Show simple item record

Použití hlubokých kontextualizovaných slovních reprezentací založených na znacích pro neuronové sekvenční značkování
dc.contributor.advisorPecina, Pavel
dc.creatorLief, Eric
dc.date.accessioned2019-02-25T11:32:55Z
dc.date.available2019-02-25T11:32:55Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.11956/105144
dc.description.abstractA family of Natural Language Processing (NLP) tasks such as part-of- speech (PoS) tagging, Named Entity Recognition (NER), and Multiword Expression (MWE) identification all involve assigning labels to sequences of words in text (sequence labeling). Most modern machine learning approaches to sequence labeling utilize word embeddings, learned representations of text, in which words with similar meanings have similar representations. Quite recently, contextualized word embeddings have garnered much attention because, unlike pretrained context- insensitive embeddings such as word2vec, they are able to capture word meaning in context. In this thesis, I evaluate the performance of different embedding setups (context-sensitive, context-insensitive word, as well as task-specific word, character, lemma, and PoS) on the three abovementioned sequence labeling tasks using a deep learning model (BiLSTM) and Portuguese datasets. ven_US
dc.description.abstractRodina úkolů pro zpracování přirozeného jazyka (NLP), jako je označování po částech řeči (PoS), identifikace pojmenované entity (NER) a identifikace více slov (MWE), zahrnují přiřazení štítků sekvencím slov v textu označování). Většina moderních přístupů strojového učení k sekvenčnímu označování využívá vkládání slov, naučené reprezentace textu, ve kterých mají slova s podobnými významy podobné reprezentace. Docela nedávno, kontextualizované slovní embeddings získaly hodně pozornosti, protože na rozdíl od předem vyškolených kontextově necitlivých embeddings, jako je word2vec, jsou schopni zachytit význam slova v kontextu. V této diplomové práci hodnotím výkonnost různých nastavení vkládání (kontextu citlivé, kontextově necitlivé slovo, stejně jako slovo specifické pro danou práci, charakter, lemma a PoS) na třech výše uvedených úlohách označování sekvence pomocí hlubokého modelu učení ( BiLSTM) a portugalských datových sad.cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectumělé nuronové sítěcs_CZ
dc.subjectsekvenční značkovánícs_CZ
dc.subjectznakové jazykové modelycs_CZ
dc.subjectartificial neural networksen_US
dc.subjectsequence labelingen_US
dc.subjectcharacter language modelsen_US
dc.subjectpart-of-speech taggingen_US
dc.subjectnamed entity recognitionen_US
dc.subjectmultiword expressionen_US
dc.subjectword embeddingen_US
dc.subjectdeep learningen_US
dc.subjectPortugueseen_US
dc.titleDeep contextualized word embeddings from character language models for neural sequence labelingen_US
dc.typediplomová prácecs_CZ
dcterms.created2019
dcterms.dateAccepted2019-02-04
dc.description.departmentInstitute of Formal and Applied Linguisticsen_US
dc.description.departmentÚstav formální a aplikované lingvistikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId210186
dc.title.translatedPoužití hlubokých kontextualizovaných slovních reprezentací založených na znacích pro neuronové sekvenční značkovánícs_CZ
dc.contributor.refereeKocmi, Tom
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineComputational Linguisticsen_US
thesis.degree.disciplineMatematická lingvistikacs_CZ
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Ústav formální a aplikované lingvistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Institute of Formal and Applied Linguisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická lingvistikacs_CZ
uk.degree-discipline.enComputational Linguisticsen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csRodina úkolů pro zpracování přirozeného jazyka (NLP), jako je označování po částech řeči (PoS), identifikace pojmenované entity (NER) a identifikace více slov (MWE), zahrnují přiřazení štítků sekvencím slov v textu označování). Většina moderních přístupů strojového učení k sekvenčnímu označování využívá vkládání slov, naučené reprezentace textu, ve kterých mají slova s podobnými významy podobné reprezentace. Docela nedávno, kontextualizované slovní embeddings získaly hodně pozornosti, protože na rozdíl od předem vyškolených kontextově necitlivých embeddings, jako je word2vec, jsou schopni zachytit význam slova v kontextu. V této diplomové práci hodnotím výkonnost různých nastavení vkládání (kontextu citlivé, kontextově necitlivé slovo, stejně jako slovo specifické pro danou práci, charakter, lemma a PoS) na třech výše uvedených úlohách označování sekvence pomocí hlubokého modelu učení ( BiLSTM) a portugalských datových sad.cs_CZ
uk.abstract.enA family of Natural Language Processing (NLP) tasks such as part-of- speech (PoS) tagging, Named Entity Recognition (NER), and Multiword Expression (MWE) identification all involve assigning labels to sequences of words in text (sequence labeling). Most modern machine learning approaches to sequence labeling utilize word embeddings, learned representations of text, in which words with similar meanings have similar representations. Quite recently, contextualized word embeddings have garnered much attention because, unlike pretrained context- insensitive embeddings such as word2vec, they are able to capture word meaning in context. In this thesis, I evaluate the performance of different embedding setups (context-sensitive, context-insensitive word, as well as task-specific word, character, lemma, and PoS) on the three abovementioned sequence labeling tasks using a deep learning model (BiLSTM) and Portuguese datasets. ven_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Ústav formální a aplikované lingvistikycs_CZ
thesis.grade.code1


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV