Intelligent Interior Design - Style Compatibility of 3D Furniture Models using Neural Networks
Inteligentní návrh interiérů - Kompatibilita stylu 3D modelů nábytku pomocí neuronových sítí
diplomová práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/116604Identifikátory
SIS: 215649
Kolekce
- Kvalifikační práce [11217]
Autor
Vedoucí práce
Oponent práce
Střelský, Jakub
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Umělá inteligence
Katedra / ústav / klinika
Katedra softwaru a výuky informatiky
Datum obhajoby
3. 2. 2020
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
3D grafika, neuronové sítěKlíčová slova (anglicky)
3D graphics, neural networks, metric learning, style similarity;Thesis title: Intelligent Interior Design - Style Compatibility of 3D Furniture Models using Neural Networks Author: Yuu Sakaguchi Abstract: Analysis of 3D shapes is a challenging task especially when it comes to measuring the styles. There are numerous possible real-world applications which benefit from machine understanding of 3D objects, so we explore analytical models to measure style-related features. 3D models can be represented in different formats such as polygon mesh, multi-view images, and point cloud, and each of them has different characteristics. In this work, we mainly focus on analyzing the ability of a point cloud to represent style information. In addition, we replicate an existing multi-view based method in order to fairly compare the performance of different representations. The goal of this thesis is to explore and evaluate point cloud based methods, and apply our method to develop applications which provides easy search in a furniture database based on style similarity. We trained and tested our model on two datasets which contain several different categories of 3D objects such as furniture in dining rooms, furniture in living rooms, buildings, and coffee sets. As the available datasets do not provide style class labels, we learn the embedding using triplet architecture and triplet...