H-compactifications of topological spaces
H-kompaktifikace topologických prostorů
diplomová práce (NEOBHÁJENO)

Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/173922Identifikátory
SIS: 139786
Kolekce
- Kvalifikační práce [11421]
Autor
Vedoucí práce
Oponent práce
Hušek, Miroslav
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Matematické struktury
Katedra / ústav / klinika
Katedra matematické analýzy
Datum obhajoby
14. 6. 2022
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Neprospěl/a
Klíčová slova (česky)
Kompaktifikace|Tichonovův prostor|H-compactifikace|Homeomorfismus|Teorie kategoriíKlíčová slova (anglicky)
Compactification|Tychonoff space|H-compactification|Homeomorphism|Category theoryH-kompaktifikace tvoří důležitý typ kompaktifikací se speciální vlastností takovou, že všechny automorfismy daného topologického prostoru mohou být na takové kompaktifi- kace spojitě rozšířeny. Van Douwen dokázal, že existují pouze tři H-kompaktifikace prostoru reálných čísel a pouze jedna H-kompaktifikace racionálních. Vejnar dokázal, že existují právě dvě H- kompaktifikace euklidovských prostorů vyšších dimenzí. Výsledek, který přinášíme v kapitole 2, říká, že existuje pouze jediná H-kompaktifikace množiny všech racionálních posloupností, a tou je Stone-Čechova kompaktifikace. Pro důkaz používáme silnou nul-dimenzionalitu, silnou homogenitu a další vlastnosti množiny všech racionálních posloupností a jejích obojetných podmnožin. Ve třetí kapitole si klademe otázku o množině všech H-kompaktifikací Hilbertova prostoru l2 a navrhujeme některé způsoby, jak tento problém řešit, např. charakterizace Stone-Čechovy kompaktifikace nebo nástroje používané k popisu H-kompaktifikací reál- ného prostoru dimenze 2. Nakonec se podíváme na analýzu množiny všech H-kompaktifikací prostoru pomocí kategorie teoretického přístupu a studujeme vlastnosti kategorií H-kompaktifikací a funk- torů v těchto kategoriích. 1
H-compactifications form an important type of compactifications, carrying the ex- tra property that all automorphisms of a given topological space can be continuously extended over such compactifications. Van Douwen proved there are only three H-compactifications of the real line and only one of the rationals. Vejnar proved that there are precisely two H-compactifications of higher dimensional Euclidean spaces. The result we come with in the Chapter 2 is that there is only one H-compactification of the set of all rational sequences, which is precisely the Stone-Čech compactification. For the proof, we use strong zero-dimensionality, strong homogeneity and other properties of the set of all rational sequences and its clopen subsets. In the Chapter 3, we ask an ambitious question about the set of all H-compactifications of the Hilbert space of all square summable real sequences and propose some ways to tackle this problem, e.g. characterizations of the Stone-Čech compactification or tools used to describe H-compactifications of the real space of dimension 2. In the final chapter, we analyze the set of all H-compactifications of a space using a category-theoretic approach and study properties of categories of H-compactifications and functors in such categories. 1