Zobrazit minimální záznam

Simulace procesů v buněčných membránách
dc.contributor.advisorJungwirth, Pavel
dc.creatorMelcr, Josef
dc.date.accessioned2021-05-20T10:53:59Z
dc.date.available2021-05-20T10:53:59Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.11956/112069
dc.description.abstractSimulace of procesů v buněčných membránách Abstrakt Mnoho důležitých procesů v buňkách probíhá prostřednictvím iontů. Například fúze synaptických váčků s membránami nervových buněk je kontrolována dvojmocným kationtem Ca2+ , zatímco výměna Na+ a K+ řídí rychlý elek- trický přenos vzruchů neurony. Vyšetřili jsme modelové fosfolipidové membrány a jejich interakce s těmito biologicky relevantními ionty. S použitím molekulárně dynamických simulací jsme přesně určili jejich vzájemé afinity vůči neutrálním a negativně nabitým fosfolipidovým dvojvrstvám. K tomu bylo nutné vyvi- nout nové vylepšené modely fosfolipidů nazvané ECC-lipids, které obsahují polarizaci elektronů pomocí korekce na elektronové kontinuum implemento- vané přeškálováním nábojů. Naše simulace s tímto novým silovým polem poprvé dosahují kvantitativní shody s experimentálně zjištěným konceptem lipidového elektrometru pro POPC a i pro POPS se všemi studovanými ka- tionty. Kromě toho jsme také zkoumali vliv transmembránového napětí na fosfolipidové dvojvrstvy. Elektrické pole indukované napětím se vyskytuje výhradně v hydrofóbní části membrány, kde má téměř konstantní intenzitu. Toto pole ovlivňuje strukturu blízkých molekul...cs_CZ
dc.description.abstractSimulation of processes in cellular membranes Abstract Many important processes in cells involve ions, e.g., fusion of synaptic vesi- cles with neuronal cell membranes is controlled by a divalent cation Ca2+ ; and the exchange of Na+ and K+ drives the the fast electrical signal transmis- sion in neurons. We have investigated model phospholipid membranes and their interactions with these biologically relevant ions. Using state-of-the-art molecular dynamics simulations, we accurately quantified their respective affinites towards neutral and negatively charged phospholipid bilayers. In order to achieve that, we developed a new model of phospholipids termed ECC-lipids, which accounts for the electronic polarization via the electronic continuum correction implemented as charge rescaling. Our simulations with this new force field reach for the first time a quantitative agreement with the experimental lipid electrometer concept for POPC as well as for POPS with all the studied cations. We have also examined the effects of transmembrane voltage on phospholipid bilayers. The electric field induced by the voltage exists exclusively in the hydrophobic region of the membrane, where it has an almost constant strength. This field affects the structure of nearby water molecules highlighting its importance in electroporation. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectmolecular dynamics simulationsen_US
dc.subjectmolecular modelingen_US
dc.subjectpolarizabilityen_US
dc.subjectbiological membranesen_US
dc.subjectphospholipid bilayersen_US
dc.subjectphosphatidylcholineen_US
dc.subjecttransmembrane potentialen_US
dc.subjectsodiumen_US
dc.subjectpotassiumen_US
dc.subjectcalciumen_US
dc.subjectmolekulárně dynamické simulacecs_CZ
dc.subjectmolekulární modelovánícs_CZ
dc.subjectpolarizabilitacs_CZ
dc.subjectbiologické membránycs_CZ
dc.subjectfosfolipidové dvojvrstvycs_CZ
dc.subjectfosfatidylcholincs_CZ
dc.subjecttransmembránový potenciálcs_CZ
dc.subjectsodíkcs_CZ
dc.subjectdraslíkcs_CZ
dc.subjectvápníkcs_CZ
dc.titleSimulation of processes in cellular membranesen_US
dc.typerigorózní prácecs_CZ
dcterms.created2019
dcterms.dateAccepted2019-10-11
dc.description.departmentKatedra makromolekulární fyzikycs_CZ
dc.description.departmentDepartment of Macromolecular Physicsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId208925
dc.title.translatedSimulace procesů v buněčných membránáchcs_CZ
dc.identifier.aleph002302238
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineBiophysics and Chemical Physicsen_US
thesis.degree.disciplineBiofyzika a chemická fyzikacs_CZ
thesis.degree.programPhysicsen_US
thesis.degree.programFyzikacs_CZ
uk.thesis.typerigorózní prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra makromolekulární fyzikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Macromolecular Physicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csBiofyzika a chemická fyzikacs_CZ
uk.degree-discipline.enBiophysics and Chemical Physicsen_US
uk.degree-program.csFyzikacs_CZ
uk.degree-program.enPhysicsen_US
thesis.grade.csUznánocs_CZ
thesis.grade.enRecognizeden_US
uk.abstract.csSimulace of procesů v buněčných membránách Abstrakt Mnoho důležitých procesů v buňkách probíhá prostřednictvím iontů. Například fúze synaptických váčků s membránami nervových buněk je kontrolována dvojmocným kationtem Ca2+ , zatímco výměna Na+ a K+ řídí rychlý elek- trický přenos vzruchů neurony. Vyšetřili jsme modelové fosfolipidové membrány a jejich interakce s těmito biologicky relevantními ionty. S použitím molekulárně dynamických simulací jsme přesně určili jejich vzájemé afinity vůči neutrálním a negativně nabitým fosfolipidovým dvojvrstvám. K tomu bylo nutné vyvi- nout nové vylepšené modely fosfolipidů nazvané ECC-lipids, které obsahují polarizaci elektronů pomocí korekce na elektronové kontinuum implemento- vané přeškálováním nábojů. Naše simulace s tímto novým silovým polem poprvé dosahují kvantitativní shody s experimentálně zjištěným konceptem lipidového elektrometru pro POPC a i pro POPS se všemi studovanými ka- tionty. Kromě toho jsme také zkoumali vliv transmembránového napětí na fosfolipidové dvojvrstvy. Elektrické pole indukované napětím se vyskytuje výhradně v hydrofóbní části membrány, kde má téměř konstantní intenzitu. Toto pole ovlivňuje strukturu blízkých molekul...cs_CZ
uk.abstract.enSimulation of processes in cellular membranes Abstract Many important processes in cells involve ions, e.g., fusion of synaptic vesi- cles with neuronal cell membranes is controlled by a divalent cation Ca2+ ; and the exchange of Na+ and K+ drives the the fast electrical signal transmis- sion in neurons. We have investigated model phospholipid membranes and their interactions with these biologically relevant ions. Using state-of-the-art molecular dynamics simulations, we accurately quantified their respective affinites towards neutral and negatively charged phospholipid bilayers. In order to achieve that, we developed a new model of phospholipids termed ECC-lipids, which accounts for the electronic polarization via the electronic continuum correction implemented as charge rescaling. Our simulations with this new force field reach for the first time a quantitative agreement with the experimental lipid electrometer concept for POPC as well as for POPS with all the studied cations. We have also examined the effects of transmembrane voltage on phospholipid bilayers. The electric field induced by the voltage exists exclusively in the hydrophobic region of the membrane, where it has an almost constant strength. This field affects the structure of nearby water molecules highlighting its importance in electroporation. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra makromolekulární fyzikycs_CZ
thesis.grade.codeU
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusU
dc.identifier.lisID990023022380106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV