Universal Morphological Analysis using ReinforcementLearning
Univerzální morfologická analýza s využitím reinforcement learning
diplomová práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/116656Identifikátory
SIS: 212057
Kolekce
- Kvalifikační práce [11981]
Vedoucí práce
Oponent práce
Mareček, David
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Matematická lingvistika
Katedra / ústav / klinika
Ústav formální a aplikované lingvistiky
Datum obhajoby
4. 2. 2020
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
morfologická analýza, reinforcement learningKlíčová slova (anglicky)
morphological analysis, reinforcement learningThe persistent efforts to make valuable annotated corpora in more diverse, morphologically rich languages has driven research in NLP into considering more explicit techniques to incorporate morphological information into the pipeline. Recent efforts have proposed combined strategies to bring together the transducer paradigm and neural architectures, although ingesting one character at a time in a context-agnostic setup. In this thesis, we introduce a technique inspired by the byte pair encoding (BPE) compression algorithm in order to obtain transducing actions that resemble word formations more faithfully. Then, we propose a neural transducer architecture that operates over these transducing actions, ingesting one word token at a time and effectively incorporating sentential context by encoding per- token action representations in a hierarchical fashion. We investigate the benefit of this word formation representations for the tasks of lemmatization and context-aware morphological tagging for a typologically diverse set of languages, including a low- resourced native language from Peru, Shipibo-Konibo. For lemmatization, we use exploration-based optimization under a reinforcement learning framework, and find that our approach benefits greatly languages that use less commonly studied morphological processes...
