Jonesův polynom
Jones polynomial
bachelor thesis (DEFENDED)

View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/101047Identifiers
Study Information System: 199203
Collections
- Kvalifikační práce [11338]
Author
Advisor
Referee
Šťovíček, Jan
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
General Mathematics
Department
Department of Algebra
Date of defense
5. 9. 2018
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
Czech
Grade
Very good
Keywords (Czech)
teorie uzlů, Jonesův polynom, uzlový invariantKeywords (English)
knot theory, Jones polynomial, knot invariantTématem této práce je Jonesův polynom daného uzlu a jeho výpočet. Nej- prve definujeme Jonesův polynom dvěma způsoby: pomocí skein vztahů a po- mocí závorkového polynomu a dokážeme ekvivalenci těchto definic. Dále na zá- kladě vztahu Jonesova a závorkového polynomu odvodíme algoritmus na jeho výpočet. Dokážeme, že algoritmus má časovou složitost O 20,823n , kde n značí počet křížení linkového diagramu. Nakonec shrneme výsledky testování algo- ritmu a jeho variant na datech. Algoritmus otestujeme mimo jiné na malých tabulkových uzlech, větších náhodných uzlech a torusových uzlech. U nejrych- lejší varianty algoritmu odhadneme průměrnou časovou složitost výpočtu na náhodných uzlech O 20,487n+o(n) . 1
The topic of this thesis is the Jones polynomial of a given knot and its com- putation. First we define the Jones polynomial in two ways: using skein relations and using the bracket polynomial and we prove that these definitions are equi- valent. Next we derive an algorithm for computation of the Jones polynomial based on its relation with the bracket polynomial. We prove that the time com- plexity of the algorithm is O 20.823n , where n denotes number of crossings in a link diagram. Lastly we present the results of running the algorithm and its variants on data. We test the algorithm among others on small table knots, bigger random knots and on torus knots. We estimate that the fastest vari- ant of the algorithm runs on random knots with the average time complexity O 20.487n+o(n) . 1