Využití větné struktury v neuronovém strojovém překladu
Využití větné struktury v neuronovém strojovém překladu
diplomová práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/101647Identifikátory
SIS: 201666
Kolekce
- Kvalifikační práce [11981]
Autor
Vedoucí práce
Oponent práce
Helcl, Jindřich
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Matematická lingvistika
Katedra / ústav / klinika
Ústav formální a aplikované lingvistiky
Datum obhajoby
11. 9. 2018
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
attention machine translation dependency neural networkKlíčová slova (anglicky)
attention machine translation dependency neural networkNeural machine translation has been lately established as the new state of the art in machine translation, especially with the Transformer model. This model emphasized the importance of self-attention mechanism and sug- gested that it could capture some linguistic phenomena. However, this claim has not been examined thoroughly, so we propose two main groups of meth- ods to examine the relation between these two. Our methods aim to im- prove the translation performance by directly manipulating the self-attention layer. The first group focuses on enriching the encoder with source-side syn- tax with tree-related position embeddings or our novel specialized attention heads. The second group is a joint translation and parsing model leveraging self-attention weight for the parsing task. It is clear from the results that enriching the Transformer with sentence structure can help. More impor- tantly, the Transformer model is in fact able to capture this type of linguistic information with guidance in the context of multi-task learning at nearly no increase in training costs. 1
