Show simple item record

Classification of selected species of vegetation in the Krkonoše Mountains tundra based on time series of PlanetScope imagery
dc.contributor.advisorKupková, Lucie
dc.creatorRoubalová, Markéta
dc.date.accessioned2019-10-17T13:51:22Z
dc.date.available2019-10-17T13:51:22Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.11956/109690
dc.description.abstractCílem práce bylo zjistit, do jaké míry lze s využitím dat PlanetScope rozlišit tři druhy travin - bezkolenec modrý (Molinia caerulea), třtina chloupkatá (Calamagrostis villosa) a smilka tuhá (Nardus stricta) v krkonošské tundře a zda multitemporální přístup může přispět ke zvýšení přesnosti klasifikace těchto druhů. Využito bylo dat PlanetScope s prostorovým rozlišením 3 m. Řízená pixelová klasifikace Maximum Likelihood, Support Vector Machine, Random Forest a objektová klasifikace SVM proběhly v programu ENVI 5.3 na základě terénních dat zaměřených GPS přístrojem v letech 2014 až 2018. Jednotlivé přesnosti klasifikace byly porovnány s výstupy řízené klasifikace v Kupková et al. (2017) a Marcinkowska-Ochytra et al. (2018a). Nejlepší výsledek klasifikace byl dosažen pro multitemporální kompozit metodou Random Forest. Celková přesnost klasifikace byla 80,67 %, což je lepší výsledek, než v případě klasifikace snímku z jednoho termínu (celková přesnost 76,06 %). Data PlanetScope byla porovnána s daty RapidEye a Apex. V rámci dat RapidEye dosáhl nejvyšší celkové přesnosti multitemporální kompozit klasifikovaný metodou Random Forest (74,75 %), v případě dat Apex (termín 10.9.2012) bylo dosaženo nejlepšího výsledku také metodou Random Forest (75,91 %). Klíčová slova: multitemporální klasifikace, vegetace,...cs_CZ
dc.description.abstractThe aim of this thesis was to test the suitability of PlanetScope imagery to differentiate and evaluate the possibility of multi-temporal approach to improve classification accuracy of selected vegetation species (Molinia caerulea, Calamagrostis villosa, Nardus stricta) in eastern tundra in the Krkonoše Mts. National Park. PlanetScope imagery - 4 spectral bands with spatial resolution 3 m - was used. Per-pixel classifications Maximum Likelihood, Support Vector Machine and Random Forest and object-based classification SVM were executed in software ENVI 5.3. based on GPS field data collected from 2014 till 2018. The best classification results were compared to classification results in Kupková et al. 2017 and Marcinkowska-Ochytra et al. (2018a). The overall accuracy of the best classification result (multitemporal composite using Random Forest classifier) was 80,67 %. It is better result than in the case of single image classification (overall accuracy was 76,06 %). PlanetScope data were compared to RapidEye and Apex data. The overall accuracy of the RapidEye best classification result (multitemporal composite using Random Forest classifier) was 74,75 %, the best overall accuracy of monotemporal classification of Apex data reached 75,91 %. Key words: multi-temporal classification, vegetation,...en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Přírodovědecká fakultacs_CZ
dc.titleKlasifikace vybraných druhů vegetace v krkonošské tundře s využitím časové řady dat PlanetScopecs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2019
dcterms.dateAccepted2019-09-09
dc.description.departmentDepartment of Applied Geoinformatics and Cartographyen_US
dc.description.departmentKatedra aplikované geoinformatiky a kartografiecs_CZ
dc.description.facultyPřírodovědecká fakultacs_CZ
dc.description.facultyFaculty of Scienceen_US
dc.identifier.repId199271
dc.title.translatedClassification of selected species of vegetation in the Krkonoše Mountains tundra based on time series of PlanetScope imageryen_US
dc.contributor.refereeČervená, Lucie
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineCartography and Geoinformaticsen_US
thesis.degree.disciplineKartografie a geoinformatikacs_CZ
thesis.degree.programGeografiecs_CZ
thesis.degree.programGeographyen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csPřírodovědecká fakulta::Katedra aplikované geoinformatiky a kartografiecs_CZ
uk.taxonomy.organization-enFaculty of Science::Department of Applied Geoinformatics and Cartographyen_US
uk.faculty-name.csPřírodovědecká fakultacs_CZ
uk.faculty-name.enFaculty of Scienceen_US
uk.faculty-abbr.csPřFcs_CZ
uk.degree-discipline.csKartografie a geoinformatikacs_CZ
uk.degree-discipline.enCartography and Geoinformaticsen_US
uk.degree-program.csGeografiecs_CZ
uk.degree-program.enGeographyen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csCílem práce bylo zjistit, do jaké míry lze s využitím dat PlanetScope rozlišit tři druhy travin - bezkolenec modrý (Molinia caerulea), třtina chloupkatá (Calamagrostis villosa) a smilka tuhá (Nardus stricta) v krkonošské tundře a zda multitemporální přístup může přispět ke zvýšení přesnosti klasifikace těchto druhů. Využito bylo dat PlanetScope s prostorovým rozlišením 3 m. Řízená pixelová klasifikace Maximum Likelihood, Support Vector Machine, Random Forest a objektová klasifikace SVM proběhly v programu ENVI 5.3 na základě terénních dat zaměřených GPS přístrojem v letech 2014 až 2018. Jednotlivé přesnosti klasifikace byly porovnány s výstupy řízené klasifikace v Kupková et al. (2017) a Marcinkowska-Ochytra et al. (2018a). Nejlepší výsledek klasifikace byl dosažen pro multitemporální kompozit metodou Random Forest. Celková přesnost klasifikace byla 80,67 %, což je lepší výsledek, než v případě klasifikace snímku z jednoho termínu (celková přesnost 76,06 %). Data PlanetScope byla porovnána s daty RapidEye a Apex. V rámci dat RapidEye dosáhl nejvyšší celkové přesnosti multitemporální kompozit klasifikovaný metodou Random Forest (74,75 %), v případě dat Apex (termín 10.9.2012) bylo dosaženo nejlepšího výsledku také metodou Random Forest (75,91 %). Klíčová slova: multitemporální klasifikace, vegetace,...cs_CZ
uk.abstract.enThe aim of this thesis was to test the suitability of PlanetScope imagery to differentiate and evaluate the possibility of multi-temporal approach to improve classification accuracy of selected vegetation species (Molinia caerulea, Calamagrostis villosa, Nardus stricta) in eastern tundra in the Krkonoše Mts. National Park. PlanetScope imagery - 4 spectral bands with spatial resolution 3 m - was used. Per-pixel classifications Maximum Likelihood, Support Vector Machine and Random Forest and object-based classification SVM were executed in software ENVI 5.3. based on GPS field data collected from 2014 till 2018. The best classification results were compared to classification results in Kupková et al. 2017 and Marcinkowska-Ochytra et al. (2018a). The overall accuracy of the best classification result (multitemporal composite using Random Forest classifier) was 80,67 %. It is better result than in the case of single image classification (overall accuracy was 76,06 %). PlanetScope data were compared to RapidEye and Apex data. The overall accuracy of the RapidEye best classification result (multitemporal composite using Random Forest classifier) was 74,75 %, the best overall accuracy of monotemporal classification of Apex data reached 75,91 %. Key words: multi-temporal classification, vegetation,...en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Přírodovědecká fakulta, Katedra aplikované geoinformatiky a kartografiecs_CZ
thesis.grade.code1


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV