dc.contributor.advisor | Peška, Ladislav | |
dc.creator | Vystrčilová, Michaela | |
dc.date.accessioned | 2019-07-18T09:59:46Z | |
dc.date.available | 2019-07-18T09:59:46Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/108348 | |
dc.description.abstract | Tradiční hudební doporučovací systémy využívají metody kolaborativního filtrování. To je ovšem nevýhoda pro posluchače, kteří preferují méně mainstreamové skladby, pro- tože kolaborativní filtrování je závislé na popularitě skladeb. Doporučování na základě obsahu by mohlo být rozumná volba při řešení tohoto problému. Vzhledem k tomu, že vyhledávání na základě tagů je rozšířené při napomáhání tradičním hudebním do- poručovacím systémum, v této práci představujeme jiné "content-based" metody, které stanovují podobnost skladeb na základě využití textu a hudby. Jako první jsme vy- hodnotili správnost doporučování několika textových a hudebních metod na playlistech skutečných uživatelů a zjistili, že textové metody mají výsledky konkurence schopné v porovnání s audio metodami. Výsledky také odhalily, že v obou kategoriích jsou metody, které jsou 100 krát lepší než náhodné dopourčování a mají potenciál ke zlepšení. Po vyhodnocovací fázi jsme vybrali kvalitní metody a implementovali je do webové aplikace, která má za cíl doporučovat novou hudbu uživatelům podle dle preferencí. 1 | cs_CZ |
dc.description.abstract | Traditional music recommender systems rely on collaborative-filtering methods. This, however, puts listeners who do not enjoy mainstream songs at a disadvantage because CF systems depend on popularity patterns. Content-based recommendation methods might be useful in solving this issue. Since tag-based searches are a widespread tool to aid tra- ditional music recommendation, this paper presents content-based methods measuring similarity between songs with focus on methods utilizing song's lyrics and audio record- ings. First, we evaluated the accuracy of several approaches based on lyrics and audio information on real user playlists and found that lyrics-based methods yield competitive results to audio-based methods. Results also revealed that both categories include meth- ods that are 100 times more accurate compared to random suggestions and that they have potential for even better results. After the evaluation phase, we selected well-performing methods and implemented them in a web application aiming on recommending novel music to the users based on their content-based profile. 1 | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | doporučování hudby | cs_CZ |
dc.subject | učení vlastností bez učitele | cs_CZ |
dc.subject | podobnost skladeb podle audia | cs_CZ |
dc.subject | podobnost skladeb podle textu | cs_CZ |
dc.subject | music recommendation | en_US |
dc.subject | unsupervised feature learning | en_US |
dc.subject | audio-based song similarity | en_US |
dc.subject | lyrics-based song similarity | en_US |
dc.title | Similarity methods for music recommender systems | en_US |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2019 | |
dcterms.dateAccepted | 2019-06-27 | |
dc.description.department | Department of Software Engineering | en_US |
dc.description.department | Katedra softwarového inženýrství | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 210255 | |
dc.title.translated | Analýza metod podobnosti pro doporučování hudebních skladeb | cs_CZ |
dc.contributor.referee | Balcar, Štěpán | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | General Computer Science | en_US |
thesis.degree.discipline | Obecná informatika | cs_CZ |
thesis.degree.program | Informatika | cs_CZ |
thesis.degree.program | Computer Science | en_US |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra softwarového inženýrství | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Software Engineering | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná informatika | cs_CZ |
uk.degree-discipline.en | General Computer Science | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Tradiční hudební doporučovací systémy využívají metody kolaborativního filtrování. To je ovšem nevýhoda pro posluchače, kteří preferují méně mainstreamové skladby, pro- tože kolaborativní filtrování je závislé na popularitě skladeb. Doporučování na základě obsahu by mohlo být rozumná volba při řešení tohoto problému. Vzhledem k tomu, že vyhledávání na základě tagů je rozšířené při napomáhání tradičním hudebním do- poručovacím systémum, v této práci představujeme jiné "content-based" metody, které stanovují podobnost skladeb na základě využití textu a hudby. Jako první jsme vy- hodnotili správnost doporučování několika textových a hudebních metod na playlistech skutečných uživatelů a zjistili, že textové metody mají výsledky konkurence schopné v porovnání s audio metodami. Výsledky také odhalily, že v obou kategoriích jsou metody, které jsou 100 krát lepší než náhodné dopourčování a mají potenciál ke zlepšení. Po vyhodnocovací fázi jsme vybrali kvalitní metody a implementovali je do webové aplikace, která má za cíl doporučovat novou hudbu uživatelům podle dle preferencí. 1 | cs_CZ |
uk.abstract.en | Traditional music recommender systems rely on collaborative-filtering methods. This, however, puts listeners who do not enjoy mainstream songs at a disadvantage because CF systems depend on popularity patterns. Content-based recommendation methods might be useful in solving this issue. Since tag-based searches are a widespread tool to aid tra- ditional music recommendation, this paper presents content-based methods measuring similarity between songs with focus on methods utilizing song's lyrics and audio record- ings. First, we evaluated the accuracy of several approaches based on lyrics and audio information on real user playlists and found that lyrics-based methods yield competitive results to audio-based methods. Results also revealed that both categories include meth- ods that are 100 times more accurate compared to random suggestions and that they have potential for even better results. After the evaluation phase, we selected well-performing methods and implemented them in a web application aiming on recommending novel music to the users based on their content-based profile. 1 | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra softwarového inženýrství | cs_CZ |
thesis.grade.code | 1 | |