Zobrazit minimální záznam

Topologická pásová teorie relativistické spintroniky v antiferromagnetech
dc.contributor.advisorJungwirth, Tomáš
dc.creatorŠmejkal, Libor
dc.date.accessioned2021-03-26T13:18:54Z
dc.date.available2021-03-26T13:18:54Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/20.500.11956/117130
dc.description.abstractNanoelektronika a spintronika se zabývají zápisem, přenosem a čtením informací uložených v elektronickém nábojovém a spinovém stupni volnosti v nanostrukturách. Několik posledních let ukázalo, že dva spintronické jevy objevené v 19. století, a to anizotropní magnetorezistence a anomální Hallův efekt, lze použít i pro snímání antiferromagnetismu, což otevřelo pole antiferromagnetické spintroniky. Více než století kontroverzních studií těchto jevů prokázalo jejich relativistický spin-orbitální a spinově-polarizační původ. Stále však chybí úplné porozumění těmto efektům a plně prediktivní teorie schopná identifikovat nové vhodné antiferomagnetické materiály. Zde jsme rozšířením moderních konceptů symetrie a topologie ve fyzice kondenzovaných látek dále rozvinuli teorii anizotropní magnetorezistence a spontánního Hallova efektu. Náš přístup je založen na analýze magnetické symetrie a topologie antiferomagnetických energetických pásů, Blochových spektrálních funkcí a Berryho křivosti vypočtené z nejmodernější prvotních principů. To nás vedlo k predikci dvou nových, dříve neočekávaných efektů: relativistický přechod kov-izolátor z antiferomagnetických Dirakových fermionů a krystalový Hallův efekt z kolineárního antiferomagnetismu. Projevy obou jevů již byly pozorovány ve spolupráci s experimentálnímy kolegy v...cs_CZ
dc.description.abstractNanoelectronics and spintronics are concerned with writing, transporting, and reading information stored in electronic charge and spin degrees of freedom at the nanoscale. Past few years have shown that two spintronics effects discovered in the 19th century, namely anisotropic magnetoresistance and anomalous Hall effect, can be used also for sensing antiferromagnetism which opened the field of antiferromagnetic spintronics. The more than a century of controversial studies of these effects have shown their relativistic spin-orbit coupling and spin-polarisation symmetry breaking origin. However, a complete understanding of these effects and a fully predictive theory capable of identifying novel suitable antiferromagnetic materials are still lacking. Here, by extending modern symmetry and topology concepts in condensed matter physics, we have further developed the theory of anisotropic magnetoresistance and spontaneous Hall effect. Our approach is based on magnetic symmetry and topology analysis of antiferromagnetic energy bands, Bloch spectral functions, and Berry curvatures calculated from the state-of-the- art first-principle theory. This guided us to the prediction of two novel, previously unanticipated effects: relativistic metal-insulator transition from antiferromagnetic Dirac fermions, and crystal Hall...en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectantiferromagnetic Dirac fermionsen_US
dc.subjecttopological spintronicsen_US
dc.subjectanisotropic magnetoresistanceen_US
dc.subjectspontaneous Hall effecten_US
dc.subjectab initio calculationsen_US
dc.subjectantiferromagnetické Dirakovy fermionycs_CZ
dc.subjecttopologická spintronikacs_CZ
dc.subjectanisotropní magnetorezistencecs_CZ
dc.subjectspontánní Hallovy jevycs_CZ
dc.subjectab initio výpočtycs_CZ
dc.titleTopological band theory of relativistic spintronics in antiferromagnetsen_US
dc.typedizertační prácecs_CZ
dcterms.created2020
dcterms.dateAccepted2020-04-30
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId114275
dc.title.translatedTopologická pásová teorie relativistické spintroniky v antiferromagnetechcs_CZ
dc.contributor.refereeKuneš, Jan
dc.contributor.refereeShick, Alexander
dc.identifier.aleph002317424
thesis.degree.namePh.D.
thesis.degree.leveldoktorskécs_CZ
thesis.degree.disciplinePhysics of nanostructures and nanomaterialsen_US
thesis.degree.disciplineFyzika nanostruktur a nanomateriálůcs_CZ
thesis.degree.programFyzika nanostruktur a nanomateriálůcs_CZ
thesis.degree.programPhysics of nanostructures and nanomaterialsen_US
uk.thesis.typedizertační prácecs_CZ
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csFyzika nanostruktur a nanomateriálůcs_CZ
uk.degree-discipline.enPhysics of nanostructures and nanomaterialsen_US
uk.degree-program.csFyzika nanostruktur a nanomateriálůcs_CZ
uk.degree-program.enPhysics of nanostructures and nanomaterialsen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.csNanoelektronika a spintronika se zabývají zápisem, přenosem a čtením informací uložených v elektronickém nábojovém a spinovém stupni volnosti v nanostrukturách. Několik posledních let ukázalo, že dva spintronické jevy objevené v 19. století, a to anizotropní magnetorezistence a anomální Hallův efekt, lze použít i pro snímání antiferromagnetismu, což otevřelo pole antiferromagnetické spintroniky. Více než století kontroverzních studií těchto jevů prokázalo jejich relativistický spin-orbitální a spinově-polarizační původ. Stále však chybí úplné porozumění těmto efektům a plně prediktivní teorie schopná identifikovat nové vhodné antiferomagnetické materiály. Zde jsme rozšířením moderních konceptů symetrie a topologie ve fyzice kondenzovaných látek dále rozvinuli teorii anizotropní magnetorezistence a spontánního Hallova efektu. Náš přístup je založen na analýze magnetické symetrie a topologie antiferomagnetických energetických pásů, Blochových spektrálních funkcí a Berryho křivosti vypočtené z nejmodernější prvotních principů. To nás vedlo k predikci dvou nových, dříve neočekávaných efektů: relativistický přechod kov-izolátor z antiferomagnetických Dirakových fermionů a krystalový Hallův efekt z kolineárního antiferomagnetismu. Projevy obou jevů již byly pozorovány ve spolupráci s experimentálnímy kolegy v...cs_CZ
uk.abstract.enNanoelectronics and spintronics are concerned with writing, transporting, and reading information stored in electronic charge and spin degrees of freedom at the nanoscale. Past few years have shown that two spintronics effects discovered in the 19th century, namely anisotropic magnetoresistance and anomalous Hall effect, can be used also for sensing antiferromagnetism which opened the field of antiferromagnetic spintronics. The more than a century of controversial studies of these effects have shown their relativistic spin-orbit coupling and spin-polarisation symmetry breaking origin. However, a complete understanding of these effects and a fully predictive theory capable of identifying novel suitable antiferromagnetic materials are still lacking. Here, by extending modern symmetry and topology concepts in condensed matter physics, we have further developed the theory of anisotropic magnetoresistance and spontaneous Hall effect. Our approach is based on magnetic symmetry and topology analysis of antiferromagnetic energy bands, Bloch spectral functions, and Berry curvatures calculated from the state-of-the- art first-principle theory. This guided us to the prediction of two novel, previously unanticipated effects: relativistic metal-insulator transition from antiferromagnetic Dirac fermions, and crystal Hall...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
thesis.grade.codeP
dc.contributor.consultantTurek, Ilja
dc.contributor.consultantCarva, Karel
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO
uk.departmentExternal.nameFyzikální ústav AV ČR, v.v.i.cs
dc.identifier.lisID990023174240106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV