Zkoumání úlohy univerzálního sémantického značkování pomocí neuronových sítí, řešením jiných úloh a vícejazyčným učením
Zkoumání úlohy univerzálního sémantického značkování pomocí neuronových sítí, řešením jiných úloh a vícejazyčným učením
diplomová práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/101590Identifikátory
SIS: 200558
Kolekce
- Kvalifikační práce [11981]
Autor
Vedoucí práce
Oponent práce
Libovický, Jindřich
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Matematická lingvistika
Katedra / ústav / klinika
Ústav formální a aplikované lingvistiky
Datum obhajoby
11. 9. 2018
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
S ́emantick ́e znaˇckova ́n ́ı, Paraleln ́ı uˇcen ́ı, Hlubok ́e uˇcen ́ı, Pˇrenosov ́e uˇcen ́ıKlíčová slova (anglicky)
Semantic Tagging, Multi-task Learning, Deep Learning, Transfer LearningJuly 19, 2018 V diplomové práci prezentujeme výzkum paralelního a přenosového učení s využitím nedávno představené úlohy sémantického značkování. Zaprvé vybrané úlohy počítačového zpracování přirozeného jazyka používáme jako podpůrné úlohy pro sémantické značkování. Zadruhé se vydáváme opačným směrem, a sice sémantické značkování používáme jako podpůrnou úlohu pro tři různé úlohy počí- tačového zpracování přirozeného jazyka: tvaroslovné značkování, parsing na platformě Univer- sal Dependencies a odvozování v přirozeném jazyce. Porovnáváme úplné a částečné sdílení neu- ronových sítí spolu s učením s méně pravděpodobným nastavením negativního přenosu mezi úlo- hami. Na závěr zkoumáme vícejazyčné učení v paralelním učení. V experimentech demonstrujeme různé kombinace paralelního učení a přenosového učení. Výsledky jsou pozitivní. 1 References 2
July 19, 2018 In this thesis we present an investigation of multi-task and transfer learning using the recently introduced task of semantic tagging. First we employ a number of natural language processing tasks as auxiliaries for semantic tag- ging. Secondly, going in the other direction, we employ seman- tic tagging as an auxiliary task for three di erent NLP tasks: Part-of-Speech Tagging, Universal Dependency parsing, and Natural Language Inference. We compare full neural network sharing, partial neural network sharing, and what we term the learning what to share setting where neg- ative transfer between tasks is less likely. Fi- nally, we investigate multi-lingual learning framed as a special case of multi-task learning. Our ndings show considerable improvements for most experiments, demonstrating a variety of cases where multi-task and transfer learning methods are bene cial. 1 References 2
