Vlastnosti Poulsenových simplexů
Properties of Poulsen simplices
diplomová práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/40790Identifikátory
SIS: 124440
Kolekce
- Kvalifikační práce [11242]
Autor
Vedoucí práce
Oponent práce
Kurka, Ondřej
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Matematická analýza
Katedra / ústav / klinika
Katedra matematické analýzy
Datum obhajoby
18. 9. 2012
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Velmi dobře
Klíčová slova (česky)
Poulsenův simplex, projektivní limita, Hellyho prostorKlíčová slova (anglicky)
Poulsen simplex, projective limit, Helly spaceNázev práce: Vlastnosti Poulsenových simplexů Autor: Zdeněk Jaroň Katedra: Katedra matematické analýzy Vedoucí diplomové práce: Doc. RNDr. Jiří Spurný, Ph.D. Abstrakt: V předložené práci zkoumáme zobecnění konceptu Poulsenova simplexu pro nemetrizovatelné simplexy. Nejprve pro zadaný simplex F zkonstruujeme nový simplex S, obsahující F jako hranu a mající v sobě hustou množinu ex- tremálních bodů, který zachovává některé důležité vlastnosti F. Tuto konstrukci v další části práce použijeme k tomu, abychom pro zadaný nekonečný kardinál κ zkostruovali simlexy S1 a S2, jejichž extremální body v nich tvoří hustou podm- nožinu, pro něž kardinalita nejmenší husté podmnožiny je rovna κ, kardinalita nejmenší husté podmnožiny je stejná pro prostory afinních funkcí Ac (S1) i Ac (S2), ale přitom S1 a S2 nejsou afinně homeomorfní. Klíčová slova: Poulsenův simplex, projektivní limita, Hellyho prostor
Title: Properties of Poulsen simplices Author: Zdeněk Jaroň Department: Department of Mathematical Analysis Supervisor: Doc. RNDr. Jiří Spurný, Ph.D. Abstract: In the present thesis, we study a generalisation of concept of the Poulsen simplex in general, non-metrizable case. First, for any given simplex F we con- struct a new one S, containing F as a face, having dense set of extreme points and preserving some important properties of F. In the next part, we employ this con- struction to build up, for any given infinite cardinal κ, two simplices S1, S2 with dense extreme boundary, with density character equal to κ and with spaces of affine functions Ac (S1) and Ac (S2) having the same density character, but which are not affinely homeomorphic. Keywords: Poulsen simplex, projective limit, Helly space