Shlukové bodové procesy v pojistné matematice
Cluster point processes in insurance mathematics
diploma thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/40763Identifiers
Study Information System: 91696
Collections
- Kvalifikační práce [11242]
Author
Advisor
Referee
Dostál, Petr
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Financial and insurance mathematics
Department
Department of Probability and Mathematical Statistics
Date of defense
5. 9. 2012
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
Czech
Grade
Excellent
Keywords (Czech)
Bodový proces, shlukový bodový proces, Mackův model, Poissonův shlukový modelKeywords (English)
Point process, cluster point process, Mack's model, Poisson cluster modelNázev práce: Shlukové bodové procesy v pojistné matematice Autor: Veronika Veselá Katedra: Katedra pravděpodobnosti a matematické statistiky Vedoucí diplomové práce: RNDr. Zbyněk Pawlas, Ph.D. Abstrakt: V této práci se věnujeme bodovým procesům a jejich významu v po- jistné matematice. Pomocí shlukových a kótovaných bodových procesů lze popsat model, který uvažuje doby vzniku pojistné události a doby a výšky příslušných úhrad. Zkoumáme dva konkrétní modely, které lze použít na výpočet predikce budoucích plateb a počtů plateb za pojistné události, které již nastaly. Prvním modelem je chain ladder v podobě Mackova modelu, u kterého ukazujeme odhady vývojových faktorů, rozptylu a jejich vlastnosti. Určujeme predikci o jeden a více kroků, na jejím základě pak vypočítáváme predikci rezervy. Krátce se také vě- nujeme asymptotickým vlastnostem. Druhý model je Poissonův shlukový model, kde nejdříve definujeme tento model a veličiny, které do něho vstupují. Posléze se věnujeme predikci o jeden a více kroků. Zajímá nás taky predikce při speci- fických rozděleních pro některé náhodné veličiny modelu. Na závěr aplikujeme obě metody predikce na simulovaná data a porovnáme jejich průměrné relativní absolutní chyby. Klíčová slova: bodový proces, shlukový bodový proces, Mackův model, Poissonův shlukový model. 1
Title: Cluster point processes in insurance mathematics Author: Veronika Veselá Department: Department of Probability and Mathematical Statistics Supervisor: RNDr. Zbyněk Pawlas, Ph.D. Abstract: In the present work we study point processes and their importance in insurance mathematics. With the help of cluster and marked point processes we can describe a model that considers times of claim occurence and times and hei- ghts of corresponding payments. We study two specific models which can be used to predict how much money is needed for claims which happened. The first model is chain ladder in the form of Mack's model. For this model we show chain ladder estimators of development factors, estimates of their variance and their proper- ties. We try to find one-step ahead prediction and multi-step ahead prediction, which we use for calculating prediction of reserves. We shortly review asymptotic properties of the estimators in Mack's model. The second model is the Poisson cluster model. Firstly we define this model and the variables entering the model. Then we devote attention to one-step ahead and multi-step ahead prediction. We also study prediction when some variables have specific distributions. Finally, we use both methods of prediction on simulated data and compare their average relative absolute errors....