Zobrazit minimální záznam

Goal-oriented a posteriori error estimates and adaptivity for the numerical solution of partial differential equations
dc.contributor.advisorDolejší, Vít
dc.creatorRoskovec, Filip
dc.date.accessioned2021-03-25T23:45:54Z
dc.date.available2021-03-25T23:45:54Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.11956/111302
dc.description.abstractAposteriorní odhady chyby jsou nedílnou součástí každé spolehlivé numerické metody pro řešení parciálních diferenciálních rovnic. Účelem odhadů chyby cílové veličiny je kontrolovat výpočetní chyby předem dané veličiny. Díky tomu je tato metoda velmi vhodná pro řadu praktických aplikací. Výsledné odhady chyby mohou být rovněž využity k adaptaci výpočetní sítě. To umožňuje nalézt numerickou aproximaci cílové veličiny velmi efektivním způsobem. V této práci jsou odhady chyby cílové veličiny odvozeny pro nespojitou Galerkinovu metodu použitou pro numerické řešení lineární skalární úlohy a pro nelineární Eulerovy rovnice popisující proudění nevazké stlačitelné kapaliny. Dále se práce zaměřuje na několik aspektů metody odhadů cílové veličiny, konkrétně na: rekonstrukci diskrétního řešení, adjungovanou konzistenci diskretizace, kontrolu algebraických chyb vznikajících při řešení algebraických problémů pro primární i adjungovaný problém a propojení odhadů s hp-anizotropní adaptací sítě. Vlastnosti a chování metody jsou ověřeny numerickými experimenty.cs_CZ
dc.description.abstractA posteriori error estimation is an inseparable component of any reliable numerical method for solving partial differential equations. The aim of the goal-oriented a posteriori error estimates is to control the computational error directly with respect to some quantity of interest, which makes the method very convenient for many engineering applications. The resulting error estimates may be employed for mesh adaptation which enables to find a numerical approximation of the quantity of interest under some given tolerance in a very efficient manner. In this thesis, the goal-oriented error estimates are derived for discontinuous Galerkin discretizations of the linear scalar model problems, as well as of the Euler equations describing inviscid compressible flows. It focuses on several aspects of the goal-oriented error estimation method, in particular, higher order reconstructions, adjoint consistency of the discretizations, control of the algebraic errors arising from iterative solutions of both algebraic systems, and linking the estimates with the hp-anisotropic mesh adaptation. The computational performance is demonstrated by numerical experiments.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjecta posteriori error estimatesen_US
dc.subjectdiscontinuous Galerkin methoden_US
dc.subjectEuler equationsen_US
dc.subjectgoal-oriented error estimatesen_US
dc.subjectquantity of interesten_US
dc.subjecta posteriori error estimatescs_CZ
dc.subjectdiscontinuous Galerkin methodcs_CZ
dc.subjectEuler equationscs_CZ
dc.subjectgoal-oriented error estimatescs_CZ
dc.subjectquantity of interestcs_CZ
dc.titleGoal-oriented a posteriori error estimates and adaptivity for the numerical solution of partial differential equationsen_US
dc.typedizertační prácecs_CZ
dcterms.created2019
dcterms.dateAccepted2019-09-23
dc.description.departmentKatedra numerické matematikycs_CZ
dc.description.departmentDepartment of Numerical Mathematicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId150167
dc.title.translatedGoal-oriented a posteriori error estimates and adaptivity for the numerical solution of partial differential equationscs_CZ
dc.contributor.refereeKanschat, Guido
dc.contributor.refereeZeman, Jan
dc.identifier.aleph002298490
thesis.degree.namePh.D.
thesis.degree.leveldoktorskécs_CZ
thesis.degree.disciplineScientific and Technical Calculationsen_US
thesis.degree.disciplineVědecko-technické výpočtycs_CZ
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typedizertační prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra numerické matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Numerical Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csVědecko-technické výpočtycs_CZ
uk.degree-discipline.enScientific and Technical Calculationsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.csAposteriorní odhady chyby jsou nedílnou součástí každé spolehlivé numerické metody pro řešení parciálních diferenciálních rovnic. Účelem odhadů chyby cílové veličiny je kontrolovat výpočetní chyby předem dané veličiny. Díky tomu je tato metoda velmi vhodná pro řadu praktických aplikací. Výsledné odhady chyby mohou být rovněž využity k adaptaci výpočetní sítě. To umožňuje nalézt numerickou aproximaci cílové veličiny velmi efektivním způsobem. V této práci jsou odhady chyby cílové veličiny odvozeny pro nespojitou Galerkinovu metodu použitou pro numerické řešení lineární skalární úlohy a pro nelineární Eulerovy rovnice popisující proudění nevazké stlačitelné kapaliny. Dále se práce zaměřuje na několik aspektů metody odhadů cílové veličiny, konkrétně na: rekonstrukci diskrétního řešení, adjungovanou konzistenci diskretizace, kontrolu algebraických chyb vznikajících při řešení algebraických problémů pro primární i adjungovaný problém a propojení odhadů s hp-anizotropní adaptací sítě. Vlastnosti a chování metody jsou ověřeny numerickými experimenty.cs_CZ
uk.abstract.enA posteriori error estimation is an inseparable component of any reliable numerical method for solving partial differential equations. The aim of the goal-oriented a posteriori error estimates is to control the computational error directly with respect to some quantity of interest, which makes the method very convenient for many engineering applications. The resulting error estimates may be employed for mesh adaptation which enables to find a numerical approximation of the quantity of interest under some given tolerance in a very efficient manner. In this thesis, the goal-oriented error estimates are derived for discontinuous Galerkin discretizations of the linear scalar model problems, as well as of the Euler equations describing inviscid compressible flows. It focuses on several aspects of the goal-oriented error estimation method, in particular, higher order reconstructions, adjoint consistency of the discretizations, control of the algebraic errors arising from iterative solutions of both algebraic systems, and linking the estimates with the hp-anisotropic mesh adaptation. The computational performance is demonstrated by numerical experiments.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematikycs_CZ
thesis.grade.codeP
dc.contributor.consultantVlasák, Miloslav
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO
dc.identifier.lisID990022984900106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV