Rozdělení s tjažki chvosty a finanční aplikace
Heavy tailed distributions and their applications to finance
bakalářská práce (OBHÁJENO)

Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/63989Identifikátory
SIS: 141055
Kolekce
- Kvalifikační práce [11325]
Autor
Vedoucí práce
Oponent práce
Janák, Josef
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra pravděpodobnosti a matematické statistiky
Datum obhajoby
10. 9. 2014
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Velmi dobře
Klíčová slova (česky)
Těžké chvosty, stabilní rozdělení, geometricky stabilní, náhodné součty, náhodné součinyKlíčová slova (anglicky)
Heavy tailes, stable cistribution, geometric stable, random summation, random multiplicationV této práci popíšeme rozdělení s těžkými chvosty a ukážeme nutné a postačující podmínky pro jejich existenci. Zabýváme se náhodným součinem náhodných veličin a jejich konvergencí k Paretovu rozdělení a uvádíme grafy podporující toto tvrzení. Dále definujeme stabilní rozdělení a ukážeme jejich užití pro aproximaci náhodného součtu náhodných proměnných. Také zavedeme Gaussovké a nekonečně dělitelné náhodné veličiny a ukážeme podmínky pro jejich existenci. Ukážeme, že jediná geometricky stabilní rozdělení musí být striktně geometricky stabilní nebo nepravá. Nakonec se věnujeme aplikacím stabilních rozdělení ve finančních výpočtech a ukážeme použití pro výpočet Value at Risk. Powered by TCPDF (www.tcpdf.org)
In this work we describe heavy tailed distributions. We show conditions necessary and sufficient for their existence. First we study the product of random number of random variables and their convergence to the Pareto distribution. We also show graphs that concur this theorem. Next we define stable distributions and we study their usefulness for approximating of sum of random number of random variables. We also define Gauss and infinitely divisible random variables and we show conditions for their existence. We also show that the only geometric stable distribution following the stable law are strictly geometric stable or improper geometric stable distributions. In the end we study applications of stable distributions in finance and we show example for their usage in computing VaR. Powered by TCPDF (www.tcpdf.org)