New Bounds for Combinatorial Problems and Quasi-Gray Codes
Nové Odhady pro Kombinatorických Problémů a Kvazi-Grayových Kódů
dissertation thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/111316Identifiers
Study Information System: 85391
Collections
- Kvalifikační práce [11191]
Author
Advisor
Referee
Vassilevska Williams, Virginia
Porat, Ely
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Discrete Models and Algorithms
Department
Computer Science Institute of Charles University
Date of defense
6. 6. 2019
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Pass
Keywords (English)
Boolean matrix multiplication, Combinatorial lower bounds, Edit distance, Pattern matching, Graph algorithm, Quasi-Gray codeABSTRAKTNÍ: Tato práce má dvě části. V první části studujeme řadu kombinatorických problémů souvisejících s řetězci, Booleovskými maticemi a grafy. Pro dané dva řetězce x a y je jejich editační vzdálenost nejmenší počet operací vložení znaku, smazání znaku a náhrada znaku, které jsou potřeba na přeměnu řetězce x na y. V této práci předkládáme algoritmus, který spočítá konstantní aproximaci editační vzdálenosti vpravdě sub-kvadratickém čase. S využitím těchto myšlenek zkonstruujeme další sub-kvadratický algoritmus, který umí nalézt výskyty vzoru P v zadaném textu T, když hledáme i výskyty s malou editační odchylkou. Dále studujeme problém násobení Booleovských matic (BMM) nad Booleovským polo-okruhem. Pro tento problém zavedeme dva kombinatorické výpočetní modely a ukážeme, že v těchto modelech BMM vyžaduje Ω(n3 /2O( √ log n) ) a Ω(n7/3 /2O( √ log n) ) práce. Dále též představíme konstrukci řídkého pod-grafu, který zachovává vzdálenost určitého vrcholu od všech ostatních, ikdyž dojde k celkovému navýšení cen hran o kon- stantu. V druhé části práce studujeme efektivní konstrukci Grayových kódů. Ukážeme konstrukci prostorově optimálních kódů nad abecedou liché velikosti se složitostí...
This thesis consists of two parts. In part I, a group of combinatorial problems pertaining to strings, boolean matrices and graphs is studied. For given two strings x and y, their edit distance is the minimum number of character insertions, deletions and substitutions required to convert x into y. In this thesis we provide an algorithm that computes a constant approximation of edit distance in truly sub-quadratic time. Based on the provided ideas, we construct a separate sub- quadratic time algorithm that can find an occurrence of a pattern P in a given text T while allowing a few edit errors. Afterwards we study the boolean matrix multiplication (BMM) problem where given two boolean matrices, the aim is to find their product over boolean semi-ring. For this problem, we present two combinatorial models and show in these models BMM requires Ω(n3 /2O( √ log n) ) and Ω(n7/3 /2O( √ log n) ) work respectively. Furthermore, we also give a construction of a sparse sub-graph that preserves the distance between a designated source and any other vertex as long as the total weight increment of all the edges is bounded by some constant. In part II, we study the efficient construction of quasi-Gray codes. We give a construction of space optimal quasi-Gray codes over odd sized alphabets with read complexity 4...