Neural Networks for Machine Learning in Algorithmic Trading
Neuronové síťe pro strojové učení v algoritmickém obchodování
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/103112Identifikátory
SIS: 185465
Kolekce
- Kvalifikační práce [19618]
Autor
Vedoucí práce
Oponent práce
Debatz, Laure
Fakulta / součást
Fakulta sociálních věd
Obor
Ekonomie a finance
Katedra / ústav / klinika
Institut ekonomických studií
Datum obhajoby
11. 9. 2018
Nakladatel
Univerzita Karlova, Fakulta sociálních vědJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
umělé neuronové sítě, strojové učení, finanční trhy, Forex, denní obchodování, algoritmické obchodování, rozpoznávání vzorů, teoretická informatika, historické testování, predikceKlíčová slova (anglicky)
artificial neural networks, machine learning, financial markets, Forex, day trading, algorithmic trading, pattern recognition, computational learning theory, backtesting, forecastingThis thesis investigates the forecasting ability of the artificial neural network (ANN) models on five major currency pairs and compares the accuracy of several ANN ar- chitectures to the difficult to outperform random walk (RW) benchmark. The ANNs mostly stand ground against the RW, yet fail to attain significantly different results for most of the currencies in out-of-sample testing. A good predictive accuracy of a few ANN models was shown only for the Japanese yen in our results. Less complex neural network architectures supported the notion of having better generalisation capabilities for most of our datasets. JEL Classification C01, C32, C45, C51, C52, C53, C87 Keywords artificial neural networks, machine learning, finan- cial markets, Forex, day trading, algorithmic trad- ing, pattern recognition, computational learning the- ory, backtesting, forecasting Author's e-mail 56374598@fsv.cuni.cz, mrkoubek@gmail.com Supervisor's e-mail ladislav.kristoufek@fsv.cuni.cz Abstrakt Tato práce zkoumá schopnost modelů na bázi neuronových sítí (ANN) předpovídat budoucí cenu pěti hlavních měnových párů a porovnává přesnost předpovědí s těžce překonatelným modelem random walk (RW), který vždy hádá následující cenu jako totožnou se současnou cenou. ANN modely převážně obstály oproti RW, ale pro většinu měn...
This thesis investigates the forecasting ability of the artificial neural network (ANN) models on five major currency pairs and compares the accuracy of several ANN ar- chitectures to the difficult to outperform random walk (RW) benchmark. The ANNs mostly stand ground against the RW, yet fail to attain significantly different results for most of the currencies in out-of-sample testing. A good predictive accuracy of a few ANN models was shown only for the Japanese yen in our results. Less complex neural network architectures supported the notion of having better generalisation capabilities for most of our datasets. JEL Classification C01, C32, C45, C51, C52, C53, C87 Keywords artificial neural networks, machine learning, finan- cial markets, Forex, day trading, algorithmic trad- ing, pattern recognition, computational learning the- ory, backtesting, forecasting Author's e-mail 56374598@fsv.cuni.cz, mrkoubek@gmail.com Supervisor's e-mail ladislav.kristoufek@fsv.cuni.cz Abstrakt Tato práce zkoumá schopnost modelů na bázi neuronových sítí (ANN) předpovídat budoucí cenu pěti hlavních měnových párů a porovnává přesnost předpovědí s těžce překonatelným modelem random walk (RW), který vždy hádá následující cenu jako totožnou se současnou cenou. ANN modely převážně obstály oproti RW, ale pro většinu měn...
