Smoothness of Functions Learned by Neural Networks
Hladkost funkcí naučených neuronovými sítěmi
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/119446Identifikátory
SIS: 224645
Kolekce
- Kvalifikační práce [11236]
Autor
Vedoucí práce
Oponent práce
Straka, Milan
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná informatika
Katedra / ústav / klinika
Ústav formální a aplikované lingvistiky
Datum obhajoby
7. 7. 2020
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
strojové učení, neuronové sítě, hladkost, zobecňováníKlíčová slova (anglicky)
machine learning, neural networks, smoothness, generalizationModern neural networks can easily fit their training set perfectly. Surprisingly, they generalize well despite being "overfit" in this way, defying the bias-variance trade-off. A prevalent explanation is that stochastic gradient descent has an implicit bias which leads it to learn functions that are simple, and these simple functions generalize well. However, the specifics of this implicit bias are not well understood. In this work, we explore the hypothesis that SGD is implicitly biased towards learning functions that are smooth. We propose several measures to formalize the intuitive notion of smoothness, and conduct experiments to determine whether these measures are implicitly being optimized for. We exclude the possibility that smoothness measures based on first derivatives (the gradient) are being implicitly optimized for. Measures based on second derivatives (the Hessian), on the other hand, show promising results. 1