliv kvality roz- hraní na propustnost ultrarychlých spinových proudů. Na závislosti emise na fluenci op- tické excitace je pozorován saturační efekt, který definuje vhodné podmínky excitace pro škálování THz emise do vyšších elektrických polí. Pozorovaná spektrální závislost emise na fluenci doplňuje diskuzi o podstatě vzniku ultrarychlých spinových proudů. 1
Effective emission of picosecond terahertz (THz) pulses using optical femtosecond pul- ses is the basis of THz spectroscopy in the time domain. Recent studies have shown that ultrafast optical excitation of thin metal magnetic multilayers leads to effective emission of THz pulses by converting the spin current to electric current. This work focuses on deter- mining the absolute emission and conversion efficiency of spintronic emitters from several manufacturers. Our comparison suggests that efficiency comparable to highly optimized spintronic emitters can be achieved by utilizing multilayer manufacturing capabilites of the Faculty of Mathematics and Physics of Charles University. The work also demon- strates the significant influence of interface quality on the throughput of ultrafast spin currents. Furthermore, the work describes a saturation effect observed in the relation be- tween emission and optical excitation fluency, which defines suitable excitation conditions for scaling the THz emission to higher electric fields. The observed spectral dependence of emission on fluence complements the discussion about the nature of ultrafast spin current formation. 1
