dc.contributor.advisor | Pultr, Aleš | |
dc.creator | Jakl, Tomáš | |
dc.date.accessioned | 2021-05-20T15:19:22Z | |
dc.date.available | 2021-05-20T15:19:22Z | |
dc.date.issued | 2016 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/1150 | |
dc.description.abstract | V této práci ukážeme Stoneovu větu o reprezentaci, která je také známa pod názvem Stoneova dualita, v bezbodovém kontextu. Předvedený důkaz je bezvýběrový, a protože se nemusíme starat o jednotlivé body, je mnohem jednodušší než původní důkaz. Ukážeme, že pro každý nekonečný kardinál κ jsou protějšky κ-úplných Booleových algebrer κ-bazicky nesouvislé Stoneovy framy. Také předvedeme přesnou charakterizaci morfismů, které jsou v ko- responenci s κ-úplnými Booleovskými homomorfismy. Ikdyž Booleanizace není obecně funktoriální, v části duality extremálně nesouvislých Stoneových framů funktoriální je a dokonce tvoří ekvivalenci kategorií. Na konci práce se zaměříme na De Morganovské (respektive extremálně nesouvislé) framy a ukážeme jejich novou charakterizaci pomocí jejich superhustých sublokálů. Naproti tomu jsou metrizovatelné framy, které nemají žádný netriviální su- perhustý sublokál, a proto nikdy není jejich netriviální Čech-Stoneova kom- paktifikace metrizovatelná. 1 | cs_CZ |
dc.description.abstract | In this thesis we present the Stone representation theorem, generally known as Stone duality in the point-free context. The proof is choice-free and, since we do not have to be concerned with points, it is by far simpler than the original. For each infinite cardinal κ we show that the counter- part of the κ-complete Boolean algebras is constituted by the κ-basically disconnected Stone frames. We also present a precise characterization of the morphisms which correspond to the κ-complete Boolean homomorphisms. Although Booleanization is not functorial in general, in the part of the dual- ity for extremally disconnected Stone frames it is, and constitutes an equiv- alence of categories. We finish the thesis by focusing on the De Morgan (or extremally disconnected) frames and present a new characterization of these by their superdense sublocales. We also show that in contrast with this phenomenon, a metrizable frame has no non-trivial superdense sublocale; in other words, a non-trivial Čech-Stone compactification of a metrizable frame is never metrizable. 1 | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | Stone duality | en_US |
dc.subject | point-free topology | en_US |
dc.subject | compactification | en_US |
dc.subject | De Morgan frames | en_US |
dc.subject | constructive mathematics | en_US |
dc.subject | Stoneova dualita | cs_CZ |
dc.subject | bezbodová topologie | cs_CZ |
dc.subject | kompaktifikace | cs_CZ |
dc.subject | De Morganovské framy | cs_CZ |
dc.subject | konstruktivní matematika | cs_CZ |
dc.title | Some point-free aspects of connectedness | en_US |
dc.type | rigorózní práce | cs_CZ |
dcterms.created | 2016 | |
dcterms.dateAccepted | 2016-12-19 | |
dc.description.department | Katedra aplikované matematiky | cs_CZ |
dc.description.department | Department of Applied Mathematics | en_US |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 186850 | |
dc.title.translated | Některé bezbodové aspekty souvislosti | cs_CZ |
dc.identifier.aleph | 002117841 | |
thesis.degree.name | RNDr. | |
thesis.degree.level | rigorózní řízení | cs_CZ |
thesis.degree.discipline | Discrete Models and Algorithms | en_US |
thesis.degree.discipline | Diskrétní modely a algoritmy | cs_CZ |
thesis.degree.program | Computer Science | en_US |
thesis.degree.program | Informatika | cs_CZ |
uk.thesis.type | rigorózní práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra aplikované matematiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Applied Mathematics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Diskrétní modely a algoritmy | cs_CZ |
uk.degree-discipline.en | Discrete Models and Algorithms | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Uznáno | cs_CZ |
thesis.grade.en | Recognized | en_US |
uk.abstract.cs | V této práci ukážeme Stoneovu větu o reprezentaci, která je také známa pod názvem Stoneova dualita, v bezbodovém kontextu. Předvedený důkaz je bezvýběrový, a protože se nemusíme starat o jednotlivé body, je mnohem jednodušší než původní důkaz. Ukážeme, že pro každý nekonečný kardinál κ jsou protějšky κ-úplných Booleových algebrer κ-bazicky nesouvislé Stoneovy framy. Také předvedeme přesnou charakterizaci morfismů, které jsou v ko- responenci s κ-úplnými Booleovskými homomorfismy. Ikdyž Booleanizace není obecně funktoriální, v části duality extremálně nesouvislých Stoneových framů funktoriální je a dokonce tvoří ekvivalenci kategorií. Na konci práce se zaměříme na De Morganovské (respektive extremálně nesouvislé) framy a ukážeme jejich novou charakterizaci pomocí jejich superhustých sublokálů. Naproti tomu jsou metrizovatelné framy, které nemají žádný netriviální su- perhustý sublokál, a proto nikdy není jejich netriviální Čech-Stoneova kom- paktifikace metrizovatelná. 1 | cs_CZ |
uk.abstract.en | In this thesis we present the Stone representation theorem, generally known as Stone duality in the point-free context. The proof is choice-free and, since we do not have to be concerned with points, it is by far simpler than the original. For each infinite cardinal κ we show that the counter- part of the κ-complete Boolean algebras is constituted by the κ-basically disconnected Stone frames. We also present a precise characterization of the morphisms which correspond to the κ-complete Boolean homomorphisms. Although Booleanization is not functorial in general, in the part of the dual- ity for extremally disconnected Stone frames it is, and constitutes an equiv- alence of categories. We finish the thesis by focusing on the De Morgan (or extremally disconnected) frames and present a new characterization of these by their superdense sublocales. We also show that in contrast with this phenomenon, a metrizable frame has no non-trivial superdense sublocale; in other words, a non-trivial Čech-Stone compactification of a metrizable frame is never metrizable. 1 | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra aplikované matematiky | cs_CZ |
thesis.grade.code | U | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | U | |
dc.identifier.lisID | 990021178410106986 | |