Optimal pairs of function spaces for weighted Hardy operators
Optimální dvojice prostorů funkcí pro váhové Hardyovy operátory
diploma thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/49430Identifiers
Study Information System: 112225
Collections
- Kvalifikační práce [11217]
Author
Advisor
Referee
Gurka, Petr
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Mathematical Analysis
Department
Department of Mathematical Analysis
Date of defense
8. 9. 2011
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Excellent
Keywords (Czech)
optimalita, váhový operátor Hardyovho typu, supremálny operátorKeywords (English)
optimality, weighted Hardy operator, supremum operatorNázov práce: Optimálne páry priestorov funkcií pre váhove Hardyho operátory Autor: Rastislav Ol'hava Katedra: Katedra matematické analýzy Vedúci diplomovej práce: Prof. RNDr. Luboš Pick, CSc., DSc., Katedra matem- atické analýzy, Matematicko-fyzikální fakulta, Univerzita Karlova, Sokolovská 83, 186 75 Praha 8, Česká Republika Abstrakt: Zameriame sa na určitý váhový Hardyho operátor so spojitou kvazikonkáv- nou váhou, definovaný na Banachových priestoroch funkcií, v ktorých má každá funkcia rovnakú normu ako jej prerovnanie. V teórii priestorov funkcií majú tieto operátory široké využitie. V predchádzajúcom výskume bolo dokázané, že platí ekvivalencia medzi ohraničenost'ou niektorých z týchto operátorov a sobolevovskými vnoreniami. Nech je náš Hardyho operátor ohraničený z priestoru X do priestoru Y . Táto práca sa venuje hl'adaniu takej dvojice priestorov X a Y , ktorá je optimálna. Zmienená optimalita by pri d'alšom výzkume mala viest' k optimalite v určitých sobolevovských vnoreniach. Našim druhým ciel'om je štúdium supremálnych operátorov, ktoré tiež úzko súvisia s touto tématikou, a odvodenie niektorých ich základných vlastností. Kl'účové slová: optimalita, váhový operátor Hardyovho typu, supremálny operátor
Title: Optimal pairs of function spaces for weighted Hardy operators Author: Rastislav Ol'hava Department: Department of Mathematical Analysis Supervisor of the master thesis: Prof. RNDr. Luboš Pick, CSc., DSc., Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Prague 8, Czech Republic Abstrakt: We focus on a certain weighted Hardy operator, with a continuous, quasi- concave weight, defined on a rearrangement-invariant Banach function spaces. The op- erators of Hardy type are of great use to the theory of function spaces. The mentioned operator is a more general version of the Hardy operator, whose boundedness was shown to be equivalent to a Sobolev-type embedding inequality. This thesis is con- cerned with the proof of existence of domain and range spaces of our Hardy operator that are optimal. This optimality should lead to the optimality in the Sobolev-type embedding equalities. Our another aim is to study supremum operators, which are also closely related to this issue, and establish some of their basic properties. Keywords: optimality, weighted Hardy operator, supremum operator