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Introduction
In most theories in physics, the equilibrium is the first aspect well-described,
and for multiple reasons. Usually, quite a few properties can be deduced from
knowing the system’s equilibrium and a great deal of systems evolve in a fashion
that tends towards the equilibrium. What happens frequently is that a system in
a general initial state undergoes a quick transient phenomenon and then stabilizes
in a (meta-)equilibrium which, in the long run, is the most significant state.
A more pragmatic reason is that investigating only system equilibria is more
simple than investigating the entire dynamics, and therefore the research begins
there.

However, a negligibly fast decay into an equilibrium is by far not the only
phenomenon to come by. In some cases, the exact course of a transition between
states (or of any evolution in general) determines whether a new (distinct) effect
will take place. It is also possible that a system will not even come close to
any equilibrium. On that account, it is desirable to understand all dynamical
properties of a theory and also their consequences.

In this thesis, we study dynamical properties of a quantum system out of
equilibrium. In particular, we look into externally driven quantum systems. Ex-
ternal driving means that the Hamiltonian of a system is set beforehand and is
given as a definite function of time. Another method of probing the dynamics
of a quantum system would be opening an initially closed system to interaction
with the surrounding environment. In both cases, we begin with an eigenstate of
the initial Hamiltonian and then change the Hamiltonian so that the state is out
of equilibrium.

The dynamics strongly depends on the speed of the Hamiltonian change. To
quantify the speed, assume that the Hamiltonian is a continuous function of a real
control parameter λ which itself is a function of time. For an infinitely slow change
of λ with time (i.e. dλ

dt
≪ 1), which is called the adiabatic limit, the system will

at all times stay in its instantaneous eigenstate. This effect is useful in adiabatic
quantum computing. However, in reality, it is necessary that all processes last
a finite amount of time.

We will focus on the opposite extreme which became known as a quantum
quench. In this case the control parameter λ undergoes a sudden, diabatic change.
After changing λ, the initial state will not be an eigenstate anymore and its
evolution will be non-trivial. A possible way to describe the evolution is by
observing the norm of the projection of the evolved state onto the initial one – the
survival probability. Quantum quenches manifest several qualitatively distinct
stages of time evolution of the survival probability.

Quantum quenches are often studied along with quantum phase transitions
(QPTs) in order to distinguish between different phases by the quench dynamics.
QPTs are critical phenomena in which a small change of the control parameter
induces a macroscopic response of the system. Traditionally, a QPT refers to
a critical phenomenon in the ground state. Excited-state quantum phase transi-
tions (ESQPTs) represent a generalization of the concept to excited energy levels.
The impact of an ESQPT on the system is rapidly weakened by a growth of the
number of degrees of freedom f . Therefore, the ESQPT phenomenon requires
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that a system exhibit collective behaviour – in which case f does not grow with
the increase of the system size (the number of particles it consists of). Never-
theless, plenty of models incorporate it, e.g. the Lipkin-Meshkov-Glick model
of a lattice of spins, the molecular vibron model which deals with vibrational
modes of a molecule, the interacting boson model of a nucleus or the extended
Dicke model used in quantum optics (see [1–3] and references therein). On the
other hand, ground-state QPTs are quite common and are observed in plenty
of interacting many-body systems, such as the Ising model or new alloys and
materials [4].

We will conduct our investigations on the Lipkin model which was originally
created as a toy model, but nowadays, it experiences a renewed attention of the
scientific community. Rapid progress in quantum technologies enabled perform-
ing experiments on real-time quantum dynamics. These experiments are carried
out by quantum simulators, which have been realized, for instance on ultra-cold
atoms, trapped ions or superconducting qubits [5]. The Lipkin model is experi-
mentally well-handled and can be finely tuned. It, therefore, provides a way to
experimentally verify theoretical predictions.
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1. Quantum phase transitions

1.1 Ground-state quantum phase transitions
Every physics problem depends on various parameters (e.g. external field inten-
sity, internal interaction strength or surrounding material properties). Consider
a Hamiltonian Ĥ with a real control parameter λ in the following form,

Ĥ(λ) = Ĥ0 + λV̂ , (1.1)

where Ĥ0 represents a free Hamiltonian and V̂ is an interaction Hamiltonian.
Assume Ĥ has discrete energy spectrum. Furthermore, assume that

[
Ĥ0, V̂

]
̸= 0,

otherwise the eigenstates of Ĥ(λ) would not depend on λ and their respective
energies would depend linearly on λ (i.e., there would not be any phase transition).

A quantum phase transition is defined as a non-analyticity in the energy of
the ground state at a critical value λc of the control parameter (other than tem-
perature). Strictly said, the singularity in an energy derivative occurs only in
the limit of infinite system size (number of constituents). However, the system
manifests definite signs of critical behaviour even for finite sizes.

Let us introduce the Ehrenfest classification of QPTs by types of the non-
analyticity. In an n-th order QPT, the n-th derivative of the ground-state energy
dn

dλnE
gs
λ exhibits a jump discontinuity at λc and all its lower-order derivatives are

continuous. In particular, a first-order QPT means that the ground-state energy
is continuous but non-smooth at λc, which corresponds to a jump discontinuity
in the first derivative. However, the Ehrenfest classification fails in many realistic
cases in which the corresponding derivative does not exist at all.

An equivalent approach to QPTs is by the behaviour of observables as a func-
tion of λ. Order parameter O is such an observable by whose value it is possible
to distinguish among different phases. It is customary to choose O so that it has
zero value in one of the phases. A jump discontinuity (or non-existence) in the
l-th derivative of Egs

λ is equivalent to a jump discontinuity (or non-existence) in
the (l − 1)th derivative of the order parameter.

It is possible to introduce a more general classification of QPTs. The names
of the classes are based on the behaviour of the order parameter. A discontinuous
QPT is characterized by a discontinuity in O at λc and it corresponds to a first-
order QPT. Whereas continuous QPTs are characterized by a continuous order
parameter O with either a jump discontinuity or a non-existence in any of the
higher derivatives. Thus, all QPTs of order higher than two are continuous.

1.2 Excited-state quantum phase transitions
An excited-state quantum phase transition represents a generalization of a QPT
to higher energy levels. It refers to a non-analyticity in the energy spectrum of
excited states. The characterisation of different phases delimited by an ESQPT is
more difficult than in a ground-state QPT. It does not have to show up as a non-
analyticity of single states. Instead, the expectation value of different observables
as a smoothed function of energy show abrupt qualitative changes at the ESQPT
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critical energy [3]. The most significant such quantity is the smoothed energy
level density ρ̄.

Both ground-state QPTs and ESQPTs have to do with the behaviour of the
corresponding classical Hamiltonian. QPTs are the result of non-analyticities with
respect to λ in the global minimum of the classical Hamiltonian, whereas ESQPTs
relate to its stationary points at energies higher than its global minimum [2]. The
critical borderline (separatrix) in E × λ plane which indicates the ESQPT often
intersects the ground-state QPT [1, 3].

Article [2] shows that it is not possible to classify ESQPTs corresponding to de-
generate stationary points. Whereas, ESQPTs corresponding to non-degenerate
stationary points in the classical Hamiltonian (i.e., the Hessian matrix has a non-
zero determinant) can be classified based on the number of system’s degrees of
freedom f and the rank r of the stationary point (the number of Hessian negative
eigenvalues). The predicted behaviour of the smoothed energy density in vicinity
of the critical energy Ec (which itself depends on λ) is

∂f−1ρ̄

∂Ef−1 ∝

⎧⎨⎩(−1) r+1
2 log |E − Ec| for r odd ,

(−1) r
2 θ(E − Ec) for r even ,

(1.2)

where θ is the Heaviside step function. Therefore, an ESQPT manifests itself
either as a logarithmic divergence or a jump discontinuity in the (f−1)th deriva-
tive of the smoothed energy level density. The effect of ESQPTs grows weaker
as f increases (the singularity is shifted to higher derivatives). Thus, ESQPTs
occur in infinite-size many-body systems with a finite number of degrees of free-
dom. This statement implies that the system must exhibit some kind of collective
behaviour [1].

In the following, we will mostly deal with ESQPTs of type (f, r) = (1, 1),
i.e. a local maximum in a two-dimensional Hamiltonian (dim = 2f) which man-
ifests itself as divergence in the smoothed density of states. In a corresponding
finite-size system, the ESQPT generates only a steeply higher density of states.
However, the Hamiltonian eigenstates do not cross each other in spite of the high
density. With increasing λ, they only get closer and then draw apart, once again.
This phenomenon is called the avoided crossing. A derivation that the eigenstates
undergo only avoided crossings can be seen in appendix A.

Classical correspondence

Assume a classical particle moving in a potential given by the classical Hamilto-
nian. If it has energy equal to that of a potential maximum, its velocity in the
vicinity of the potential maximum is close to zero. This implies high probability
of finding the particle in the vicinity of the potential maximum.

The quantum density of states at energy E is proportional to the period of
a classical motion along a closed trajectory corresponding to energy E. The only
possible trajectory for the critical energy is pathological and the particle reaches
the potential maximum in infinite time. Therefore, the corresponding period is
infinite and so is the density of states.
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2. Quantum quench dynamics

2.1 Quantum quench
A quantum quench is a protocol in which the system is prepared in an eigenstate
of the initial Hamiltonian Ĥi and then the state is exposed to a sudden change of
the Hamiltonian from Ĥi to Ĥf . Say, this instantaneous change happens at time
0 and the state then evolves for a given period of time t in the final Hamiltonian
Ĥf .

Assume a more general Hamiltonian in the form of (1.1) which satisfies, for
two distinct values of the control parameter λi and λf , the following,

Ĥi = Ĥ(λi) , (2.1)
Ĥf = Ĥ(λf) . (2.2)

Let us denote
⏐⏐⏐ψ(k)

i,f

⟩
the eigenstate of Ĥi,f with the k-th energy E

(k)
i,f . The

initial state of the system is chosen so that

|ψ(0)⟩ =
⏐⏐⏐ψ(k)

i

⟩
. (2.3)

Therefore, the resulting state after the evolution in Ĥf is given by the Schödinger
equation as

|ψ(t)⟩ = Û(t) |ψ(0)⟩ = e−iĤft |ψ(0)⟩ , (2.4)
where we assumed ℏ = 1.

2.2 Survival probability
Survival probability P (t) (also called the Loschmidt echo) is the probability that
|ψ(t)⟩ will be identified as |ψ(0)⟩,

P (t) =
⏐⏐⏐ ⟨ψ(0)|ψ(t)⟩

⏐⏐⏐2 =
⏐⏐⏐⟨ψ(0)

⏐⏐⏐e−iĤft
⏐⏐⏐ψ(0)

⟩⏐⏐⏐2 . (2.5)

The corresponding probability amplitude is called the Loschmidt amplitude,

G(t) =
⟨
ψ(0)

⏐⏐⏐e−iĤft
⏐⏐⏐ψ(0)

⟩
. (2.6)

Fidelity f(t) is the probability amplitude that the quenched and evolved state
|ψ(t)⟩ will be identified as state |ψi(t)⟩ obtained by evolving the same initial state
for the same amount of time t but in the initial Hamiltonian Ĥi,

F(t) = ⟨ψi(t)|ψ(t)⟩ =
⟨
ψ(0)

⏐⏐⏐e+iĤite−iĤft
⏐⏐⏐ψ(0)

⟩
. (2.7)

Thanks to (2.3), fidelity relates to the previous two quantities in the following
manner,

F(t) = e+iE
(k)
i t

⟨
ψ(0)

⏐⏐⏐e−iĤft
⏐⏐⏐ψ(0)

⟩
= e+iE

(k)
i tG(t) , (2.8)

|F(t)|2 = |G(t)|2 = P (t) . (2.9)
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2.3 Strength function
Let us define coefficients sk as the projections of the initial state onto the eigen-
basis of the final Hamiltonian,

|ψ(0)⟩ =
∑

k

⟨
ψ

(k)
f

⏐⏐⏐ψ(0)
⟩ ⏐⏐⏐ψ(k)

f

⟩
≡
∑

k

sk

⏐⏐⏐ψ(k)
f

⟩
, (2.10)

where k iterates through the total number d of system eigenstates (the system
dimension). The final state |ψ(t)⟩ can then be expressed as

|ψ(t)⟩ = e−iĤft
∑

k

sk

⏐⏐⏐ψ(k)
f

⟩
=
∑

k

ske−iE
(k)
f t

⏐⏐⏐ψ(k)
f

⟩
. (2.11)

It is also possible to define strength function S(E) as the energy distribution of
the initial state among Ĥf eigenstates,

S(E) =
∑

k

|sk|2 δ
(
E − E

(k)
f

)
. (2.12)

Since the strength function represents an energy distribution, it is possible
to compute the mean energy and its variance for the initial state in the final
Hamiltonian,

⟨Ef⟩i =
∫
S(E)E dE =

∑
k

|sk|2 E(k)
f , (2.13)

⟨⟨
E2

f

⟩⟩
i
=
∫
S(E)

(
E − ⟨Ef⟩i

)2
dE =

∑
k

|sk|2
(
E

(k)
f − ⟨Ef⟩i

)2
. (2.14)

We can write the survival probability in terms of the strength function as

P (t) =
⏐⏐⏐ ⟨ψ(0)|ψ(t)⟩

⏐⏐⏐2 =
⏐⏐⏐⏐⏐∑

k

|sk|2e−iE
(k)
f t

⏐⏐⏐⏐⏐
2

=
⏐⏐⏐⏐⏐
∫
S(E)e−iEt dE

⏐⏐⏐⏐⏐
2

. (2.15)

Thus, all the information contained in the survival probability as a function of
time is equivalently concealed in the strength function S(E) and one can recon-
struct P (t) from knowing S(E).

By computing the absolute value in the expression after the second equality
sign in (2.15),

P (t) =
∑

k

|sk|4 + 2
∑

k

∑
k′<k

|sk|2|sk′|2 cos
((
E

(k)
f − E

(k′)
f

)
t
)
, (2.16)

it is easy to see, that on large time scales, the survival probability will oscillate
around a non-zero value N −1 ≡ ∑

k |sk|4. The quantity N is called the partic-
ipation ratio and it quantifies the level of delocalization of state |ψ(0)⟩ in Ĥf
eigenstates [6, 7],

N = 1∑
k |sk|4

. (2.17)

Its minimum value 1 corresponds to the case that |ψ(0)⟩ is one of the basis states.
The maximum value, which is equal to the system dimension d, corresponds to
a state evenly distributed among Ĥf basis states. In the latter case |sk|2 = 1

d
.
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2.4 Designing quench protocols
Knowing the mean energy of the initial state

⏐⏐⏐ψ(k)
i

⟩
in the final Hamiltonian Ĥf

would enable us to design specific quench protocols that probe any spectrum
area chosen beforehand. Computing the λ-derivative of the eigenenergy E

(k)
λ of

a general Hamiltonian (1.1) will ultimately allow us to do so.
Eigenenergy E(k)

λ can be expressed as

E
(k)
λ =

⟨
ψ

(k)
λ

⏐⏐⏐Ĥ(λ)
⏐⏐⏐ψ(k)

λ

⟩
. (2.18)

After differentiating equation (2.18) with respect to λ, we obtain

dE(k)
λ

dλ =
⟨

d
dλψ

(k)
λ

⏐⏐⏐⏐⏐Ĥ(λ)
⏐⏐⏐⏐⏐ψ(k)

λ

⟩
+
⟨
ψ

(k)
λ

⏐⏐⏐⏐⏐Ĥ(λ)
⏐⏐⏐⏐⏐ d
dλψ

(k)
λ

⟩
+
⟨
ψ

(k)
λ

⏐⏐⏐⏐⏐dĤdλ
⏐⏐⏐⏐⏐ψ(k)

λ

⟩
=

= E(k)(λ)
[⟨

d
dλψ

(k)
λ

⏐⏐⏐⏐⏐ψ(k)
λ

⟩
+
⟨
ψ

(k)
λ

⏐⏐⏐⏐⏐ d
dλψ

(k)
λ

⟩]
+
⟨
ψ

(k)
λ

⏐⏐⏐V̂ ⏐⏐⏐ψ(k)
λ

⟩
=

= E(k)(λ) d
dλ

⟨
ψ

(k)
λ

⏐⏐⏐ψ(k)
λ

⟩
  

1

+
⟨
ψ

(k)
λ

⏐⏐⏐V̂ ⏐⏐⏐ψ(k)
λ

⟩
=

=
⟨
ψ

(k)
λ

⏐⏐⏐V̂ ⏐⏐⏐ψ(k)
λ

⟩
,

(2.19)

which is called the Hellmann-Feynman formula.
Now, with the use of (2.18) and (2.19), we can write the mean energy of the

initial state in the final Hamiltonian,

⟨Ef⟩i =
⟨
ψ

(k)
i

⏐⏐⏐Ĥf

⏐⏐⏐ψ(k)
i

⟩
=
⟨
ψ

(k)
i

⏐⏐⏐Ĥi + ∆λV̂
⏐⏐⏐ψ(k)

i

⟩
= E

(k)
i + dE(k)

λ

dλ

⏐⏐⏐⏐⏐⏐
λi

∆λ , (2.20)

where ∆λ = λf − λi. Thus, quenching can be interpreted as moving along a tan-
gent between points λi and λf in the graph of energy levels as a function of control
parameter λ.

Let us examine the energy variance of the resulting state,⟨⟨
E2

f

⟩⟩
i
=
⟨
ψ

(k)
i

⏐⏐⏐Ĥ2
f

⏐⏐⏐ψ(k)
i

⟩
−
⟨
ψ

(k)
i

⏐⏐⏐Ĥf

⏐⏐⏐ψ(k)
i

⟩2
=

=
⟨
ψ

(k)
i

⏐⏐⏐⏐(E(k)
i + ∆λV̂

)2
⏐⏐⏐⏐ψ(k)

i

⟩
−
(
E

(k)
i + ∆λ

⟨
ψ

(k)
i

⏐⏐⏐V̂ ⏐⏐⏐ψ(k)
i

⟩)2
=

= ∆λ2
⟨⟨
V̂ 2
⟩⟩

i
,

(2.21)

where we used Ĥf = Ĥi + ∆λV̂ together with Ĥi

⏐⏐⏐ψ(k)
i

⟩
= E

(k)
i

⏐⏐⏐ψ(k)
i

⟩
.

Equation (2.20) truly enables us to construct any desired quench protocol. We
are particularly interested in quenching between distinct quantum phases. On the
other hand, we cannot quench over too large ∆λ because the energy variance of
the final state is proportional to ∆λ2 and we could get a state extended over a too
large energy interval (in the worst scenario over multiple quantum phases).
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2.5 Regimes of quench dynamics
The evolution of the survival probability can be divided into different regimes on
different time scales [6]. At first, the dynamics is determined solely by the energy
distribution variance. Later, with proceeding time, the evolution of the system
is given by more and more subtle details of the strength function (such as its
outline or discrete structure).

Let us estimate the time scale when the system starts to behave according
to the discrete structure of the energy distribution (the Heisenberg time). To
this purpose, we exploit the time-energy uncertainty principle (remember that
we have ℏ = 1),

tH = 2π
⟨∆Ef⟩i

, (2.22)

where ⟨∆Ef⟩i is the average energy level spacing of the initial state in the fi-
nal Hamiltonian. There are multiple ways to determine the reasonable value of
⟨∆Ef⟩i. We will stick with [6], where the difference of neighbouring energy levels
is weighted by the sum of their respective eigenstates participation in the initial
state,

⟨∆Ef⟩i = A
∑

k

(
|sk+1|2 + |sk|2

) (
E

(k+1)
f − E

(k)
f

)
, (2.23)

where the sum goes over all d − 1 neighbouring eigenenergy differences. The
normalizing factor A ensures that the sum of the weight coefficients is equal to
one,

A = 1∑
k (|sk+1|2 + |sk|2) = 1

2 − |s1|2 − |sd|2
. (2.24)

The evolution starts with the ultra-short regime, in which the survival probability
is given as the second order Taylor series for (2.5),

P (t) ≈ 1 −
(
t

ts

)2
, (2.25)

where ts ≡ 1/
√

⟨⟨E2
f ⟩⟩i. The expansion is valid for t ≪ ts. In this regime, the

decay is determined solely by the energy distribution variance.
In short- and medium-time regime from t ∼ ts up to t ≪ tH, the system evolu-

tion is given by the energy distribution outline. The initial decay is predicted to
be exponential, Gaussian or sub-Gaussian. Thus, comparing the real Loschmidt
echo with the approximating Gaussian,

P (t) ≈ exp
(

−
(
t

ts

)2)
, (2.26)

provides some insight into the decay speed. Then, power-law modulated oscilla-
tions may occur.

Long-time regime around t ∼ tH is given by the discrete structure of en-
ergy eigenstates. Power-law modulated oscillations may occur in this phase, too.
A long-lasting decrease in the survival probability (below the infinite time aver-
age) may follow.

In the ultra-long-time regime, t ≫ tH, the survival probability fluctuates
around the mean value P (t) = N −1 as given by (2.16). Irrespective of the usually
low average P (t), sharp peaks of the near initial-state recovery arise in this phase.
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3. Lipkin model
Simple Hamiltonians are used to manipulate with quantum systems (for example,
in quantum computing) and it is, therefore, crucial that we know exactly what
can happen under the action of such Hamiltonians. Some of these Hamiltonians
exhibit critical behaviour like QPTs and possibly ESQPTs.

The Lipkin-Meshkov-Glick model (or the Lipkin model for short) [8], was
created as a simple toy model of an atomic nucleus. A toy model means that it is
used rather for exploring (quantum) phenomena than for describing reality with
it. On the other hand, thanks to its simplicity, it can describe certain aspects
of various complex models. The Lipkin model can be formulated by means of N
interacting entities which can exist in one out of two possible states, e.g. spin-1

2
particles, fermions on two (N -fold degenerated) energy levels, two-level atoms,
bosons of two different types. The Lipkin model also has a coordinate-momentum
formulation (motion of a particle in a potential well).

3.1 Spin formulation
In the spin formulation we have a lattice of N interacting spins of size 1

2 . In
the Lipkin model, the range of the spin interaction is infinite – which makes it
an infinite-range limit of the Ising model [3].

We assign to the n-th spin a two dimensional Hilbert space H(n) and a spin-1
2

operator (represented by Pauli matrices) Ŝ(n) = 1
2

(
σ̂

(n)
1 , σ̂

(n)
2 , σ̂

(n)
3

)
acting on it.

Let us define the total spin operator

Ĵ =
N∑

n=1
Ŝ(n) (3.1)

acting on the whole spin lattice represented by H = ⨂N
n=1 H(n).

The potential energy of a spin Ŝ(n) in a magnetic field B is given as V̂ (n)
0 =

−gµB · Ŝ(n), where g is the gyromagnetic ratio and µ is the Bohr magneton
or nuclear magneton (whichever corresponds to the nature of the spins). The
potential energy of the spin lattice V̂0 can be expressed by means of the collective
spin Ĵ for a homogeneous B as follows

V̂0 =
N∑

n=1
V̂

(n)
0 = −gµB ·

(
N∑

n=1
Ŝ(n)

)
= −gµB · Ĵ . (3.2)

For simplicity, we will consider only V̂0 = Ĵ3. That is, we will consider a special
case of the magnetic field in the direction z and such strength that gµB = −1.

The energy of two interacting spins is proportional to Ŝ(n) · Ŝ(m). Since the
interaction in the Lipkin model is infinite-range and we assume that each pair of
spins interact with equal strength, the overall interaction energy can be written
as

V̂ ′ ∝
N∑

m=1

N∑
n=1

Ŝ(m) · Ŝ(n) = Ĵ2 ≡ Ĵ2 . (3.3)
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Because ⨂N
n=1

⏐⏐⏐s(n),m(n)
⟩

≡ ⨂N
n=1

⏐⏐⏐12 ,m(n)
⟩

forms a basis of H, the diagonal terms
in (3.3) introduce only an additive constant which shifts the eigenenergies but
which does not have an impact on the system dynamics,

N∑
n=1

Ŝ(n) · Ŝ(n) =
N∑

n=1

(
Ŝ(n)

)2
=

N∑
n=1

s(n)
(
s(n) + 1

)
Î =

=
N∑

n=1

1
2

(1
2 + 1

)
Î = 3

4N Î ,
(3.4)

where Î is the identity operator.
Once again, we will consider only the first component Ĵ2

1 for the sake of
simplicity. This invalidates the reasoning in (3.4) for a general spin size but 1

2 .
The correct argument in this case is that the square of any Pauli matrix is equal
to the identity and it follows that

N∑
n=1

Ŝ
(n)
1 Ŝ

(n)
1 = 1

4

N∑
n=1

(
σ̂

(n)
1

)2
= 1

4N Î . (3.5)

The Lipkin model, in general, covers a class of Hamiltonians that can be ex-
pressed in terms of linear and quadratic terms of a quasispin operator components
Ĵi. Such Hamiltonians conserve Ĵ2 eigenvalue j because

[
Ĵ2, Ĵi

]
= 0. We will

consider one of the most common Lipkin Hamiltonians

Ĥ = Ĵ3 + λ

(
− 1

2j Ĵ
2
1

)
, (3.6)

which is in the form of (1.1). Control parameter λ represents the spin-spin inter-
action strength. We will refer to Hamiltonian (3.6) as the Lipkin Hamiltonian.
From now on, let us consider only positive values of control parameter λ.

Describing the spin lattice by a collective spin, the original Hilbert space H of
dimension 2N falls apart into a direct sum of spin subspaces Hj with dimensions
2j+1 for j between jmin and jmax = N

2 , where jmin = 0 for N even or jmin = 1
2 for

N odd. Because ∑jmax
jmin 2j + 1 = O(N2) which is much less than 2N , for large N ,

the subspaces Hj have to occur with a high multiplicity αj in the whole Hilbert
space H so that the equality of dimensions could be satisfied.

The subspace with the highest j (equal to N
2 ) contains the state in which

all spins are directed up, and therefore it is unique (αN/2 = 1). All lower
Hilbert spaces Hj occur with a multiplicity given by the number of ways the
constituent spins can be arranged so that the total spin of the lattice is j,
minus the contribution from higher-j subspaces [3]. Mathematically speaking,
H = ⨁N/2

j=jmin

⨁αj

i=1 H(i)
j . Subspaces H(i)

j with distinct index i differ in the ex-
change symmetry of the individual spins.

Each Hj = ⨁αj

i=1 H(i)
j is invariant under any Lipkin Hamiltonian for it con-

serves j. Consequently, we can restrict ourselves on any of the subspaces Hj. It is
customary to choose the highest-j subspace HN/2 of dimension N + 1. After the
restriction on any Hj the Hamiltonian represents a system with only one degree
of freedom – the Ĵ3 eigenvalue.

The highest-j state
⏐⏐⏐N2 , N

2

⟩
of the subspace HN/2 is totally symmetric with

respect to the exchange of the constituent spins. The rest of the states from
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HN/2 can be obtained by applying the lowering operator Ĵ− on
⏐⏐⏐N2 , N

2

⟩
,

Ĵ− = Ĵ1 − iĴ2 . (3.7)

Thanks to (3.1), it is possible to express the collective lowering operator in terms
of lowering operators Ŝ(n)

− = Ŝ
(n)
1 − iŜ

(n)
2 acting on the individual spins,

Ĵ− =
N∑

n=1
Ŝ

(n)
− . (3.8)

Now, we see that Ĵ− acts on all spins in the same fashion. Thus, the whole
subspace HN/2 is totally symmetric under the exchange of individual spins and
all spins behave in the same way, or equivalently they exhibit collective behaviour.

3.2 Coordinate-momentum formulation
An arbitrary Lipkin Hamiltonian restricted on Hj can be cast from the spin
formulation to the coordinate-momentum formulation by a transformation of op-
erators as described in [9]. The transformation consists of two steps, first from
spin ladder operators (which shift Ĵ3 eigenvalue by ±1 or 0)

Ĵ± = Ĵ1 ± iĴ2 , (3.9)
Ĵ0 = Ĵ3 (3.10)

to boson creation and annihilation operators b̂†, b̂ and then to harmonic oscillator
creation and annihilation operators x̂± ip̂ (with a prefactor setting the properties
of the particular oscillator). The particular formulae are

(
Ĵ−, Ĵ0, Ĵ+

)
↦→
(√

2j − b̂†b̂ b̂, b̂†b̂− j, b̂†
√

2j − b̂†b̂
)
, (3.11)(

b̂†, b̂
)

↦→
√
j (x̂− ip̂, x̂+ ip̂) . (3.12)

Transformation (3.11) is chosen so that the commutation relation of boson
operators

[
b̂, b̂†

]
= 1 is satisfied. The commutation relation of coordinate and

momentum, as given by transformation (3.12), is

[x̂, p̂] = i

2j . (3.13)

3.3 Classical limit
Quantum behaviour is encoded in non-zero commutators. The classical limit,
which is usually obtained by taking ℏ → 0, can be also acquired by setting
all conceivable commutators to zero. For the commutator given by (3.13), it is
possible to do so in the limit of infinite system size N → ∞ (and equivalently
j → ∞).
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The classical analogy of Hamiltonian (3.6) is obtained by casting it from the
spin representation to the coordinate-momentum representation and taking the
limit of infinite system size N → ∞. This way, we obtain

H

j
= −1 + (1 − λ)x2 + λ

2x
4  

V (x)
j

+ p2
(

1 + λ

2x
2
)

  
T (x,p)

j

. (3.14)

Therefore, a classical analogy of the Lipkin model of a spin lattice in a magnetic
field is the motion of a particle in a potential well of the form V (x) as given by
(3.14).

For general λ, the kinetic term T depends on the position. It can be inter-
preted as a position-dependent effective mass (at x = 0 equal to the real mass).
Nevertheless, it is possible to get insight into the system dynamics by analysing
the shape of the potential term V (x). It represents a potential well which turns
into a double well system at λ > λc ≡ 1. The potential for critical λ = λc is
a quartic oscillator, in contrast with the sub-critical λ < λc which in the neigh-
bourhood of x = 0 represents a harmonic oscillator. The Hamiltonian for λ = 0
is exactly that of a harmonic oscillator on the whole x-domain. The dependency
of the potential on λ is shown in fig. 3.1.

−2

−1

0

1

2

3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

V
j

x

λ = 0
λ = 0.5
λ = 1
λ = 1.5
λ = 2

Figure 3.1: Classical potential corresponding to the Lipkin Hamiltonian

3.4 Quantum phase transition
Let us examine the Lipkin model Hamiltonian (3.6) for QPTs. First, we need
to find the classical ground state, given as the global minimum of the function
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H(x, p). The conditions for stationary points of H(x, p) are

0 = 1
j

∂H

∂p
= 2p

(
1 + λ

2x
2
)
, (3.15)

0 = 1
j

∂H

∂x
= 2x(1 − λ) + 2λx3 + p2λx . (3.16)

By solving the set of these two equations we get two different types of solutions,

(x1, p1) = (0, 0) , (3.17)

(x2, p2) =
⎛⎝±

√
λ− 1
λ

, 0
⎞⎠ . (3.18)

Both these solutions are in accord with the classical Hamiltonian equations of
motion because

ẋ1,2 = ∂H

∂p
(x1,2) = 0 , (3.19)

ṗ1,2 = −∂H

∂x
(x1,2) = 0 , (3.20)

and therefore a particle in any stationary point of the classical Hamiltonian is in
rest and is not subject to any force. All in all, the particle can keep still in all
the computed stationary points. On the other hand, the second solution (x2, p2)
exists only for λ > 1 ≡ λc.

To determine the overall ground state, we need to find the energies of the
stationary points.

E1 = H(x1, 0) = −j , (3.21)

E2 = H(x2, 0) = −j
(

1 + (λ− 1)2

2λ

)
. (3.22)

Obviously, energy E2 is smaller than E1. However, both states exist at the same
time only for λ ≥ λc. Hence the system ground state is given as

Egs(λ)
j

=

⎧⎨⎩−1 λ ≤ λc ,

−1 − (λ−1)2

2λ
λ ≥ λc .

(3.23)

Energy of the ground state given by formula (3.23) exhibits a jump discontinu-
ity in the second derivative at λc = 1. The energy itself and its first derivative are
continuous thanks to the term (λ−1)2. Therefore the QPT is of the second-order
according to the Ehrenfest classification. We will come back to the derivatives of
Egs in table 3.1.

As proposed in [9], it is possible to choose the ground state spin inversion
parameter (which represents the number of spin-up states) to be the order pa-
rameter, ⟨

Î
⟩gs

≡ ⟨ψgs|Ĵ3 + j|ψgs⟩ = j
⟨
x̂2 + p̂2

⟩gs
. (3.24)

For λ ≤ λc, a particle in the ground state stays with zero momentum p1 = 0
at x1 = 0, which gives

⟨
Î
⟩gs

= 0, zero number of spin-up states. That is, all spins
are directed down and

⟨
Ĵ3
⟩gs

= −N
2 = −j.
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For λ > λc, the particle is in a superposition of keeping still in the left well
and keeping still in the right well. Since the potential is symmetric, both minima
are populated equally. Their distance from the origin of coordinates is x2 =
±
√

1 − 1
λ
. Thus, the spin inversion parameter above the critical value λc reads

as
⟨
Î
⟩gs

= jx2
2 = j

(
1 − 1

λ

)
. Now, the constituent spins have a non-zero fraction

in the up-direction.
The ground state spin inversion grows with increasing λ. The maximum value

of
⟨
Î
⟩gs

corresponds to λ → ∞ and is equal to j. In that case, it is possible to
write

⟨
Ĵ3
⟩gs

=
⟨
Î
⟩gs

− j = 0, and so, the spins don’t have any preferred direction
in the z component in the limit of infinite spin interaction strength (since λ in
Hamiltonian (1.1) represents the spin interaction strength). This phenomenon is
expected because the effect of magnetic field becomes negligible with respect to
much stronger spin interactions. Consequently, all the spins are directed in the x
direction (the direction of the interaction, which is perpendicular to that of the
magnetic field).

The change of
⟨
Î
⟩gs

from zero to a positive value at λc happens continuously
because j

(
1 − 1

λc

)
= 0. On the other hand, the first derivative d

dλ

⟨
Î
⟩gs

has
a jump discontinuity at λc from 0 to jλ−2

c = j. Since a discontinuity in the l-th
derivative of the order parameter is tied with an (l+ 1)th order QPT, we confirm
that the QPT is second-order. All values related to the QPT are neatly reviewed
in table 3.1.

Table 3.1: Order parameter values for the Lipkin Hamiltonian

x2
min pgs Egs d

dλ
Egs d2

dλ2E
gs ⟨I⟩gs d

dλ

⟨
Î
⟩gs

λ < λc 0 0 −j 0 0 0 0
λ > λc

λ−1
λ

0 −j
(
1 + (λ−1)2

2λ

)
j
2

(
1

λ2 − 1
)

− j
λ3 j λ−1

λ
j

λ2

λ → ∞ 1 0 −∞ − j
2 0 j 0

Excited-state quantum phase transition
The state with energy E1 (as given in (3.21)) of a particle staying at x1 does not
cease to exist for λ > λc but it turns into a local maximum energy (see fig. 3.1).
It is a continuation of the sub-critical ground state. This potential maximum is
responsible for the arisen ESQPT in the model. The particular ESQPT in the
model is of type (f, r) = (1, 1) and therefore connects to a logarithmic divergence
of the smoothed density of states at the critical energy Ec. The critical energy in
this model is independent of λ (apart from the fact that λ has to be greater than
the critical value λc).

3.5 Parity conservation
The system has an inner symmetry which has an impact on the dynamics. It is
better visible, when rewrite Hamiltonian (3.6) in terms of spin ladder operators
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(3.9) and (3.10),

Ĥ = Ĵ0 + λ

⎛⎝− 1
2j

[
Ĵ+ + Ĵ−

2

]2⎞⎠ =

= Ĵ0 − λ

8j
(
Ĵ2

+ + Ĵ2
− + Ĵ+Ĵ− + Ĵ−Ĵ+

)
.

(3.25)

Now we see, that all terms in (3.25) shift Ĵ3 eigenvalue either by 0 or ±2. There-
fore, it is possible to introduce parity

P̂ = (−1)Ĵ3+j (3.26)

which is conserved during the evolution determined by Hamiltonian (3.6). The
term +j ensures that the exponent is an integer, since Ĵ3 has half-integer eigen-
values at the same time as j is a half-integer.

To profit from the parity conservation, we need to start with such initial state
|ψ(0)⟩ which has a well-defined parity, i.e. there are only even or only odd terms
in the decomposition of |ψ(0)⟩ into the standard basis |j,m⟩ (where m represents
a Ĵ3 eigenvalue).

Since P̂ is conserved during the evolution determined by Ĥ(λ), it holds that[
P̂ , Ĥ(λ)

]
= 0. It follows that P̂ and Ĥ(λ) are simultaneously diagonalizable

and it is possible to choose such Ĥ(λ) eigenstates that have well-defined parity.
The parity is conserved even if λ is being changed during the evolution because
a sudden change of λ does not affect the Ĵ3 value.

For Hamiltonian (3.6), the parity can be expressed in terms of Ĥi energy level
number as P̂ = (−1)k−1 (where k = 1 for the ground state). Which means we will
consider only even-numbered energy levels. For λ > λc, it follows from the fact
that the eigenstates of a double-well potential form doublets of two energetically
close states (see fig. 4.1). The same formula can be derived straightforwardly for
λ < λc . We obtained the coordinate-momentum representation by transforming
boson operators b̂†, b̂ to

√
j(x± ip) and so we can write also the particle number

operator b̂†b̂ which returns the energy level number in a harmonic oscillator. From
(3.11) we see that

P̂ = (−1)Ĵ3+j = (−1)b̂†b̂ = (−1)k−1 (3.27)

because here we label energy levels starting from k = 1 and for the standard
linear harmonic oscillator the ground state corresponds to the zeroth energy.

We will investigate the dynamics only for positive parity states. In other
words, we will take exclusively odd-energy-level eigenstates of Ĥi as the initial
state |ψ(0)⟩. The parity conservation signifies that there are no terms in the
Hamiltonian which mediate an interaction between states of different parities.
Therefore the proper Hilbert space in our case is the one that includes only
positive-parity states. For that reason, we will consider only such basis states in
the formulae for the Heisenberg time (2.22) and for the participation ratio (2.17).
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4. Numerical results
QPTs occur in the infinite system size and so it is desired to perform all numeri-
cal computations for high j. On the other hand, we are limited by the program
runtime. We used j = 1000 for all computations, if not specified otherwise.
We provide a comparison of numerical results for different system sizes in ap-
pendix B. Briefly, the system behaves qualitatively correctly (for studying QPTs)
for approximately j > 30. Smaller j-values result in distorted graphs and possibly
in omitting a whole regime of the survival probability evolution.

4.1 Energy levels
A first insight into a quantum system can be get by knowing its eigenenergies.
Let us begin with fig. 4.1 which shows how the eigenenergies of Ĥ(λ) change with
varying λ. The spectrum of the plane λ×E of Hamiltonian (3.6) is scaled by j so
we plot the quantity E

j
which is scale invariant. Only the number of eigenstates

increases with higher j and the spectrum of Ĥ
j

gets denser. Therefore we choose
j = 25 for the sake of legibility. In the figure we see that the eigenstates change
their structure and form doublets at the critical energy Ec = −j, as predicted in
section 3.5. Figure 4.2 replots the eigenenergies dependency on control parameter
λ for positive-parity eigenstates.
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Figure 4.1: Dependency of both-parity Ĥ(λ) eigenvalues on λ

A vertical cross-section at a certain value of λ in fig. 4.2 represents the distri-
bution of the initial state |ψ(0)⟩ into the eigenstates of the corresponding Hamil-
tonian Ĥ(λ) which specifies the cross-section. State density ρ at (λ,E) can be
visualized as the reciprocal vertical distance of two neighbouring levels. It is vis-
ible that the eigenstates cluster around the critical energy Ec for λ > λc = 1. All
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Figure 4.2: Dependency of positive-parity Ĥ(λ) eigenvalues on λ

the eigenstates turn at the critical energy and go horizontal for a while. In this
manner, they create a divergence of the density of states caused by the ESQPT
in the model.

4.2 Backward quench protocols
One possibility for a quench protocol is to start on the ground state above the
critical point λc and to quench backwards. Figure 4.3 shows the survival proba-
bility and the corresponding strength function for three characteristic backward
quench protocols (BQPs) which end in the phase below the ESQPT, above the
ESQPT and on their borderline.

The initial decay is almost exactly Gaussian. Then the survival probability
revives and after a series of approximately power modulated oscillations (depicted
in the log-log scale as linear envelopes of the oscillations) the survival probability
saturates and then fluctuates around the mean value N −1. The ESQPT acceler-
ates the decay of the initial state (and its stabilization in the final Hamiltonian)
in the critical quench by skipping the entire long-time regime.

From the three strength function graphs in fig. 4.3, one can see that the
eigenstates are truly much closer in vicinity of Ec (notice different scales on the
x axis!), exactly as expected from a precursor of the divergence in the density of
states. Since all basis states (of one parity) are populated after a quench, it is
easy to compare strength function graphs for the same class of quench protocols
differing only in quench lengths ∆λ.

The energy distribution is approximately Gaussian and the ESQPT suppresses
the population of the critical-energy states.

A more compact perspective on how the survival probability changes with
different quench lengths ∆λ can be get from a map plot at fig. 4.4. Apart from
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Figure 4.3: BQPs from the ground-level energy starting at λi = 3.2 and ending
in the phases below and above the ESQPT and on their borderline. The insets
indicate the course of each respective quench protocol (the shift in ⟨Ef⟩i). The
survival probability graphs incorporate an approximating Gaussian decay (thick
dashed green line), the Heisenberg time (black bullet) and the long-time mean
survival probability N −1 (thick black dashed line). Critical energy Ec is labelled
in the strength function graphs (black dotted line).
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the obvious fact the initial state decays slowly in similar Hamiltonians (for which
∆λ ∼ 0), we see that the for a general ∆λ, it decays and ultimately stabilizes
around a certain level with a few recurrences.
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Figure 4.4: Survival probability for BQPs from the ground state at λi = 3.2
as a function of the quench length ∆λ and time t. Critical quench length (the
quench ends on the ESQPT borderline) is marked with a black dotted line and
the Heisenberg time is marked with a thick blue line.

The Heisenberg time is in a perfect alignment with the first recurrence and it
has a maximum at the critical quench length ∆λc (for which the quench ends on
the ESQPT borderline). Not only does the ESQPT skip the phase of modulated
oscillations, it also prolongs the time before the first recurrence, which is weaker
in this case (fig. 4.3), the saturation phase comes earlier.

The corresponding map plot of the strength function is in fig. 4.5. The support
of S(E) for each ∆λ is small with respect to the maximum energy difference in
fig. 4.5. For that reason, there are no visible effects in the graph. The same graph
for smaller system sizes is less localized and it clearly shows the suppression
of near-critical energies (see fig. B.3). To make fig. 4.5 more telling, we could
subtract the linear dependency as given by (2.20). Then. it would show the
eigenstates structure, not just the trend.

We did not examine BQPs starting from excited-states because the effect both
in the survival probability and the strength function are even weaker than for the
ground-state BQPs. The reason is that excited states are notably delocalized
over the energy spectrum.

Most of the these facts about the Heisenberg time, participation ratio and
density of states also hold for all following quench protocols.
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Figure 4.5: Strength function for BQPs from the ground state of λi = 3.2 as
a function of the quench length ∆λ and time t. Critical energy is marked with
a black dotted line.

4.3 Forward quench protocols
Another possibility for a quench is to start under the critical point λc, say λi = 0,
and then to quench forwards, the so called forward quench protocol (FQP). We
will denote the j-th or (j − 1)th energy state (whichever has the correct parity)
as the middle-energy level and (2j)th energy level as the maximum-energy level.

Ground state

Let us start with FQPs from the ground-state. As can be seen from table 3.1,
the λ-derivative of the ground-state energy is zero, and therefore the quench will
follow the separatrix. Characteristic quench protocols are shown in fig. 4.6.

The initial state has energy Ec and the mean energy ⟨Ef⟩i is also Ec for each λ.
Thanks to the high density of states along the separatrix, it is easy to reconstruct
the initial state with only a few Ĥf eigenstates. This is reflected both in the
strength function which has a sharp peak at Ec and in the survival probability
which does not decay much (and that at a sub-Gaussian rate), then it stabilizes
at a high value. In the classical correspondence it matches with a particle set in
the minimum of a quadratic potential well, and the particle keeps steady during
the process in which the minimum then turns into a maximum of a double-well
potential.

Graphs 4.7 and 4.8 represent the evolution of the survival probability and the
strength function throughout the gradually longer quenches. The ESQPT in this
case stabilizes the initial state as both the initial decay and Heseinberg time are
shifted at larger times. There is a lot of recurrences for all quench lengths ∆λ and
those at ∆λc are by far the highest of all. There are dense- and sparse-spectrum
areas in fig. 4.8. The areas reflect the number of eigenstates in vicinity of Ec at
λf . This detailed structure is observed only because of a different energy scale
than on the rest of analogous graphs.
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Figure 4.6: FQPs from the ground-level energy starting at λi = 0 and ending
in the phases below and above the ESQPT and on their borderline. The insets
indicate the course of each respective quench protocol (the shift in ⟨Ef⟩i). The
survival probability graphs incorporate an approximating Gaussian decay (thick
dashed green line), the Heisenberg time (black bullet) and the long-time mean
survival probability N −1 (thick black dashed line). Critical energy Ec is labelled
in the strength function graphs (black dotted line).
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Figure 4.7: Survival probability for FQPs from the the ground of λi = 0 as
a function of the quench length ∆λ and time t. Critical quench length (the
quench ends on the ESQPT borderline) is marked with a black dotted line and
the Heisenberg time is marked with a thick blue line.
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Figure 4.8: Strength function for FQPs from the ground of λi = 0 as a function of
the quench length ∆λ and time t. Critical energy is marked with a black dotted
line.
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Middle-energy state

The next option is to begin with the middle-energy state. A few quenches are
shown in fig. 4.9 and the whole picture is in fig. 4.10 and fig. 4.11. A forward
quench from the middle of the initial spectrum totally disrupts the initial state,
making it decay earlier and deeper. There are even no recurrences in fig. 4.10.
The initial decay (which is faster than Gaussian) smoothly follows in modulated
oscillations. The Heisenberg time is at the end of the modulated oscillations
phase, contrary to all the other quench protocols. After tH the survival probability
stays saturated approximately at that level.

Excited-states are highly delocalized over the energy spectrum, and conse-
quently, the effect given by the ESQPT is less apparent. The classical intuition
is that excited-states in a harmonic oscillator are delocalized in space. The cor-
respondence with a particle in a potential well does not hold for the maximum
energy state, because the spectrum of a potential well is infinite. Therefore it
does not violate the intuition.

The strength function has two major peaks at the end of the populated spec-
trum. The distance between the peaks increases as ∆λ and the energy variance
grow. For more detailed structure of the strength function see the strength func-
tion for j = 60 in fig. B.9. The energies around Ec are in these protocols inhibited
again, however, the effect is minor in this case. Because of that, the survival prob-
ability does not change much with different quench lengths ∆λ. Nevertheless, the
initial decay comes earlier for larger quench lengths. Another tiny quantitative
difference can be seen in the survival probability as one peak reaches the critical
energy – the long-time average decreases. At this point, the Heisenberg time
changes its trend and begins to decrease even faster.
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Figure 4.9: FQPs from the middle-level energy starting at λi = 0. The insets
indicate the course of each respective quench protocol (the shift in ⟨Ef⟩i). The
survival probability graphs incorporate an approximating Gaussian decay (thick
dashed green line), the Heisenberg time (black bullet) and the long-time mean
survival probability N −1 (thick black dashed line). Critical energy Ec is labelled
in the strength function graphs (black dotted line).
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Figure 4.10: Survival probability for FQPs from the middle-energy at λi = 0
as a function of the quench length ∆λ and time t. Critical quench length (the
quench ends on the ESQPT borderline) is marked with a black dotted line and
the Heisenberg time is marked with a thick blue line.
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Figure 4.11: Strength function for FQPs from the middle-energy at λi = 0 as
a function of the quench length ∆λ and time t. Critical energy is marked with
a black dotted line.
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Maximum-energy state

The last investigated FQP begins at the maximum-energy state which has im-
mensely small λ-derivative. Therefore it will not cross the ESQPT borderline
until log10 t = 8000. We can safely assume that the tangent is horizontal and the
quench will always stay in the phase above ESQPT. Figures 4.12, 4.14 and 4.13
show that the initial state remains highly localized – the survival probability does
not decay and the strength function has a sharp peak at E

j
= 1. The Heisenberg

time still aligns with the first recurrence peak (contour 0.8 in fig. 4.13 marks
depressions unlike on the rest of the graphs where contours mark peaks).
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Figure 4.12: FQP from the maximum-level energy starting at λi = 0 and ending in
the phase above the ESQPT. The inset indicates the course of the quench protocol
(the shift in ⟨Ef⟩i). The survival probability graph incorporates an approximating
Gaussian decay (thick dashed green line), the Heisenberg time (black bullet) and
the long-time mean survival probability N −1 (thick black dashed line). Critical
energy Ec is labelled in the strength function graphs (black dotted line).

27



0.8
tH

−4 −3 −2 −1 0 1 2 3 4
log10(t)

0

1

2

3

4

5
∆λ

0.8
tH

−4 −3 −2 −1 0 1 2 3 4
log10(t)

0

1

2

3

4

5
∆λ

0

0.2

0.4

0.6

0.8

1
P (t)

Figure 4.13: Survival probability for FQPs from the maximum-energy state start-
ing at λi = 0 as a function of the quench length ∆λ and time t. The critical quench
length ∆λ = 8000- The Heisenberg time is marked with a thick blue line.
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Figure 4.14: Strength function for FQPs from the maximum-energy state starting
at λi = 0 as a function of the quench length ∆λ and time t. Critical energy
Ec/j = −1.
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Conclusion
We computed the survival probability and the strength function for ground-state
BQPs and for ground-state, middle-energy and maximum-energy FQPs. First,
we verified that the initial state decays according to the scheme presented in
chapter 2 and that the Heisenberg time lies either at the beginning or at the
end of the modulated oscillations stage, and that the inverse of the participation
ratio predicts well the long-time mean survival probability. We noticed that the
density of states is significantly higher in vicinity of the critical ESQPT energy.

The initial state in a ground-state BQP decays and then exhibits plenty of
recurrences. If the endpoint of the quench lies on the critical energy, the state
decays more quickly and the following recurrences are suppressed. The strength
function is approximately Gaussian. The critical-energy states are suppressed.

In a ground-state FQP, the initial state does not decay much and a high
fraction of the initial state stays present and keeps reappearing in the following
oscillations. The critical-length quench stabilizes the initial state which then
decays more slowly. The strength function is a sharp peak at the initial energy
which is equal to the critical energy.

A middle-state FQP makes the initial state decay very quickly and suppresses
all the following recurrences. The critical quench is not different from non-critical
quenches because the initial excited state has high energy variance and therefore
lies in both phases at once. The strength function has a U-shape whose lower-
energy edge is shifted even lower for large quench lengths. The states with the
critical energy are slightly suppressed.

In the Lipkin model, a maximum-energy FQP corresponds to a shift along
a constant eigenenergy. Hence, the initial state decays minimally (and probably
due to the finite dimension). The strength function is a sharp peak at the initial
energy which does not overlap with the critical energy.

All in all, the effect of an ESQPT on the quench dynamics is not even qualita-
tively universal. Even though the same information is concealed in the Loschmidt
amplitude as in the strength function, the effect is always visible in the strength
function and is not necessarily apparent in the survival probability.

Possible extensions to the thesis

Some deeper insight into the effect of an ESQPT on the survival probability and
on the equilibration of a general initial state could be acquired from a few more
graphs than we plotted. The Heisenberg time tH and the long-time mean survival
probability P̄ (t) characterize the evolution. Based on the fact that quenching
along the separatrix had completely different effect than quenching across the
separatrix, the angle between the separatrix and the direction of the quench
might play a decisive part. The angle is in this case equivalent to dE

dλ

⏐⏐⏐
λi=0

. The
dependency on the approaching angle might have two different ways of realizing
it – either from the same λi or so that ∆λ is equal for all quenches. Then, there
was a difference between ground-state BQPs and middle-energy FQPs given by
a different level of localization of the initial state. Therefore another input values
which might play a part are, e.g. higher moments of the final Hamiltonian Ĥf
in the initial eigenstates or the participation ratio. We already confirmed in
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chapter 2 that P̄ (t) = N −1. It might prove relevant, to compute all the other
dependencies of tH and P̄ (t) on each of the approaching angle, higher moments
of Ĥf and N . Thus, we would also find the level of correlation between tH and
P̄ (t).

Mean values of different observables are classically accessible. In the Lipkin
model, the only reasonable observable is the magnetization (sum of the con-
stituent spin values times the probability of the corresponding spin being in that
state). One more factor complicates things – the temperature. It causes random
fluctuations and, consequently, also induces a distribution for the states of the
spins. Therefore, investigating the magnetization of the spin lattice with respect
to λi, λf and temperature will result in macroscopic phenomena which might find
use, e.g. in research or possibly in medicine.
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A. No-crossing theorem
To demonstrate the rarity of real energy level crossings, we will review in detail the
reasoning in [10]. Let us have a Hamiltonian Ĥ(λ) depending on a single control
parameter λ. Let us define the characteristic polynomial p(λ,E) for Hamiltonian
Ĥ(λ),

p(λ,E) = det
(
Ĥ(λ) − E Î

)
, (A.1)

where Î is the identity operator. The definition of eigenenergy E is written as

p(λ,E) = 0 . (A.2)

By solving equation (A.2) we get a set of roots E(k)(λ) where k goes from
0 up to the system dimension N . Suppose that E(1)(λ) and E(2)(λ) undergo
a real crossing at λ = λ0. Let E0 be the energy of the crossing, i.e. E0 =
E(1)(λ0) = E(2)(λ0). Since we investigate energy level crossings, we suppose that
E(1)(λ) ̸= E(2)(λ) in a deleted neighbourhood of λ0.

Because we deal with energy level crossing, we know that E0 is a double root
of p(λ0, E). That implies

p(λ0, E0) = 0 , (A.3)
∂p

∂E
(λ0, E0) = 0 . (A.4)

Equality (A.2) has to hold for each λ along any energy level E(k)(λ), in par-
ticular for i ∈ {1, 2} and λ = λ0 + δλ close to λ0,

0 = p
(
λ,E(k)(λ)

)
≈

≈ p(λ0, E0)  
0

+ d
dλ

[
p
(
λ,E(k)(λ)

)]⏐⏐⏐⏐⏐
λ0,E0

δλ =

=

⎛⎜⎜⎝∂p∂λ(λ0, E0) + ∂p

∂E
(λ0, E0)  

0

dE(k)

dλ (λ0)

⎞⎟⎟⎠ δλ =

= ∂p

∂λ
(λ0, E0)δλ .

(A.5)

Thus, we obtained another condition for a real energy crossing,

∂p

∂λ
(λ0, E0) = 0 . (A.6)

Equations (A.4) and (A.6) are independent. Therefore, for a real crossing to
occur, two independent conditions have to be satisfied by varying a single control
parameter λ. This, in general, happens very rarely (the Hamiltonian would have
to be of a very special form). Real energy level crossings can appear in systems
with a Hamiltonian which depends on at least two different control parameters.
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B. Small system size
In this chapter, we present the same graphs for j = 60 as in the main text for
j = 1000. Then, we show a selection of graphs for j = 5. We include a graph of
eigenenergies for j = 5 to compare it with fig. 4.2 where j = 50. Before comparing
graphs of the strength function, look twice for different energy scales!

A system with too small a size has only a few eigenstates. Consequently, the
dynamics is rather different from that in an infinite-size system with a genuine
quantum phase transition. For very small sizes, all quench protocols look alike
and the maximum of the Heisenberg time does not align with the critical quench
length, anymore (see section B.3). Because of the lack of eigenstates, the strength
function loses it complex structure for small j.

The density of states in vicinity of the critical energy grows for increasing j
(compare fig. 4.3 and fig. B.1). Therefore, the Heisenberg time for critical-length
quench protocols increases, as well (compare fig. 4.3, 4.9 with fig. B.1, B.7).
Apart from its maximum, the Heisenberg time does not change with different
system sizes. The Heisenberg time is given by the spacing of energy levels which
also remains the same (new levels are add the top, not in the middle of the
spectrum).

For large sizes, recurrences of the initial state in the survival probability di-
minish. Depending on the quench protocol, also the initial decay might be acceler-
ated. Particularly it depends on the value of

⟨⟨
V̂ 2
⟩⟩

i
which determines the speed

of the initial decay. Since the Heisenberg time remains the same, the gap between
the initial decay and the first recurrence of the initial state (at the Heisenberg
time) extends.
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B.1 Backward quench protocols
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Figure B.1: BQPs from ground-level energy and λi = 3.2 (j = 60)
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Figure B.2: Survival probability for BQPs from the ground state starting at
λi = 3.2 as a function of the quench length ∆λ and time t (j = 60).
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Figure B.3: Strength function for BQPs from the ground state at λi = 3.2 as
a function of the quench length ∆λ and time t (j = 60).
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B.2 Forward quench protocols
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Figure B.4: FQPs from ground-level energy and λi = 0 (j = 60)
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Figure B.5: Survival probability for FQPs from the ground state of λi = 0 as
a function of the quench length ∆λ and time t (j = 60).
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Figure B.6: Strength function for ground-state FQPs from λi = 0 as a function
of the quench length ∆λ and time t (j = 60).
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Figure B.7: FQPs from middle-level energy and λi = 0 (j = 60)
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Figure B.8: Survival probability for FQPs from the middle-energy state of λi = 0
as a function of the quench length ∆λ and time t (j = 60).
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Figure B.9: Strength function for FQPs from the middle-energy state starting at
λi = 0 as a function of the quench length ∆λ and time t (j = 60).
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Figure B.10: FQP from maximum-level energy and λi = 0 (j = 60)
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Figure B.11: Survival probability for FQPs from the maximum-energy state at
λi = 0 as a function of the quench length ∆λ and time t (j = 60).
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Figure B.12: Strength function for FQPs from the maximum-energy state starting
from λi = 0 as a function of the quench length ∆λ and time t (j = 60).

B.3 Very small system size
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Figure B.13: Dependency of positive-parity Ĥ eigenvalues on λ (j = 5)

40



−5
−4
−3
−2
−1

0

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1
0.2
0.3
0.4
0.5

−1 0 1

log10 P (t)

log10 t

λf = 1.46

S(E)

E
j

−5
−4
−3
−2
−1

0

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2
0.4
0.6
0.8

1

−1−0.5 0 0.5

log10 P (t)

log10 t

λf = 1

S(E)

E
j

−5
−4
−3
−2
−1

0

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

−2 −1 0 1

log10 P (t)

log10 t

λf = 2.76

S(E)

E
j

Figure B.14: Different quench protocols ending on the ESQPT borderline (j = 5)
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Figure B.15: Survival probability for ground-state BQPs starting from λi = 3.2
as a function of the quench length ∆λ and time t (j = 5).
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Figure B.16: Strength function for ground-state BQPs starting from λi = 3.2 as
a function of the quench length ∆λ and time t (j = 5).
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Figure B.17: Survival probability for FQPs from the ground state at λi = 0 as
a function of the quench length ∆λ and time t (j = 5).
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Figure B.18: Survival probability for FQPs from the middle-energy state of λi = 0
as a function of the quench length ∆λ and time t (j = 5).
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