Artificial neural networks for macroeconomic data analysis
Umělé neuronové sítě pro makroekonomickou analýzu dat
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/101257Identifikátory
SIS: 195686
Katalog UK: 990022007810106986
Kolekce
- Kvalifikační práce [11987]
Autor
Vedoucí práce
Oponent práce
Kuboň, David
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná informatika
Katedra / ústav / klinika
Katedra teoretické informatiky a matematické logiky
Datum obhajoby
6. 9. 2018
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
klastrování, klasifikace, pradikce, umělé neuronové sítě, ekonomická dataKlíčová slova (anglicky)
clustering, classification, prediction, artificial neural networks, economic dataThe analysis and prediction of macroeconomic time-series is a factor of great interest to national policymakers. However, economic analysis and forecast- ing are not simple tasks due to the lack of a precise model for the economy and the influence of external factors, such as weather changes or political decisions. Our research is focused on Spanish speaking countries. In this thesis, we study dif- ferent types of neural networks and their applicability for various analysis tasks, including GDP prediction as well as assessing major trends in the development of the countries. The studied models include multilayered neural networks, recur- sive neural networks, and Kohonen maps. Historical macroeconomic data across 17 Spanish speaking countries, together with France and Germany, over the time period of 1980-2015 is analyzed. This work then compares the performances of various algorithms for training neural networks, and demonstrates the revealed changes in the state of the countries' economies. Further, we provide possible reasons that explain the found trends in the data.
