Oprava na spojitost
Continuity correction
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/108345Identifikátory
SIS: 204368
Kolekce
- Kvalifikační práce [11987]
Autor
Vedoucí práce
Oponent práce
Maciak, Matúš
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra pravděpodobnosti a matematické statistiky
Datum obhajoby
27. 6. 2019
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Velmi dobře
Klíčová slova (česky)
oprava na spojitost, centrální limitní věta, interval spolehlivosti, χ2 test nezávislostiKlíčová slova (anglicky)
continuity correction, central limit theorem, confidence interval, χ2 test of independencePro aproximaci rozdělení náhodné veličiny, která je součtem n nezávislých, stejně rozdělených diskrétních náhodných veličin můžeme využít centrální limitní větu. Ukazuje se však, že pro konečná n umíme tuto aproximaci zpřesnit použitím opravy na spojitost. Tento pojem je v práci vysvětlen a také je v ní ilustrováno, jak může být oprava na spojitost odvozena. V práci je také numericky porov- nána chyba aproximace binomického rozdělení rozdělením normálním s opravou na spojitost a aproximace bez opravy. Dále jsou zde popsány intervalové odhady a χ2 test nezávislosti v kontingenčních tabulkách, ve kterých se používá oprava na spojitost. Na simulacích pro různé parametry vyzkoušíme vlastnosti těchto intervalů (skutečnou spolehlivost a délku) a testů (skutečnou hladinu a sílu).
For an approximation of discrete random variable, which is the sum of n inde- pendent, identically distributed discrete random variables, we can use the central limit theorem. However, it turns out that we can refine this approximation by applying continuity correction. This term is explained in the thesis, and it is illustrated several ways how the continuity correction can be derived. There is also a numerical comparison of the approximation error for the binomial distribu- tion approximation by the normal distribution with the correction for continuity and approximation without the correction. There are also described confidence intervals and χ2 test of independence in contingency tables in which continu- ity correction are used. On simulations for various parameters, we will test the properties of these intervals (true confidence level and length) and tests (actual significance level and power).
