Zobrazit minimální záznam

Některé bezbodové aspekty souvislosti
dc.contributor.advisorPultr, Aleš
dc.creatorJakl, Tomáš
dc.date.accessioned2021-05-20T15:19:22Z
dc.date.available2021-05-20T15:19:22Z
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/20.500.11956/1150
dc.description.abstractV této práci ukážeme Stoneovu větu o reprezentaci, která je také známa pod názvem Stoneova dualita, v bezbodovém kontextu. Předvedený důkaz je bezvýběrový, a protože se nemusíme starat o jednotlivé body, je mnohem jednodušší než původní důkaz. Ukážeme, že pro každý nekonečný kardinál κ jsou protějšky κ-úplných Booleových algebrer κ-bazicky nesouvislé Stoneovy framy. Také předvedeme přesnou charakterizaci morfismů, které jsou v ko- responenci s κ-úplnými Booleovskými homomorfismy. Ikdyž Booleanizace není obecně funktoriální, v části duality extremálně nesouvislých Stoneových framů funktoriální je a dokonce tvoří ekvivalenci kategorií. Na konci práce se zaměříme na De Morganovské (respektive extremálně nesouvislé) framy a ukážeme jejich novou charakterizaci pomocí jejich superhustých sublokálů. Naproti tomu jsou metrizovatelné framy, které nemají žádný netriviální su- perhustý sublokál, a proto nikdy není jejich netriviální Čech-Stoneova kom- paktifikace metrizovatelná. 1cs_CZ
dc.description.abstractIn this thesis we present the Stone representation theorem, generally known as Stone duality in the point-free context. The proof is choice-free and, since we do not have to be concerned with points, it is by far simpler than the original. For each infinite cardinal κ we show that the counter- part of the κ-complete Boolean algebras is constituted by the κ-basically disconnected Stone frames. We also present a precise characterization of the morphisms which correspond to the κ-complete Boolean homomorphisms. Although Booleanization is not functorial in general, in the part of the dual- ity for extremally disconnected Stone frames it is, and constitutes an equiv- alence of categories. We finish the thesis by focusing on the De Morgan (or extremally disconnected) frames and present a new characterization of these by their superdense sublocales. We also show that in contrast with this phenomenon, a metrizable frame has no non-trivial superdense sublocale; in other words, a non-trivial Čech-Stone compactification of a metrizable frame is never metrizable. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectStone dualityen_US
dc.subjectpoint-free topologyen_US
dc.subjectcompactificationen_US
dc.subjectDe Morgan framesen_US
dc.subjectconstructive mathematicsen_US
dc.subjectStoneova dualitacs_CZ
dc.subjectbezbodová topologiecs_CZ
dc.subjectkompaktifikacecs_CZ
dc.subjectDe Morganovské framycs_CZ
dc.subjectkonstruktivní matematikacs_CZ
dc.titleSome point-free aspects of connectednessen_US
dc.typerigorózní prácecs_CZ
dcterms.created2016
dcterms.dateAccepted2016-12-19
dc.description.departmentKatedra aplikované matematikycs_CZ
dc.description.departmentDepartment of Applied Mathematicsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId186850
dc.title.translatedNěkteré bezbodové aspekty souvislostics_CZ
dc.identifier.aleph002117841
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineDiscrete Models and Algorithmsen_US
thesis.degree.disciplineDiskrétní modely a algoritmycs_CZ
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typerigorózní prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra aplikované matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Applied Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csDiskrétní modely a algoritmycs_CZ
uk.degree-discipline.enDiscrete Models and Algorithmsen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csUznánocs_CZ
thesis.grade.enRecognizeden_US
uk.abstract.csV této práci ukážeme Stoneovu větu o reprezentaci, která je také známa pod názvem Stoneova dualita, v bezbodovém kontextu. Předvedený důkaz je bezvýběrový, a protože se nemusíme starat o jednotlivé body, je mnohem jednodušší než původní důkaz. Ukážeme, že pro každý nekonečný kardinál κ jsou protějšky κ-úplných Booleových algebrer κ-bazicky nesouvislé Stoneovy framy. Také předvedeme přesnou charakterizaci morfismů, které jsou v ko- responenci s κ-úplnými Booleovskými homomorfismy. Ikdyž Booleanizace není obecně funktoriální, v části duality extremálně nesouvislých Stoneových framů funktoriální je a dokonce tvoří ekvivalenci kategorií. Na konci práce se zaměříme na De Morganovské (respektive extremálně nesouvislé) framy a ukážeme jejich novou charakterizaci pomocí jejich superhustých sublokálů. Naproti tomu jsou metrizovatelné framy, které nemají žádný netriviální su- perhustý sublokál, a proto nikdy není jejich netriviální Čech-Stoneova kom- paktifikace metrizovatelná. 1cs_CZ
uk.abstract.enIn this thesis we present the Stone representation theorem, generally known as Stone duality in the point-free context. The proof is choice-free and, since we do not have to be concerned with points, it is by far simpler than the original. For each infinite cardinal κ we show that the counter- part of the κ-complete Boolean algebras is constituted by the κ-basically disconnected Stone frames. We also present a precise characterization of the morphisms which correspond to the κ-complete Boolean homomorphisms. Although Booleanization is not functorial in general, in the part of the dual- ity for extremally disconnected Stone frames it is, and constitutes an equiv- alence of categories. We finish the thesis by focusing on the De Morgan (or extremally disconnected) frames and present a new characterization of these by their superdense sublocales. We also show that in contrast with this phenomenon, a metrizable frame has no non-trivial superdense sublocale; in other words, a non-trivial Čech-Stone compactification of a metrizable frame is never metrizable. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra aplikované matematikycs_CZ
thesis.grade.codeU
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusU
dc.identifier.lisID990021178410106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV