Show simple item record

Multimodalita ve strojovém překladu
dc.contributor.advisorPecina, Pavel
dc.creatorLibovický, Jindřich
dc.date.accessioned2019-10-23T09:59:11Z
dc.date.available2019-10-23T09:59:11Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.11956/111312
dc.description.abstractMultimodality in Machine Translation Jindřich Libovický Traditionally, most natural language processing tasks are solved within the lan- guage, relying on distributional properties of words. Representation learning abilities of deep learning recently allowed using additional information source by grounding the representations in the visual modality. One of the tasks that attempt to exploit the visual information is multimodal machine translation: translation of image captions when having access to the original image. The thesis summarizes joint processing of language and real-world images using deep learning. It gives an overview of the state of the art in multimodal machine translation and describes our original contribution to solving this task. We introduce methods of combining multiple inputs of possibly different modalities in recurrent and self-attentive sequence-to-sequence models and show results on multimodal machine translation and other tasks related to machine translation. Finally, we analyze how the multimodality influences the semantic properties of the sentence representation learned by the networks and how that relates to translation quality.en_US
dc.description.abstractMultimodalita ve strojovém překladu Jindřich Libovický Tradičně se většina úloh zpracování přirozeného jazyka řeší výhradně uvnitř jazyka, kdy modely spoléhají na distribuční vlastnosti slov. Hluboké učení se svojí schopností učit se vhodné reprezentace vstupních dat umožňuje využití více informací tím, že trénovací signál nepochází pouze z jazyka, ale o i z obrazové modality. Jednou z úloh, které se pokoušejí využít vizuální informace, je multimodální strojový překlad: překlad popisků obrázků, kdy je stále k dispozici původní obrázek, který lze využít jako vstup pro překladač. Tato práce shrnuje metody společného zpracovávání jazykových dat a fotografií s využitím hlubokého učení. Uvádíme přehled metod, které se využívají k řešení multimodálního strojového překladu a popisujeme náš původní příspěvek k řešení této úlohy. Představujeme metody kombinování více vstupů z potenciálně různých modalit v modelech sekvenčního učení založených na rekurentních neuronových sítích a neuronových sítí s mechanismem sebepozornosti. Uvádíme výsledky, kterých jsme dosáhli při řešení multimodálního strojového překladu a dalších úloh souvisejících se strojovým překladem. Na závěr analyzujeme, jak multimodalita ovlivňuje sémantické vlastnosti větných reprezentací, které v sítích vznikají, a jak sémantické vlastnosti...cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectmultimodální strojový překladen_US
dc.subjectneuronový strojový překladen_US
dc.subjectkombinování zpracování jazyka a obrazuen_US
dc.subjecthluboké učeníen_US
dc.subjectmultimodal machine translationcs_CZ
dc.subjectneural machine translationcs_CZ
dc.subjectcombining language and visioncs_CZ
dc.subjectdeep learningcs_CZ
dc.titleMultimodality in Machine Translationen_US
dc.typedizertační prácecs_CZ
dcterms.created2019
dcterms.dateAccepted2019-06-13
dc.description.departmentÚstav formální a aplikované lingvistikycs_CZ
dc.description.departmentInstitute of Formal and Applied Linguisticsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId136289
dc.title.translatedMultimodalita ve strojovém překladucs_CZ
dc.contributor.refereeSpecia, Lucia
dc.contributor.refereeČech, Jan
thesis.degree.namePh.D.
thesis.degree.leveldoktorskécs_CZ
thesis.degree.disciplineMathematical Linguisticsen_US
thesis.degree.disciplineMatematická lingvistikacs_CZ
thesis.degree.programInformaticsen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typedizertační prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Ústav formální a aplikované lingvistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Institute of Formal and Applied Linguisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická lingvistikacs_CZ
uk.degree-discipline.enMathematical Linguisticsen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enInformaticsen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.csMultimodalita ve strojovém překladu Jindřich Libovický Tradičně se většina úloh zpracování přirozeného jazyka řeší výhradně uvnitř jazyka, kdy modely spoléhají na distribuční vlastnosti slov. Hluboké učení se svojí schopností učit se vhodné reprezentace vstupních dat umožňuje využití více informací tím, že trénovací signál nepochází pouze z jazyka, ale o i z obrazové modality. Jednou z úloh, které se pokoušejí využít vizuální informace, je multimodální strojový překlad: překlad popisků obrázků, kdy je stále k dispozici původní obrázek, který lze využít jako vstup pro překladač. Tato práce shrnuje metody společného zpracovávání jazykových dat a fotografií s využitím hlubokého učení. Uvádíme přehled metod, které se využívají k řešení multimodálního strojového překladu a popisujeme náš původní příspěvek k řešení této úlohy. Představujeme metody kombinování více vstupů z potenciálně různých modalit v modelech sekvenčního učení založených na rekurentních neuronových sítích a neuronových sítí s mechanismem sebepozornosti. Uvádíme výsledky, kterých jsme dosáhli při řešení multimodálního strojového překladu a dalších úloh souvisejících se strojovým překladem. Na závěr analyzujeme, jak multimodalita ovlivňuje sémantické vlastnosti větných reprezentací, které v sítích vznikají, a jak sémantické vlastnosti...cs_CZ
uk.abstract.enMultimodality in Machine Translation Jindřich Libovický Traditionally, most natural language processing tasks are solved within the lan- guage, relying on distributional properties of words. Representation learning abilities of deep learning recently allowed using additional information source by grounding the representations in the visual modality. One of the tasks that attempt to exploit the visual information is multimodal machine translation: translation of image captions when having access to the original image. The thesis summarizes joint processing of language and real-world images using deep learning. It gives an overview of the state of the art in multimodal machine translation and describes our original contribution to solving this task. We introduce methods of combining multiple inputs of possibly different modalities in recurrent and self-attentive sequence-to-sequence models and show results on multimodal machine translation and other tasks related to machine translation. Finally, we analyze how the multimodality influences the semantic properties of the sentence representation learned by the networks and how that relates to translation quality.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Ústav formální a aplikované lingvistikycs_CZ
thesis.grade.codeP


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV