Combinatorial Properties of Finite Models
Kombinatorika konečných modelů
dizertační práce (OBHÁJENO)

Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/24288Identifikátory
SIS: 39823
Katalog UK: 990015049250106986
Kolekce
- Kvalifikační práce [11335]
Autor
Vedoucí práce
Oponent práce
Pultr, Aleš
Cameron, P.
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Diskrétní modely a algoritmy
Katedra / ústav / klinika
Katedra aplikované matematiky
Datum obhajoby
29. 7. 2010
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Prospěl/a
V této práci se věnujeme univerzáním strukturám pro vnoření i homomorfismy a sjednocujeme výsledky týkající se obou těchto pojmů. Ukážeme, že mnohé z univerzálních a ultrahomogenních struktur jsou reprezentovatelné pomocí jednoduchých konečných technik. O takových strukturách říkáme, že mají konečnou prezentaci. Na základě klasické reprezentace náhodného grafu (R. Rado) hledáme konečné prezentace pro známé ultrahomogenní struktury. Podle klasifikačního programu najdeme prezentace všech ultrahomogenních neorientovaných grafů, turnajů a částečných uspořádání. Ukážeme také prezentaci racionálního Urysohnova prostoru a některých orientovaných grafů. Věnujeme se také známým strukturám, které lze považovat za konečné prezentace. Uvádíme přehled struktur, které popisují částečná uspořádání a u nichž můžeme dokázat jejich univerzalitu (například uspořádání množin slov, geometrických objektů, polynomů, či homomorfismové uspořádání struktur). Ukážeme nový kombinatorický důkaz existence univerzálních struktur pro třídy struktur definovaných pomocí zakázaných homomorfismů. Z tohoto důkazu plyne nová konstrukce homomorfismových dualit a souvislost s Urysohnovým prostorem.
We study countable embedding-universal and homomorphism-universal structures and unify results related to both of these notions. We show that many universal and ultrahomogeneous structures allow a concise description (called here a finite presentation). Extending classical work of Rado (for the random graph), we find a finite presentation for each of the following classes: homogeneous undirected graphs, homogeneous tournaments and homogeneous partially ordered sets. We also give a finite presentation of the rational Urysohn metric space and some homogeneous directed graphs. We survey well known structures that are finitely presented. We focus on structures endowed with natural partial orders and prove their universality. These partial orders include partial orders on sets of words, partial orders formed by geometric objects, grammars, polynomials and homomorphism orders for various combinatorial objects. We give a new combinatorial proof of the existence of embedding-universal objects for homomorphism-defined classes of structures. This relates countable embedding-universal structures to homomorphism dualities (finite homomorphism-universal structures) and Urysohn metric spaces. Our explicit construction also allows us to show several properties of these structures.