Inequalities for discrete and continuous supremum operators
Nerovnosti pro diskrétní a spojité supremální operátory
rigorózní práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/108453Identifikátory
SIS: 215177
Kolekce
- Kvalifikační práce [11242]
Autor
Vedoucí práce
Oponent práce
Nekvinda, Aleš
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Matematická analýza
Katedra / ústav / klinika
Katedra matematické analýzy
Datum obhajoby
16. 7. 2019
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Prospěl/a
Klíčová slova (česky)
supremální operátor, váhové nerovnosti, Lorentzovy prostory, diskretizaceKlíčová slova (anglicky)
supremum operator, weighted inequalities, Lorentz spaces, discretizationNerovnosti pro diskrétní a spojité supremální operátory Rastislav O©hava V této práci studujeme spojité a diskrétní supremální operátory. V první části vyšetřujeme obecné vlastnosti operátor· Hardyova typu obsahujících supre- mum. Omezenost supremálních operátor· je dále využita pro charakterizaci interpolačních prostor· mezi dvěma Marcinkiewiczovými prostory. Ve druhé části uvádíme ekvivalentní podmínky pro omezenost supremálních operátor·, kde vzorovým prostorem je jeden z klasických Lorentzových prostor· Λp w1 nebo Γp w1 a cílovým prostorem Λq w2 nebo Γq w2 . V případě p ≤ q postupujeme pomocí techniky vložení vhodného prostoru, čímž obdržíme spojité podmínky. V pří- padě p > q uvádíme pouze částečné výsledky v podobě diskrétních podmínek získaných použitím diskretizační metody. Ve třetí části se zabýváme váhovou nerovností pro iterovaný diskrét ní operátor Hardyova typu. Obdržíme jeho cha- rakterizaci, která nám umožňuje převést problémový případ, když je vzorovým prostorem vážené ℓp s p ∈ (0, 1), na případ p = 1. To nám umožní nalézt spoji- tou analogii zkoumané diskrétní nerovnosti. Práce se skládá z publikovaných i nepublikovaných autorových výsledk· spolu s materiálem, který se objevuje v literatuře.
Inequalities for discrete and continuous supremum operators Rastislav O , lhava In this thesis we study continuous and discrete supremum operators. In the first part we investigate general properties of Hardy-type operators involving suprema. The boundedness of supremum operators is used for characterization of interpo- lation spaces between two Marcinkiewicz spaces. In the second part we provide equivalent conditions for boundedness of supremum operators in the situation when the domain space in one of the classical Lorentz spaces Λp w1 or Γp w1 and the target space Λq w2 or Γq w2 . In the case p ≤ q we use inserting technique obtaining continuous conditions. In the setting of coefficients p > q we provide only partial results obtaining discrete conditions using discretization method. In the third part we deal with a three-weight inequality for an iterated discrete Hardy-type operator. We find its characterization which enables us to reduce the problematic case when the domain space is a weighted ℓp with p ∈ (0, 1) into the one with p = 1. This leads to a continuous analogue of investigated discrete inequality. The work consists of author's published and unpublished results along with material appearing in the literature.