
BACHELOR THESIS

Ondřej Nepožitek

Procedural 2D Map Generation for
Computer Games

Department of Software and Computer Science Education

Supervisor of the bachelor thesis: Mgr. Jakub Gemrot, Ph.D.
Study programme: Computer Science

Study branch: General Computer Science

Prague 2018

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

I would like to thank to my supervisor, Mgr. Jakub Gemrot, Ph.D., for his
guidance during the writing of this thesis and for his valuable advice.

ii

Title: Procedural 2D Map Generation for Computer Games

Author: Ondřej Nepožitek

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Jakub Gemrot, Ph.D., Department of Software and Computer
Science Education

Abstract: In some video games, levels are procedurally generated to increase
game’s replayability. However, such levels may often feel too random, unbalanced
and lacking an overall structure. Ma et al. (2014) proposed an algorithm to solve
this problem. Their method takes a set of user-defined building blocks as an input
and produces layouts that all follow the structure of a specified level connectivity
graph. The algorithm is based on two main concepts. The first one is that the
input graph is decomposed into smaller chains and these are laid out one at a
time. The second one is that configuration spaces are used to define valid relative
positions of building blocks. In this thesis, we present an implementation of this
method in a context of 2D tile-based maps. We enhance the algorithm with
several new features, one of them being a mode to quickly add short corridors
between neighbouring rooms. We also propose speed improvements, including a
smarter decomposition of the input graph and tweaks of the stochastic method
that is used to lay out individual chains. The resulting algorithm is able to quickly
produce diverse layouts, which is demonstrated on a variety of input graphs and
building blocks sets. Benchmarks of our algorithm show that it can achieve up
to two orders of magnitude speedup compared to the original method.

Keywords: procedural content generation, computer games, 2D maps, rooms

iii

Contents

Introduction 3

1 Analysis and related work 5
1.1 Algorithm . 5

1.1.1 Configuration spaces . 6
1.1.2 Incremental layout . 6
1.1.3 Simulated annealing . 9

1.2 Shortcomings . 11
1.2.1 Overall speed . 11
1.2.2 Corridors between rooms 12

2 Algorithm 13
2.1 Tile-based output . 13
2.2 New features . 13

2.2.1 Corridors between rooms 14
2.2.2 Explicit door positions . 15
2.2.3 Custom constraints . 16
2.2.4 Different probabilities for room shapes 17

2.3 Performance improvements . 18
2.3.1 Simulated annealing parameters 18
2.3.2 Chain decomposition . 21
2.3.3 Lazy evaluation . 25

3 Framework 29
3.1 Analysis . 29

3.1.1 Extensibility . 29
3.1.2 Input format . 29
3.1.3 Output format . 30
3.1.4 Planar graphs . 30
3.1.5 Polygon geometry . 30
3.1.6 Benchmarks . 30

3.2 Used technologies . 31
3.3 Solution structure . 31
3.4 Data structures . 32

3.4.1 IMapDescription interface 32
3.4.2 ILayout interface . 32
3.4.3 IConfiguration interface 33
3.4.4 IMapLayout and IRoom interfaces 33

3.5 Algorithms . 34
3.5.1 ChainBasedGenerator class 34
3.5.2 IChainDecomposition interface 34
3.5.3 ILayoutEvolver interface 35
3.5.4 IConfigurationSpaces interface 36
3.5.5 ILayoutOperations interface 36
3.5.6 IGeneratorPlanner interface 37

1

3.5.7 ILayoutConverter interface 38
3.6 GUI . 38

4 Results 40
4.1 Benchmarks . 40

Conclusion 49

Bibliography 51

List of Figures 53

List of Tables 55

A Attachments 56
A.1 Contents of the attached CD . 56

2

Introduction
Procedural generation is a method of creating content algorithmically rather than
by hand. In video games, it is often used to increase game’s replayability. The
classic example is the game Rogue[20] which is a dungeon crawler video game
inspired by a board game Dungeons & Dragons[7]. It contains procedurally gen-
erated dungeon levels, treasures and monster encounters and all that leads to a
unique experience on every playthrough. Procedural techniques are also used in
newer games including Borderlands[1], Diablo[16] or Minecraft[14].

Procedural generation is often used to create game levels. One popular ap-
proach to this problem is to use binary space partitioning[17]. This algorithm
starts with a rectangular area and recursively splits it until there are enough
subareas. Some subareas are then chosen to represent rooms and these are con-
nected by corridors. Another possible approach is a so-called agent-based dungeon
growing[17]. The algorithm starts with an area that is completely filled with wall
cells and an agent is spawned at a specified location. The agent is controlled by a
predefined AI and moves through the area, digging corridors and placing rooms.

The problem with these algorithms is that a game designer often loses control
over the flow of gameplay, and generated layouts may feel too random and lacking
an overall structure[6, 11]. Although this approach may be appropriate in some
genres, Dormans & Sanders[6] note that the gameplay these algorithms support
often does not translate to action-adventure games. These games are story-driven
with concepts like puzzle-solving and exploration making the majority of the
gameplay. They aim to solve this problem by using generative grammars to
generate both missions and spaces of a game. Ma et al.[11] propose a different
approach. Their method takes a set of room shapes as an input and produces
layouts that all follow the structure of a specified level connectivity graph.

The goal of this thesis is to implement an algorithm that will allow game de-
signers to retain control over the structure of generated layouts. We will focus on
generating 2D tile-based maps1, as there is no known method that can be directly
used in such a context. Our algorithm will be based on the aforementioned work
of Chongyang Ma et al. because the main concepts of their method are quite
universal and can be modified to handle tile-based layouts. The advantage of
this method over the grammar-based approach is that it is quite simple to define
its input, while construction of generative grammars can be relatively hard.

Goals
1. Implement the algorithm from Ma et al.[11] in a context of 2D tile-based

maps.

2. Propose changes that will improve speed of the original method.

3. Provide a framework that will allow programmers to replace or extend in-
dividual building blocks of our method.

4. Provide a simple GUI to control the algorithm.
1Maps that consist of small square graphic images that are laid out in a grid.

3

Structure
The structure of the thesis is following: The algorithm from Ma et al. is analyzed
in chapter 1. Modifications and performance improvements of the original method
are described in chapter 2. The architecture of the framework is covered in
chapter 3. Results, including benchmarks of our method and several generated
layouts, are presented in chapter 4. And the final chapter concludes the thesis.

4

1. Analysis and related work
In this section, we will first describe the method from Ma et al. and then discuss
some of its shortcomings.

1.1 Algorithm
The algorithm takes a set of polygonal building blocks and a level connectivity
graph as an input. Nodes in that graph represent rooms, and edges define con-
nectivities between them. The goal of the algorithm is to assign a shape and a
position to each node in the graph in a way that no two nodes intersect and that
every pair of neighbouring nodes share a common boundary segment.

Instead of searching through all possible positions and room shapes of nodes
in the input graph, we use configuration spaces to define valid relative positions
of individual room shapes. The configuration space of two nodes is a set of such
positions in R2 that if we translate one of the nodes to that position, both nodes
can be connected by doors and do not intersect. However, it is not possible to
formulate the whole problem as a configuration space computation because even
a restricted version of such a computation was shown to be PSPACE-hard[9].
Therefore, a probabilistic optimization technique is used to efficiently explore the
search space. To further speed up the optimization, we break the input problem
to smaller and easier subproblems. This is done by decomposing the graph into
smaller parts (called chains) and then laying them out one at a time.

0

1

2

3

4

5

6

7

8

(a) Level connectivity graph (b) Building blocks

0

1

2
3

4

5

6

7 8

(c) Generated layout

0

1

2

3

4
5

6

7
8

(d) Generated layout

Figure 1: Output of the original algorithm from Ma et al. (c) and (d) demonstrate
layouts that were generated from the level connectivity graph in (a) and building
blocks shown in (b).

5

1.1.1 Configuration spaces
For a pair of polygons, one fixed and one free, a configuration space is a set of
such positions of the free polygon that the two polygons do not overlap and can
be connected by doors. When working with polygons, each configuration space
can be represented by a possibly empty set of lines (Figure 2a) and can easily be
computed with basic geometric tools. By leveraging these valid position sets, the
size of the space we have to search is dramatically reduced.

(a) (b)

Figure 2: Configuration spaces. (a) shows the configuration space (red lines)
of the free square with respect to the fixed l-shaped polygon. It defines all the
locations of the center of the square such that the two blocks do not intersect and
are in contact. (b) shows the intersection (yellow dots) of configuration spaces of
the moving square with respect to the two fixed rectangles.

Following algorithm is used to compute the configuration space of two blocks,
one being fixed and the other one being allowed to move. We pick a reference point
on the moving block and consider all locations in R2 such that, if the polygon
is moved in a way that the reference point is placed at that location, both the
moving block and the fixed block contact each other but do not intersect. The
set of all these points forms the configuration space of the two blocks (Figure 2a).
To get the configuration space of a moving block with respect to two or more
fixed blocks, the intersection of the individual configuration spaces is computed
(Figure 2b).

Because the block geometry is fixed during optimization, configuration spaces
of all pairs of block shapes are precomputed to speed up the process.

1.1.2 Incremental layout
Authors of the method note that chains, or graphs where each node has at most
two neighbours, are relatively easy to lay out. Therefore, the input graph is
decomposed into chains and these are later laid out one at a time. The strategy
of decomposing a graph into chains is based on computing a planar embedding
of the graph and then using faces of the embedding to form the basis of the
decomposition.

Our final output layout is always a single connected component, hence there
is no benefit in laying out separate components and then trying to join them, as
the joining process can be quite difficult. Instead, after laying out a chain, the
next chain to connect is always one that is connected to already laid out vertices.

6

1 Input : p lanar graph G , b u i l d i n g b locks B , l ayout s tack S
2
3 procedure IncrementalLayout (c , s)
4 Push empty layout i n t o S
5
6 repeat
7 s ← S . pop ()
8 Get the next chain c to add to s
9 AddChain (c , s) // extend the layout to contain c

10
11 i f extended p a r t i a l l ayou t s were generated then
12 Push new p a r t i a l l ayou t s i n t o S
13 end i f
14
15 u n t i l t a r g e t # o f f u l l l ay out s i s generated or S i s empty
16 end procedure

Algorithm 1: Incremental layout.

Algorithm 1 shows the implementation of incremental layout. In each iteration
of the algorithm (lines 6 - 15), we first take the last layout from the stack (line 7)
and compute which chain should be added next (line 8). This can be simply done
by storing the number of the last chain that was added to each partial layout.
The following step is to add the next chain to the layout (line 9), generating
multiple extended layouts and storing them (lines 11 - 13). If the extension step
fails, no new partial layouts are added to the stack and the algorithm has to
continue with the last stored partial layout. Throughout the paper, we refer to
this situation as backtracking because the algorithm cannot extend the current
partial layout and has to go back and continue with a different stored layout. It
is usually needed when there is not enough space to connect additional chains
to already laid out vertices (Figure 5). Backtracking is also the reason why we
always try to generate multiple extended layouts (line 9). Otherwise, we would
have nothing to backtrack to. The process terminates when enough full layouts
are generated or if no more distinct layouts can be computed.

To decompose a graph into chains, a classic algorithm[5] to find a planar
embedding is applied to the graph. That embedding is then used to get all
the faces of the graph. The basic idea of the decomposition is that cycles are
harder to lay out because there are more constraints on the nodes. Therefore, it
is attempted to put cycles to the beginning of the decomposition, thus making
sure they are processed as soon as possible and the chance of backtracking in
later phases of the algorithm is decreased. The first chain in the decomposition is
formed by the smallest face of the embedding and following faces are then added in
a breadth-first search ordering. If there are more faces to choose from, the smallest
one is used first. When there are no faces left, remaining acyclical components
are added. In Figure 4 we see can an example of a chain decomposition that is
obtained by following these steps.

7

0

3

1

2

4 5 6

7

8

(a) Input graph

0

1

2

3

(b) Partial layout

0

1

2

3

(c) Partial layout

0

1

2

3

4

5

6

7

8

(d) Full layout

0
1

2

3

4

5
6

7

8

(e) Full layout

Figure 3: Incremental layout. (b) and (c) show two partial layouts after laying
out the first chain. (d) shows a full layout after extending (b) with the second
chain. (e) shows a full layout after extending (c) with the second chain.

(a) Input graph

0

0 0

0

1

1

1

0 1

3

4

3

2

(b) Chain decomposition

Figure 4: Chain decomposition. (b) shows an example of how can (a) be decom-
posed into chains. Each color represents one chain. Numbers show in what order
were the chains created.

8

0 1

2

8

9

5

3

4

7 6

13 14

10

11

12

(a) Input graph

01

2

3

4

5

6

7

8

10

11

12

(b) Bad partial layout

01

2

3

4

5

6

7

8

10

11

12

(c) Good partial layout

01

2

3

4

5

6

7

8

9

10

11

12

13

14

(d) Full layout

Figure 5: Backtracking. (b) shows an example of a bad partial layout because
there is not enough space to connect nodes 0 and 9. Backtracking to a different
partial layout (c) is needed to generate a full layout (d).

1.1.3 Simulated annealing
The authors chose simulated annealing framework to explore the space of possible
layouts for individual chains. The reason for choosing simulated annealing is that
it is able to produce multiple partial layouts in a single run. This is useful in two
situations. First, it allows us to backtrack if we are unable to lay out a chain.
And second, we are able to quickly generate subsequent full layouts. Instead of
starting the generation process all over again from an empty layout, we start with
an already computed partial layout that was produced by simulated annealing in
the process of generating the first layout.

The goal of simulated annealing is to assign a position and a room shape to
every node in the current chain, such that all constraints are satisfied.

Simulated annealing operates by iteratively considering local perturbations
to the current configuration, or layout. That means that we create a new con-
figuration by randomly picking one node and changing its position or shape. If
the new configuration improves the energy function, it is always accepted. Oth-
erwise, there is a small probability of accepting the configuration anyway. The
probability of accepting worse solutions decreases as the temperature of simulated
annealing tends to zero.

9

The energy function is constructed in a way that it heavily penalizes nodes
that intersect and neighbouring nodes that do not touch.

E = e
A
ω e

D
ω − 1

A is the total area of intersection between all pairs of blocks in the layout. D
is the sum of squared distances between the centers of pairs of blocks that are
neighbours in the input graph, but which are not in contact. The value of ω affects
how often is simulated annealing allowed to move to a worse configuration, and
was empirically derived to be one hundred times the average area of building
blocks.

To speed up the process, they try to find an initial configuration with a low
energy. To do that, a breadth-first search ordering of nodes from the current
chain is constructed, starting from the ones that are adjacent to already laid out
nodes. Ordered nodes are placed one at a time, sampling the configuration space
with respect to already laid out neighbours, choosing the configuration with the
lowest energy.

1 Input : chain c , i n i t i a l layout s
2
3 procedure AddChain (c , s)
4 generatedLayouts ← Empty c o l l e c t i o n o f generated layou t s
5 t ← t0 // Initial temperature
6
7 for i ← 1 , n do // n: # of cycles in total
8 for j ← 1 , m do // m: # of trials per cycle
9 s’ ← PerturbLayout (s , c)

10
11 i f s’ i s v a l i d then
12
13 i f s’ ∪ c i s f u l l l ayout then output i t
14 e l se i f s’ pas se s v a r i a b i l i t y t e s t
15
16 Add s’ i n t o generatedLayouts
17 Return generatedLayouts i f enough extended lay out s computed
18 end i f
19 end i f
20
21 i f ∆E < 0 then // ∆E = E(s’) - E(s)
22 s ← s’
23 e l se i f rand () < e−∆E/(k∗t) then
24 s ← s’
25 e l se
26 Discard s’
27 end i f
28
29 end for
30
31 t ← t ∗ r a t i o // Cool down temperature
32 end for
33 end procedure

Algorithm 2: Simulated annealing. This pseudocode uses n = 50, m = 500,
t0 = 0.6 and k is computed using ∆E averaging[8].

10

1 Input : layout , cu r r ent chain
2
3 procedure PerturbLayout (layout , chain)
4 configSpaces ← Get precomputed c o n f i g u r a t i o n spaces
5 perturbShape ← Pick at random − 40% true , 60% f a l s e
6 nodeToBePerturbed ← Get a random node from the chain
7
8 i f perturbShape then
9 Pick a random shape f o r nodeToBePerturbed

10 e l se
11 Use configSpaces to get a random p o s i t i o n from the i n t e r e s e c t i o n
12 o f c o n f i g u r a t i o n spaces o f ne ighbours o f nodeToBePerturbed
13 end i f
14
15 Update p o s i t i o n / shape o f nodeToBePerturbed
16 Update energy o f layout
17
18 return perturbed layout with updated energy
19 end procedure

Algorithm 3: Layout perturbation.

1.2 Shortcomings

1.2.1 Overall speed
The main problem of the algorithm is that it is just not reliable enough to be
used directly in a game. In Table 1, you can see a benchmark of the algorithm
when used on input graphs that are shown throughout this thesis. The algorithm
clearly struggles when it has to generate a layout that is based on a complex
input graph. We can see that for such inputs the success rate is below 60% and
if we manage to generate a layout, it takes tens of seconds. If we want to use the
algorithm in a game, we should aim to generate a layout under a few seconds and
with a high success rate.

Note that the original paper contains a benchmark that shows a higher success
rate than what can be seen in Table 1. However, we were not able to reproduce
these results with the available implementation that can be found on Github[11].
And even with a higher success rate, the algorithm still needs tens of seconds to
handle complex input graphs.

Success Time IterationsInput rate avg/med avg/med

Figure 5 (15 vertices) 40% 38.00s/33.00s 667k/1000k
Figure 8 (13 vertices) 80% 14.70s/2.25s 62k/163k
Figure 22 (9 vertices) 100% 0.56/0.07s 16k/28k
Figure 23 (17 vertices) 40% 19.00s/46.00s 400k/199k
Figure 24 (41 vertices) 8% 50.00s/55.00s 920k/1000k
Figure 25 (21 vertices) 60% 30.00s/24.00s 500k/144k
Figure 26 (11 vertices) 100% 10.00s/20.00s 183k/199k

Table 1: Benchmark of the original implementation. Success rate shows how
often was the algorithm able to generate a valid layout. We provide average and
median values for both the time and the number of iterations.

11

1.2.2 Corridors between rooms
In the original paper, it is shown that the method can be used to generate layouts
with rooms connected by corridors. To achieve that, a new node is added between
every two neighbouring nodes in the input graph and all these new nodes get
assigned a set of room shapes that was made for corridors. The advantage of
this approach is that the algorithm does not care whether a room has any special
meaning and therefore no code modifications are needed.

The problem is, however, that we now have almost twice as many nodes than
before and the algorithm, therefore, needs significantly more time to generate a
valid layout. When we tried this approach with corridors that were rather short,
we also encountered a problem with the energy function, because it takes into
account what is the area of intersection of individual pair of nodes. The corridors
were so small that their contribution to the energy of a layout was negligible,
causing the algorithm to not converge at all.

12

2. Algorithm
Our algorithm is based on the method from Ma et al. that was described in
the previous section. In this section, we will first discuss the consequences of
using the method in a tile-based context, then introduce new features and finally
propose some performance improvements.

New features:

• Corridors between rooms

• Explicit door positions

• Custom constraints

• Different probabilities for room shapes

Speed improvements:

• Simulated annealing parameters

• Chain decomposition

• Lazy evaluation

2.1 Tile-based output
One of the goals of this thesis is to reimplement the algorithm from Ma et al. in a
context of tile-based maps, i.e. maps that consist of small square graphic images
that are laid out in a grid. The original method works with real coordinates and
cannot be, therefore, directly used to generate such maps.

The biggest change that comes with using integer coordinates is that we can
now use only rectilinear polygons instead of arbitrary polygons for room shapes.
Rectilinear polygons are polygons with each side being parallel to one of the axes.

It is interesting to observe how the algorithm behaves if we scale all the rooms
up to simulate, to some extent, real coordinates. From our experience, it seems
that the convergence rate is slightly better when working with a discrete space
where the algorithm has less options to choose from (e.g. available positions when
perturbing nodes).

2.2 New features
In this section, we will discuss enhancements of the original algorithm.

13

2.2.1 Corridors between rooms
In the Shortcomings section, we discussed how are corridors handled in the orig-
inal algorithm. We present a different approach to this problem. We use two
different instances of configuration spaces. The first one is the basic one in which
a position of two rooms is valid when both rooms touch and do not overlap. The
second one, on the other hand, accepts only positions where the two rooms are
exactly a specified distance away from each other (and also do not overlap).

Algorithm 4 shows how we perturb a layout when we want to have rooms
connected by corridors1. By using the second type of configuration spaces (lines
14 - 16), we should converge to a state where all pairs of non-corridor nodes of the
current chain have a space between them (Figure 6b). When this happens, we
switch to the first type of configuration spaces (line 22) and try to greedily add
all corridors rooms, i.e. for each corridor node pick the first valid position that
connects corresponding non-corridor nodes. In some cases, we may not be able
to lay out all corridor rooms if, for example, the only way to add a corridor is to
cross another one. Such cases, however, are not very frequent and if we encounter
them, we just abort the current attempt, remove already added corridors (lines
24 - 26) and return to simulated annealing.
1 Input : layout , cur r ent chain
2
3 procedure PerturbLayoutWithCorridors (layout , chain)
4 configSpaces ← Get b a s i c precomputed c o n f i g u r a t i o n spaces
5 configSpacesCorridors ← Get precomputed c o n f i g u r a t i o n spaces that
6 f o r c e a smal l space between each p a i r o f ne ighbour ing rooms
7
8 perturbShape ← Pick at random − 40% true , 60% f a l s e
9 nodeToBePerturbed ← Get a random non−c o r r i d o r node from chain

10
11 i f perturbShape then
12 Pick a random shape f o r nodeToBePerturbed
13 e l se
14 Use configSpacesCorridors to get a random p o s i t i o n from
15 the i n t e r e s e c t i o n o f c o n f i g u r a t i o n spaces o f ne ighbours
16 o f nodeToBePerturbed
17 end i f
18
19 Update p o s i t i o n / shape o f nodeToBePerturbed
20
21 i f l ayout i s v a l i d then
22 Try to g r e e d i l y add c o r r i d o r s (from chain) to layout us ing configSpaces
23
24 i f not a l l c o r r i d o r s were added then
25 Remove a l l c o r r i d o r s (from chain) from layout
26 end i f
27 end i f
28
29 return perturbed layout with updated energy
30 end procedure

Algorithm 4: Our approach to adding corridors. Red lines show what is
different from Algorithm 3.

With this approach, we can quickly generate layouts with rooms connected
by short corridors. We observed that the algorithm sometimes converges even
quicker when we enable corridors (in terms of iterations count). This is probably

1Because of a lack of time, our current implementation only allows users to either choose to
have corridors between all rooms in the original graph or to not have corridors at all. However,
the proposed approach can be implemented to support choosing exactly which rooms should
be connected by corridors.

14

caused by the fact that it may be easier to lay out non-corridor nodes if they are
not required to touch, and because the process of greedily adding corridors has a
high success rate.

6

8 0 2

4

3 7

5

9 1

(a) Input graph

0

1

2

3

4

5

6

(b) Before adding corridors

0

1

2

3

4

5

6

(c) After adding corridors

0
1

2

3

4

5

6

7

8 9

(d) Full layout

Figure 6: Corridors. (b) shows how is the second type of configuration spaces used
to create space between rooms in the second chain. (c) shows how are corridors
added to (b). (d) shows a full layout.

2.2.2 Explicit door positions
In the original algorithm, it is not easily possible to specify door positions of
individual room shapes. It only allows us to configure one global length and that
is used for all doors in a layout. The problem is that there are situations where it
is convenient to explicitly specify door positions of a room. For example, we may
have a boss room and need the player to enter the room from a specified tile. Or
we may have multiple room templates and they may have some tiles reserved for
walls or other obstacles.

We have implemented our own configuration spaces generator that works di-
rectly with door positions. It allows users to explicitly define door positions of

15

every room shape in a layout. This modification has no runtime overhead because
configuration spaces are generated only once before the algorithm starts. How-
ever, note that having too few door positions, e.g. only two door positions for a
node that should be connected to two neighbours, makes it significantly harder
for simulated annealing to connect neighbouring rooms and will often cause the
algorithm to need more iterations to generate a valid layout.

6 3

5

4

7 2 1

0

(a) Input graph (b) Building blocks with their door posi-
tions in red

0

1

2

3
4 5

6

7

(c) Generated layout

0

1

2

3

4

5

6

7

(d) Generated layout

Figure 7: Example of explicitly defined door positions.

2.2.3 Custom constraints
The original method enforces two basic constraints on the layout - no two rooms
may overlap and all neighbouring rooms must be connected by doors. We decided
to make the concept of constraints more general and customizable.

Our framework allows defining two types of constraints - the first type ensures
that the whole layout satisfies some conditions (total area, etc.) and the second
type operates on individual nodes (no overlap, etc.). Both types of constraints
can be either hard or soft. All hard constraints must be satisfied before a layout
can be accepted whereas soft ones are used to control the evolution by modifying
the energy, but do not invalidate the layout.

As an example of what we can do with custom constraints, we created one
that does not allow non-corridor rooms to share a common wall segment. We use
this constraint together with the two basic ones and even though it makes the

16

convergence rate slightly worse, we find such layouts more visually pleasing and
use it to generate layouts with corridors.

Note that even though this feature allows us to remove the basic two con-
straints and use completely different ones, it should not be used to do so. The
idea is to add constraints that will work well with the existing ones. We can,
for example, create a constraint that will make sure that the whole layout does
not exceed some defined boundaries or we can create an obstacle that we have to
avoid.

2.2.4 Different probabilities for room shapes
To make it easier for users to define room shapes, we added an option to au-
tomatically compute all rotations of a given room shape instead of doing it by
hand. However, it introduces a problem with some room shapes being present in
a layout more often than others. Suppose we want to generate a layout consisting
of square and rectangle rooms and that we wish to have an approximately same
number of both types of rooms. The issues is that a square has only one rotation
but a rectangle has two rotations. That means that shape perturbations will
choose randomly from three shapes and we will often end up with a layout that
has approximately two times more rectangles than squares.

To solve this problem, we could just make the algorithm to choose from a set of
four shapes where the square shape would be present twice. However, this is not
really a solution but rather a workaround. Instead, we decided to add explicit
probabilities to every room shape and when perturbing a shape of a node, we
pick a shape according to this probability distribution. Not only does it solve the
problem, but it also gives us more possibilities to control the look of generated
layouts.

Note that this feature is meant to allow game designers to slightly change
the look of produced layouts while not sacrificing the speed of the algorithm.
In its current implementation, we cannot guarantee that all generated layouts
will obey a defined probability distribution of room shapes. This is because the
probability distribution is only a guide for simulated annealing when perturbing
shapes of nodes. Another reason is that in the process of selecting the best initial
configuration for simulated annealing, we greedily choose the best position and
shape, and that may also go against the probability distribution. To overcome
these possible biases, we would have to define the distribution of room shapes as a
hard constraint and also change the strategy of selecting the initial configuration
of a chain. By doing so, we would make the convergence speed significantly
worse, which goes directly against the idea of keeping the feature as lightweight
as possible.

17

1

0 12

2

11

5

9

3 4

6

10

8

7

(a) Input graph (b) Building blocks

0

1

2

3

4

5

6

7

8

9

10

11

12

(c) Square has greater probability

0

1

2
3

4

5

6

7

8

9

1011

12

(d) Rectangle has greater probability

Figure 8: Different probabilities of individual room shapes.

2.3 Performance improvements
In this section, we will provide information about the most important speed
improvements of our algorithm. For each such improvement, we provide a bench-
mark to show how it influences the overall speed of the algorithm. All these
benchmarks demonstrate the difference between our initial implementation and
the implementation with only the respective improvement enabled. A comparison
of the original algorithm, our initial implementation and our final implementation
with all the improvements enabled can be seen in the Results section.

2.3.1 Simulated annealing parameters
When investigating how to improve the performance of simulated annealing, we
observed that most of the time is spent on runs that either fail to generate any-
thing or do not produce enough partial layouts. Such situations happen mostly
if the current chain cannot be laid out because of an unlucky positioning of pre-
vious chains (Figure 5). With this in mind, we tried to find ways to terminate
non-perspective runs as soon as possible.

The original algorithm uses a mechanism of random restarts. If we do not

18

accept any state for too long, we quit the current run of simulated annealing.
This can be seen in Algorithm 5 (purple lines with Position c and red lines).

The problem is that we can accept a lot of states without producing a single
valid layout. Generating valid layouts, however, is our main goal. Therefore, we
experimented with multiple approaches to random restarting. In Algorithm 5,
we present three different positions where it is decided if the current iteration
of simulated annealing is successful or not. Position c is the original approach
where we penalize iterations that fail to accept new states. Position a penalizes
iterations that fail to produce valid layouts. And finally Position b is the most
strict one and penalizes iterations that fail to produce valid layouts that are
different enough from already generated layouts.

We benchmarked all three possibilities and Position c came out as the best
one. We also tried various values of parameter m (trials per cycle) and decided
to set it to 100 from the original 500. Both these changes show us that, for
the overall speed of the method, it is important to try to aggressively terminate
non-perspective runs of simulated annealing.
1 Input : chain c , i n i t i a l layout s
2
3 procedure AddChain (c , s)
4 generatedLayouts ← Empty c o l l e c t i o n o f generated layou t s
5 failedAttempts ← 0
6 t ← t0 // Initial temperature
7
8 for i ← 1 , n do // n: # of cycles in total
9 Return i f enough failedAttempts

10 iterationSuccessful ← f a l s e
11
12 for j ← 1 , m do // m: # of trials per cycle
13 s’ ← PerturbLayout (s , c)
14
15 i f s’ i s v a l i d then
16 iterationSuccessful ← t rue (P o s i t i o n a)
17
18 i f s’ ∪ c i s f u l l l ayout then output i t
19 e l se i f s’ pas se s v a r i a b i l i t y t e s t
20 iterationSuccessful ← t rue (P o s i t i o n b)
21
22 Add s’ i n t o generatedLayouts
23 Return generatedLayouts i f enough extended lay out s computed
24 end i f
25 end i f
26
27 i f ∆E < 0 then // ∆E = E(s’) - E(s)
28 s ← s’
29 i t e r a t i o n S u c c e s s f u l ← t rue (P o s i t i o n c)
30 e l se i f rand () < e−∆E/(k∗t) then
31 s ← s’
32 i t e r a t i o n S u c c e s s f u l ← t rue (P o s i t i o n c)
33 e l se
34 Discard s’
35 end i f
36
37 end for
38
39 i f not iterationSuccessful then
40 failedAttempts++
41 end i f
42
43 t ← t ∗ ratio // Cool down temperature
44 end for
45 end procedure

Algorithm 5: Several approaches to random restarts.

19

Table 2 and Figure 9 show the speed difference between the initial implemen-
tation and the implementation containing the changes proposed in this section.
We achieved a significant speedup for all the input graphs.

Success Time IterationsInput rate avg/med avg/med

Initial implementation:
Figure 5 (15 vertices) 86% 5.55s/2.65s 323.54k/138.29k
Figure 8 (13 vertices) 100% 0.39s/0.31s 21.29k/17.72k
Figure 22 (9 vertices) 100% 0.21s/0.08s 13.29k/4.13k
Figure 23 (17 vertices) 100% 2.77s/1.98s 137.88k/103.09k
Figure 24 (41 vertices) 44% 20.12s/23.60s 821.29k/1002.13k
Figure 25 (21 vertices) 100% 2.05s/1.75s 146.07k/126.32k
Figure 26 (11 vertices) 100% 1.40s/1.05s 108.12k/78.62k
New approach:
Figure 5 (15 vertices) 100% 0.33s/0.20s 16.32k/9.54k
Figure 8 (13 vertices) 100% 0.05s/0.05s 1.60k/1.42k
Figure 22 (9 vertices) 100% 0.02s/0.02s 0.79k/0.74k
Figure 23 (17 vertices) 100% 0.25s/0.21s 9.24k/7.77k
Figure 24 (41 vertices) 99% 1.76s/0.97s 67.67k/32.89k
Figure 25 (21 vertices) 100% 0.13s/0.08s 8.30k/4.80k
Figure 26 (11 vertices) 100% 0.07s/0.05s 3.89k/3.21k

Table 2: Benchmark of our changes of simulated annealing. The benchmark
was run 100 times for each input graph. Success rate shows how often was the
algorithm able to generate a valid layout. We provide average and median values
for both the time and the number of iterations.

20

Figure 5
(15 vertices)

Figure 8
(13 vertices)

Figure 22
(9 vertices)

Figure 23
(17 vertices)

Figure 24
(41 vertices)

Figure 25
(21 vertices)

Figure 26
(11 vertices)

0

100

200

300

400

500

600

700

800

900

1000

1100

138.29

17.72 4.13

103.09

1002.13

126.32

78.62

9.54 1.42 0.74 7.77
32.89

4.8 3.21

ite
ra

tio
ns

(m
ed

ia
n,

th
ou

sa
nd

s)

Old approach New aprroach

Figure 9: Benchmark of our changes of simulated annealing. The plot shows the
median number of iterations from Table 2. Fewer is better.

2.3.2 Chain decomposition
One of the main ideas of the original algorithm is that the process of generating
layouts is incremental. A given input graph is decomposed into smaller sets of
nodes (called chains) and simulated annealing starts with an empty layout and
tries to extend it with one chain at a time. The quality of the chain decomposition
plays a crucial role in the speed of the whole algorithm.

Our first implementation of the decomposition simply followed the strategy
from the original algorithm that we described in the Incremental layout section.
However, it was not very successful.

After some experiments, we came up with Algorithm 6. The basic idea is still
the same - we compute faces of an arbitrary planar embedding of the input graph
and use them to form the base of the chain decomposition. We create the first
chain from the smallest face and then add the remaining faces in the depth-first
search ordering. The only face we exclude from this process is the largest one
(line 6). The motivation behind this is that the largest face usually contains too
many vertices to be considered to form a single chain. An extreme example of this
situation is any graph that is a tree, where the largest faces contains all vertices.
The consequence of doing that is that we will often end up with vertices that
are not contained in any face. The strategy for dealing with such vertices is that

21

we always pick one that neighbours with an already covered vertex2 and use it
as the first vertex of a random path from which we form a chain (lines 19 - 35).
We terminate the path as soon as we encounter a vertex that is contained in a
not yet processed face (lines 28 - 30). By doing so, we prioritize creating chains
from faces rather than from long paths, which proved to be a better approach.
Throughout the pseudocode, the depth of chains is used to guide the algorithm.
It leads to a more uniform distribution of chains and, in our experience, prevents
some cases of backtracking in the later phases of the incremental layout. This
implementation proved to be quite successful but we decided to further explore
how it behaves on various types of graphs.
1 Input : p lanar graph G
2
3 procedure DecomposeGraphIntoChains (G)
4 C ← empty l i s t o f cha ins
5 faces ← get f a c e s from a planar embedding o f G
6 Remove the l a r g e s t f a c e from faces
7 depth ← 0
8
9 repeat

10 i f C i s empty then
11 face ← the s m a l l e s t f a c e in faces
12 Remove face from faces
13 Add face to C , s e t i t s depth to depth
14 e l se i f the re i s a f a c e that ne ighbours with any chain in C then
15 face ← f a c e that ne ighbours with a chain with the s m a l l e s t depth in C
16 Remove face from faces
17 Add face to C , s e t i t s depth to depth
18 e l se
19 v ← uncovered ver tex that ne ighbours with a chain with
20 the s m a l l e s t depth in C
21 chain ← c r e a t e an empty l i s t o f v e r t i c e s
22 Add v to chain
23
24 while v has uncovered ne ighbours do
25 v_new ← pick a random uncovered neighbour o f v
26 Add v_new to chain
27
28 i f v_new i s conta ined in a not proce s s ed f a c e then
29 break
30 end i f
31
32 v ← v_new
33 end while
34
35 Add chain to C , s e t i t s depth to depth
36 end i f
37
38 depth++
39 u n t i l a l l nodes o f G are conta ined in some chain in C
40
41 return chain decompos it ion C
42 end procedure

Algorithm 6: Chain decomposition.

We observed that having a lot of small chains in a decomposition is quite bad,
mainly in a situation where we have to backtrack very often. The problem is
that a substantial amount of time is spent when initializing the process of laying
out the next chain. For example, it is quite time-consuming to find the best
initial configurations for nodes in the current chain (see the Simulated annealing
section).

In Figure 10a we can see a prototype of a problematic graph - note that it
2A vertex that is already contained in the decomposition.

22

has a lot of nodes with only a single neighbour. Figure 10b shows how would the
decomposition look like after the first iteration of the algorithm above. We can
see that we now have a lot of small acyclical components. The problem is that
the algorithm creates a new chain from every such component. And finally in
Figure 10c we can see that we will end up with a lot of small chains - which is a
situation we want to avoid.

(a) Input graph

0

0

0

(b) Partial chain decomposition

0

4

2

3

1 0

5

0

(c) Complete chain decomposition

Figure 10: Chain decomposition. Blue nodes are contained in a chain with a
corresponding number. (a) shows the input graph. (b) shows a partial chain
decomposition after the first iteration of Algorithm 6. (c) shows a complete
chain decomposition of the graph.

Our solution is quite simple. When we want to add a node to a chain, we
check if it does not create acyclical components with only one node. If it does,
we add all such components to the current chain. By doing so, we often do not
stick to the definition of a chain because we allow a node to have more than two
neighbours. However, this approach behaves, in our experience, better that the
original one.

Table 3 and Figure 11 show the speed difference between the initial implemen-
tation and the implementation containing the changes proposed in this section.
The most significant speedup was achieved on the input graphs found in Fig-
ure 24 and 25. That is because both these graphs contain several occurrences of
the pattern that caused the decomposition to have too many chains. The speed
of other inputs either improved or remained approximately the same.

We also provide a specialized implementation that can be used when generat-
ing layouts with corridors. If corridors are enabled, we have a graph with a new
node added between every two nodes that were neighbours in the original graph.
The problem is that corridor nodes are less important than non-corridors nodes

23

and we do not want them to deform our decomposition. Therefore, our goal is
to get a decomposition that has non-corridor nodes divided into the same chains
as if we decomposed the original graph without corridors. To do that, we first
remove all corridors from the graph, run our classic decomposition algorithm and
then add all corridors back to the corresponding chains.

Success Time IterationsInput rate avg/med avg/med

Initial implementation:
Figure 5 (15 vertices) 86% 5.55s/2.65s 323.54k/138.29k
Figure 8 (13 vertices) 100% 0.39s/0.31s 21.29k/17.72k
Figure 22 (9 vertices) 100% 0.21s/0.08s 13.29k/4.13k
Figure 23 (17 vertices) 100% 2.77s/1.98s 137.88k/103.09k
Figure 24 (41 vertices) 44% 20.12s/23.60s 821.29k/1002.13k
Figure 25 (21 vertices) 100% 2.05s/1.75s 146.07k/126.32k
Figure 26 (11 vertices) 100% 1.40s/1.05s 108.12k/78.62k
New approach:
Figure 5 (15 vertices) 98% 2.93s/.95s 174.00k/50.72k
Figure 8 (13 vertices) 100% 0.39s/.30s 21.45k/17.05k
Figure 22 (9 vertices) 100% 0.19s/0.08s 12.38k/4.20k
Figure 23 (17 vertices) 100% 1.72s/1.16s 83.65k/51.41k
Figure 24 (41 vertices) 98% 6.64s/5.06s 235.72k/190.77k
Figure 25 (21 vertices) 100% 0.20s/0.04s 10.21k/1.84k
Figure 26 (11 vertices) 100% 1.70s/0.77s 122.44k/54.24k

Table 3: Benchmark of our changes of chain decomposition. The benchmark
was run 100 times for each input graph. Success rate shows how often was the
algorithm able to generate a valid layout. We provide average and median values
for both the time and the number of iterations.

24

Figure 5
(15 vertices)

Figure 8
(13 vertices)

Figure 22
(9 vertices)

Figure 23
(17 vertices)

Figure 24
(41 vertices)

Figure 25
(21 vertices)

Figure 26
(11 vertices)

0

100

200

300

400

500

600

700

800

900

1000

1100

138.29

17.72 4.13

103.09

1002.13

126.32

78.62
50.72

17.05 4.2

51.41

190.77

1.84

54.24

ite
ra

tio
ns

(m
ed

ia
n,

th
ou

sa
nd

s)

Old approach New aprroach

Figure 11: Benchmark of our changes of chain decomposition. The plot shows
the median number of iterations from Table 3. Fewer is better.

2.3.3 Lazy evaluation
In each run of simulated annealing, we try to generate multiple layouts in case we
need to backtrack later. But what if we are lucky and do not need to backtrack?
In that case, we have wasted a lot of time by computing something that is not
really needed.

We can imagine that the algorithm builds a tree where each node represents a
generated partial layout and all children of a node are layouts that were generated
from the parent node. That means that the depth of a node corresponds to the
number of its already laid out chains (with the root node being in the depth 0).
With this representation, the goal of the algorithm is to find a node that is in a
depth that equals to the total number of chains.

Figure 12a depicts a run of the original algorithm on an input graph that
has 4 chains. All nodes in the tree correspond to a layout that was generated in
simulated annealing. The green node is a final layout that was generated. Blue
nodes are nodes that were not yet expanded. All nodes are numbered to represent
the order in which they were generated.

The problem is that the original algorithm always generates all children of a
node before moving to another node. Figure 12a shows that in order to generate
a valid full layout, we had to generate 5 partial layouts that were never used. In

25

fact, the original algorithm generates up to 10 layouts from every node in the
tree and we would, therefore, often end up with significantly more than 5 unused
layouts.

Fortunately, C# makes it quite easy to transform any algorithm to a lazy
one with the yield return keyword. Instead of generating all children nodes at
once, we save the state of the current run of the algorithm and resume it later
only if it is really needed. Figure 12b shows a run of our algorithm after this
modification.

1

3 42

6 75 13 1412

9 108 11 16 1715

18

(a) Without lazy evaluation.

1

102

7 83 11

5 64 9 12

13

(b) With lazy evaluation.

Figure 12: Tree representation of the generation process. Each node represents a
generated layout. (a) shows the original method and (b) shows our method with
lazy evaluation.

Table 4 and Figure 13 show the speed difference between the initial implemen-
tation and the implementation containing the changes proposed in this section.

26

The most significant speedup was achieved on quite simple input graphs. This is
caused by the fact that on these inputs the algorithm almost never backtracks.
Therefore, every partial layout, that is generated and not used, has a great impact
on the overall speed.

Success Time IterationsInput rate avg/med avg/med

Initial implementation:
Figure 5 (15 vertices) 86% 5.55s/2.65s 323.54k/138.29k
Figure 8 (13 vertices) 100% 0.39s/0.31s 21.29k/17.72k
Figure 22 (9 vertices) 100% 0.21s/0.08s 13.29k/4.13k
Figure 23 (17 vertices) 100% 2.77s/1.98s 137.88k/103.09k
Figure 24 (41 vertices) 44% 20.12s/23.60s 821.29k/1002.13k
Figure 25 (21 vertices) 100% 2.05s/1.75s 146.07k/126.32k
Figure 26 (11 vertices) 100% 1.40s/1.05s 108.12k/78.62k
With lazy evaluation:
Figure 5 (15 vertices) 88% 4.43s/2.51s 295.75k/141.64k
Figure 8 (13 vertices) 100% 0.14s/0.03s 8.49k/0.51k
Figure 22 (9 vertices) 100% 0.06s/0.02s 4.14k/0.16k
Figure 23 (17 vertices) 100% 2.21s/1.93s 109.87k/96.73k
Figure 24 (41 vertices) 40% 19.58s/23.43s 817.63k/1001.60k
Figure 25 (21 vertices) 98% 0.43s/0.05s 25.66k/0.35k
Figure 26 (11 vertices) 100% 0.73s/0.26s 56.40k/25.11k

Table 4: Benchmark of using and not using lazy evaluation. The benchmark
was run 100 times for each input graph. Success rate shows how often was the
algorithm able to generate a valid layout. We provide average and median values
for both the time and the number of iterations.

27

Figure 5
(15 vertices)

Figure 8
(13 vertices)

Figure 22
(9 vertices)

Figure 23
(17 vertices)

Figure 24
(41 vertices)

Figure 25
(21 vertices)

Figure 26
(11 vertices)

0

100

200

300

400

500

600

700

800

900

1000

1100

138.29

17.72 4.13

103.09

1002.1

126.32

78.62

141.64

0.51 0.16

96.73

1001.6

0.35
25.11

ite
ra

tio
ns

(m
ed

ia
n,

th
ou

sa
nd

s)

Old approach New aprroach

Figure 13: Benchmark of using and not using lazy evaluation. The plot shows
the median number of iterations from Table 4. Fewer is better.

28

3. Framework
One of the goals of this thesis is to provide a framework that will allow pro-
grammers to replace or extend individual components of our layout generator. In
this section, we will first analyze needs of the framework and then describe its
architecture and used technologies.

3.1 Analysis

3.1.1 Extensibility
One of the main goals of the framework is to be extensible. The minimum re-
quirement is that a programmer should be able to replace or extend individual
building blocks of our method. It would be also convenient to provide an infras-
tructure that could be used to implement similar methods of procedural layout
generation.

The framework should support:

• replacing the stochastic method that is used to lay out individual chains

• changing the strategy of chain decomposition

• changing the process of generating configuration spaces of pairs of nodes

C# makes it possible to write such extensible code, primarily by using inter-
faces, inheritance and generics. The problem with generics is that types with too
many generic parameters are hard to be used by programmers, especially if there
are multiple constraints on the parameters.

Among all the decisions of what is worth being implemented as a generic
type, the hardest one was whether we should support switching between integer
and real coordinates. The main goal of this thesis is to implement an algorithm
that will generate tile-based layouts, which is equivalent to using integer coordi-
nates. However, most components of the algorithm do not care about the type
of coordinates and could be directly used in both contexts.

In the end, we decided to support only integer coordinates. Supporting both
types of coordinates would, in our opinion, make a lot of code unnecessarily
complex and unreadable.

3.1.2 Input format
One of the goals of the framework is to provide a GUI for the layout generator.
We want the GUI to be controlled by config files because the GUI itself would
need to be too complex if it had to support defining level connectivity graphs and
creating room shapes.

There exist a lot of formats for config files, popular ones being for example
JSON, YAML or XML. We want the format to be easily writable and readable
by human and there must also exist a .NET library that can parse it.

We decided to use YAML format because it fulfils all mentioned requirements.
The syntax is, in our opinion, quite simple but also able to represent complex

29

types. It is also very readable and there are several parsers implemented for
.NET. We chose to use the YamlDotNet library[2] because it seems to be actively
maintained and supports everything we need.

3.1.3 Output format
The framework should support both generating layouts directly in a game and
pregenerating them for later use. In the former case, we will probably consume
the runtime representation of generated layouts, whereas in the latter case we
must be able to somehow store the output.

In contrast with the input format, we do not have to care too much about
human readability of the format. Therefore, we decided to use JSON because it
is quite well-known and supports all needed data structures. There is also a very
popular .NET library called Json.NET[13] that supports both serialization and
deserialization of JSON files.

3.1.4 Planar graphs
To decompose a graph into chains, we need to check if the graph is planar and
then construct a planar embedding to get its faces. Several efficient algorithms
exist for both the planarity check and constructing a planar embedding.

In our method, we do not need any custom behaviour from these algorithms
and therefore finding a third-party library seems to be the right choice. Unfortu-
nately, there is no usable .NET library that implements both algorithms. Another
possibility is to use a C++ library and call it from C# using the P/Invoke mech-
anism.

We decided to use the C++ Boost[3] library because it is peer-reviewed,
portable and provides both needed algorithms.

3.1.5 Polygon geometry
To compute configuration spaces, we must be able to do basic operations with
polygons. These operations include computing whether two polygons intersect or
whether they share a common part of a wall segment. For this purpose, authors
of the original method use Clipper[10] library that is also available as a .NET
library.

We decided to implement our own polygon operations because our method
supports only rectilinear polygons which are much easier to implement. And we
can also optimize it for our needs. For example, it lets us connect room shapes
by doors instead of working only with sides of a polygon.

3.1.6 Benchmarks
One of the goals of this thesis is to improve speed of the original algorithm.
To compare speed after various modifications, we must implement an automated
benchmarking framework. Moreover, because our method uses probabilistic tech-
niques, we must be able to run the algorithm multiple times to get meaningful
results.

30

3.2 Used technologies
The majority of the framework is implemented in C# on .NET platform. The
main advantage of this technology stack is that we can use the generator directly
in Unity[19] which is one of the most popular platforms to develop games on[18].
It also allows us to quickly develop a simple GUI using Windows Forms[12] library.
A small portion of the library is written in C++ to delegate some tasks to native
C++ Boost library[3].

Used 3rd party libraries:

• Boost[3] - Planarity checks and planar embeddings of graphs

• Newtonsoft.JSON[13] - JSON serialization

• nUnit[15] - Unit testing

• RangeTree[4] - Range tree data structure

• YamlDotNet[2] - Yaml deserialization

3.3 Solution structure
The solution is divided into several projects. The most important one is the
MapGeneration project that contains the layout generator itself.

• BoostWrapper - C++ wrapper for the Boost library[3]. Handles planar
embeddings of graphs and planarity checks.

• GUI - GUI for the layout generator. Controlled by config files. Built on the
Windows Forms library[12].

• GeneralAlgorithms - General purpose algorithms and data structures that
are used in the generator.

• GeneralAlgorithms.Tests - Unit tests for GeneralAlgorithms.

• MapGeneration - DLL project that contains the layout generator with all
its building blocks.

• MapGeneration.Interfaces - Interfaces for MapGeneration.

• MapGeneration.Tests - Unit tests for MapGeneration.

• Sandbox - Executable application that can be used to do benchmarks or
play with the generator.

31

3.4 Data structures
In this section, we will describe the most important data structures that are used
throughout the framework. We will start with the data structures that are used
to describe the input for the generator, then continue with the ones that are used
in the generation process itself and finish the section with the representation of
the output. The framework contains implementations of all interfaces mentioned
in this section.

3.4.1 IMapDescription interface
The IMapDescription interface represents a description of a layout that we want
to generate. The interface itself contains only a method that returns the under-
lying level connectivity graph because that is the only general information that
is needed from the interface. Other information, e.g. a list room shapes and
their probabilities, are retrieved directly from implementing classes and used for
example in a configuration spaces generator.

<<Class>>
MapDescription
with generic TNode

+ AddRoom(TNode) : void
+ AddPassage(TNode, TNode) : void
+ AddRoomShapes(RoomDescription, ...) : void
+ GetGraph() : IGraph<int>
+ GetRoomShapes() : ...

<<Interface>>
IMapDescription
with generic TNode

+ GetGraph : IGraph<TNode>

Figure 14: UML diagram of the IMapDescription interface and the
MapDescription class.

3.4.2 ILayout interface
The ILayout interface represents a layout that is used in the generation process.
The layout contains a reference to the input graph and information about con-
figurations of all nodes in the graph. The interface can also be extended with the
IEnergyLayout interface that adds information about the energy of the layout
which is used to control the evolution process.

It is important to make sure that the methods for getting and setting config-
urations (Figure 15) are as fast as possible because these methods are called very
frequently. Typical implementation would use a hash table with keys being nodes
of the graph. Nevertheless, hash table access can be quite slow compared to an
array access. Therefore, our provided implementation of the interface works only
with nodes that are integers. By doing so, we can implement these getters and
setters with a simple array access which is really fast. However, that does not
mean that we do not support different types of nodes. The trick is to first map
all nodes to a sequence of integers, evolve the layout with integer nodes and then
map these integers back to the original type when returning the result.

32

<<Interface>>
ILayout

with generic TNode, TConfiguration

+ Graph: IGraph<TNode>

+ GetConfiguration(TNode): TConfiguration
+ SetConfiguration(TNode, TConfiguration): void
+ RemoveConfiguration(TNode) : void
+ GetAllConfigurations() : IEnumerable<TConfiguration>

<<Interface>>
IEnergyLayout

with generic TNode, TConfiguration, TEnergyData

+ EnergyData: TEnergyData
Extends

Figure 15: UML diagram of the ILayout interface and the IEnergyLayout inter-
face.

3.4.3 IConfiguration interface
The IConfiguration interface represents the configuration of a node in the in-
put graph. The configuration consists of a shape of the node, its position and
a boolean information whether the configuration is valid. In its basic version,
all fields of the interface are readonly. This is because several parts of our algo-
rithm should not be able to modify any configurations. IMutableConfiguration
interface must be used to gain access to the setters. The interface can also be
extended with the IEnergyConfiguration interface which adds a field with data
about the energy of the node. The energy is used to control the evolution process
and to determine whether the configuration is valid or not.

In Figure 16 we can see that the interface contains a generic argument called
TShapeContainer. This allows us to pass additional information together with
the shape. We use it to pass an integer id of the shape which we use to avoid
hash tables when working with polygons.

<<Interface>>
IConfiguration

with generic TShapeContainer

+ Shape: GridPolygon
+ ShapeContainer: TShapeContainer
+ Position: IntVector2
+ IsValid: bool

<<Interface>>
IMutableConfiguration

with generic TShapeContainer

adds setters to properties
Extends

<<Interface>>
IEnergyConfiguration

with generic TShapeContainer, TEnergyData

+ EnergyData: TEnergyData

Extends

Figure 16: UML diagram of the IConfiguration interface, the
IMutableConfiguration interface and the IEnergyConfiguration inter-
face.

3.4.4 IMapLayout and IRoom interfaces
The IMapLayout interface is a representation of a layout that is returned by the
layout generator. In contrary to ILayout interface, this representation is meant
to be convenient for programmers rather than optimized to be as fast as possible.
It contains a list of rooms that are represented by the IRoom interface. The IRoom
interface shares the same philosophy and contains all information that would be
useful when using the library in a game.

33

<<Interface>>
IMapLayout

with generic TNode

+ Rooms: IEnumerable<IRoom<TNode>>

<<Interface>>
IRoom

with generic TNode

+ Node: TNode
+ Shape: GridPolygon
+ Position: IntVector2
+ IsCorridor: bool
+ Doors: IList<IDoorInfo<TNode>>

<<Interface>>
IDoorInfo

with generic TNode

+ Node: TNode
+ DoorLine: OrthogonalLine

Figure 17: UML diagram of the IMapLayout interface, the IRoom interface and
the IDoorInfo interface.

3.5 Algorithms
In this section, we will describe the most important algorithms that are used
throughout the framework. We will start with a high-level description of the lay-
out generator itself and then continue with descriptions of individual algorithms
that are used in the generator.

3.5.1 ChainBasedGenerator class
The ChainBasedGenerator class is the layout generator itself. The class contains
almost no logic - it just connects individual building blocks of the whole algorithm.
For each such building block, we have a setter method that is used to inject it
into the generator. By doing so, we get a very flexible architecture and can easily
extend the algorithm without modifying the code of the generator itself.

In Figure 18 we can see a flowchart describing the overall flow and responsi-
bilities of individual building blocks. The IGeneratorPlanner part of the figure
is very simplified in order to show the flow of the algorithm - see the actual
implementation in the IGeneratorPlanner interface section.

The generator is composed of components which are represented by individual
interfaces. All these components are therefore easily replaceable.

Individual components

• IChainDecomposition - decomposes a given input graph into chains

• ILayoutEvolver - adds another chain to a given layout

• ILayoutOperations - locally perturbs a layout and updates its energy

• IConfigurationSpaces - implements the concept of configuration spaces

• IGeneratorPlanner - decides which layouts should be further expanded

• ILayoutConverter - converts a layout to a representation that is more
convenient for users of the library

3.5.2 IChainDecomposition interface
The IChainDecomposition interface represents an algorithm that is used to de-
compose a given planar graph into chains. A description of the algorithm used
in our implementation can be found in the Algorithm section.

34

Start

End

IChainDecomposition

Decompose a
given graph
to chains

IGeneratorPlanner

Add the initial
layout to the

queue

Take the next
layout from
the queue

Is any layout in
the queue?

Add both
layouts back
to the queue

Is it a full
layout?

Enough layouts
generated?

Clear the
queue

Yes

No

Succesfully
generated the next

layout?

No

Yes

No

No

Yes

Yes

ILayoutEvolver

Try to add
next chain to
the layout

ILayoutEvolver

Create an
initial layout
with the first

chain

ILayoutConverter

Convert
layouts from
internal

representation

Output layouts

Figure 18: Flowchart of the ChainBasedGenerator class.

3.5.3 ILayoutEvolver interface
The ILayoutEvolver interface represents an algorithm that is used to evolve
valid layouts from a given initial layout. Together with the initial layout, the
algorithm also receives a collection of nodes that it is allowed to perturb to find
a valid layout.

Layout evolvers should terminate as soon as possible if they find themselves
in a situation where it is unlikely to quickly produce valid layouts. That means,
that although there is a parameter that specifies how many layouts should be
generated, it is possible to return less layouts or even no layouts at all. This is
because the initial layout may be in a state where it is very hard to lay out the
current chain without modifying nodes from already laid out chains. In this case,
we want to quickly terminate the process and move to a different initial layout.

The main method of the interface is prepared to be implemented lazily. The
return type is IEnumerable<TLayout> which can be easily combined with the
yield return keyword to create a lazy implementation of the evolver. Lazy
evaluation can have a huge impact on the overall convergence speed because
generator planners (see the IGeneratorPlanner interface section) are able to make
optimizations without generating more partial layouts than they really need.

Layout evolvers should not directly modify the layout or change its energy.
Instead, we advise to use the ILayoutOperations interface. This is because we
want to separate the evolution process itself from the logic of polygon manipu-
lation and energy computing. By doing so, we can easily implement almost any
evolution technique in its general form without worrying about in which context
it will be used.

SimulatedAnnealingEvolver class

We provide an implementation of simulated annealing as described in Simulated
annealing section and in Simulated Annealing Tutorial[8].

35

Extensibility

It would be interesting to compare simulated annealing to other optimization
algorithms. These should be relatively easy to implement because they can use
any implementation of the ILayoutOperations interface to handle layout per-
turbations and energy computing.

3.5.4 IConfigurationSpaces interface
The IConfigurationSpaces interface represents a data structure that holds con-
figuration spaces as described in the Configuration spaces section. The interface
provides methods to check whether a configuration of a node is in a configura-
tion space of another node; to get a random point in an intersection of multiple
configuration spaces; to get a random shape for a node and other.

ConfigurationSpaces class

We provide an implementation that can handle different probabilities for individ-
ual room shapes and different building blocks for individual nodes.

In our first implementation of this class, there were a lot of hash tables with
keys being individual room shapes. The problem is that configuration spaces
are used very frequently and indexing with polygon room shapes is much slower
than a simple array access. Therefore, we decided to assign an integer alias to
each room shape and replace all hash tables with simple arrays. By doing so, we
significantly improved the speed of all operations on configuration spaces.

ConfigurationSpacesGenerator class

The ConfigurationSpacesGenerator class is used to create an instance of the
ConfigurationSpaces class. It computes configuration spaces of all pairs of
room shapes.

If we want two polygons to be connected by doors, we must make them touch
along a common parallel edge. We pick a reference point on one of these poly-
gons and as this polygon slides along this edge, the reference point traces a line
segment. By repeating this process for each pair of parallel edges, we get a set of
line segments which forms the configuration space of the two polygons (Figure 2).

If we want to support defining explicit door positions, we have to slightly
change this procedure. Instead of working directly with edges of polygons, we
replace them with specified door lines of each polygon. In Figure 7b we can see
an example of such door lines (in red).

3.5.5 ILayoutOperations interface
The ILayoutOperations interface provides methods to locally perturb a given
layout and update its energy. The basic idea of layout perturbation can be seen
in Algorithm 3.

36

Energy computing

When evolving a layout, updating its energy is probably the most computationally
expensive operation. It involves checking if no two nodes overlap and that a node
is contained in the configuration spaces of all its neighbours. Both these checks
need to use a polygon geometry and are not very cheap. As a result, the speed of
the stochastic method is heavily influenced by how fast we can perturb a layout
and update its energy.

The most straightforward way to compute the energy of a layout is to iterate
through all pairs of nodes and check all constraints. This will, however, result in
a quadratic time algorithm (with respect to the number of nodes). Instead, we
should exploit the fact that we are always perturbing only one node at a time.

The first thing we must do to get a linear time algorithm is to store energies
of individual nodes and compute the overall energy of a layout as a sum of these
energies. If we stored only the total energy of a layout, we would probably
always end up with a quadratic time algorithm as we would have to recompute
everything. The second thing to do is to compute how the energy of each node
changes with respect to the perturbed node, which can be done in linear time.
After doing that, it is only a matter of applying the change to the stored energy
of each node to get an updated energy value.

This optimization gives us a significant speedup and can be found in the
LayoutOperationsWithConstraints class.

Constraints

We have two main constraints on a layout - no two nodes may overlap and all
neighbouring nodes must be connected by doors. However, we decided not to
hardcode them directly in the algorithm. Instead, we created two interfaces -
INodeConstraint and ILayoutConstraint - that allow us to define any number
of custom constraints without modifying the layout generator itself. The first
interface defines conditions for individual nodes, e.g. not overlapping other nodes.
If these conditions are not satisfied, positive energy is added to that node. The
second interface defines constraints for the layout itself, e.g. not exceeding a
user-defined area. And similarly, positive energy is added to the layout if such
constraint is not satisfied.

It is also important to note that the energy of a layout is not a factor when
deciding if the layout is valid. Instead, the layout is valid if and only if no
registered constraint explicitly states that the layout is invalid. This allows us to
define both hard and soft constraints. Hard constraints invalidate the layout and
add positive energy whereas soft constraints only manipulate the energy, thus
making it possible to further control the evolution process.

3.5.6 IGeneratorPlanner interface
In the Lazy evaluation section, we described that the layout generator implicitly
builds a tree-like structure (Figure 12) with nodes being valid partial layouts and
children nodes being partial layouts generated from the parent layout (by adding
the next chain). The IGeneratorPlanner interface represents an algorithm that
is used to control how is the tree built.

37

BasicGeneratorPlanner class

We provide a basic implementation of the IGeneratorPlanner interface that
behaves exactly as described in the Lazy evaluation section. It always picks a
node on the deepest level of the tree (the one with the maximum number of
chains) and tries to expand it.

We limit the maximum number of layouts that can be generated from a single
node. If a node reaches that limit, we no longer consider it when choosing nodes
to expand. The reason for this is that we need to explore the space of possible
layouts and not just exploit already generated layouts. The limit is now set to
be 5 layouts from every parent layout.

Extensibility

This interface provides various possibilities to extend the behaviour of the gen-
erator. For example, it is possible to adaptively change the maximum number of
layouts that are generated from every node. Or we can create a more sophisti-
cated strategy of choosing which node should be extended. And this is also the
place to make the algorithm multithreaded by building the tree simultaneously
on multiple threads.

3.5.7 ILayoutConverter interface
The ILayoutConverter interface represents an algorithm that is primarily used
to convert layouts from a representation that is used in the layout generator to a
representation that is easily consumed by users of the library.

The framework contains an implementation that can convert layouts from the
ILayout interface to the IMapLayout interface (both interfaces were discussed
in the Data structures section). The conversion mostly consists of a computa-
tion of door positions of individual rooms because the internal representation
only guarantees that valid door positions can be found but they are not stated
explicitly.

3.6 GUI
The GUI is implemented as Windows Forms application. Its description can be
found in the User documentation.

38

(a) Main settings.

(b) Progress of the generator and export of generated layouts.

Figure 19: Screenshost of the GUI. A description of its individual controls can
be found in the User documentation.

39

4. Results
Throughout the thesis we demonstrate how our algorithm handles various input
graphs and building blocks sets. Our method is able to process complex graphs
with multiple interconnected cycles (Figure 23) and it also successfully tackles
large graphs (Figure 24). To demonstrate that our method can deal with layouts
that are usually found in video games, we chose 2 maps from popular games and
used their level connectivity graphs as an input to our algorithm (Figure 25 and
Figure 26). For all these inputs, our method was able to quickly produce multiple
diverse layouts.

4.1 Benchmarks
Since we use a stochastic method, results are often heavily influenced by the seed
of the random numbers generator that is used in the algorithm. That means that
the time needed to generate a layout will usually be quite different for individual
runs of the algorithm. To evaluate the speed of our method, all benchmarks in
this thesis are obtained by running our algorithm 100 times on each input graph,
with different randomization seeds.

We measure the time that is needed to generate a layout and the number of
iterations, i.e. how many times we need to perturb a layout to generate a full
layout. For both these statistics, we provide average and median values because
the average can be influenced by outlier runs. We also record the success rate
which is defined as the number of runs that managed to generate a layout in less
than 1 million iterations. We force the generator to stop if it exceeds this limit.

In Table 5, you can see a benchmark1 of our method when used on input
graphs presented in this thesis. Note that our method was able to generate all
layouts without corridors in under one second. And all layouts with corridors
in under two seconds. Our algorithm is, therefore, quick enough to serve as an
inspiration for game designers or to generate layouts directly in a game.

In the Performance improvements section, we described our most important
performance improvements and demonstrated their impact on the overall speed
of our algorithm. For comparison, Table 6 (bottom) shows a benchmark of our
initial implementation without all major improvements. This implementation can
be considered to be a straightforward implementation of the original method in
a context of tile-based maps. And for completeness, Table 6 (top) shows results
of the original method from Ma et al. These results were obtained by bench-
marking their implementation of the method that can be found on Github[11].
Even though the original implementation works with real coordinates, we can use
our tile-based building blocks because rectilinear polygons represent a subset of
general polygons. The only difference is that the output will be real-based.

To put our changes to perspective, all mentioned implementations are shown
side by side in Figure 20. You can see that with our improvements, in a context
of tile-based maps, our algorithm is over 100 times faster than the original one
from Ma et al.

1All benchmarks in this thesis were done with the building blocks from Figure 21, on a
2.7GHz CPU (the algorithm runs on a single core).

40

Figure 5
(15 vertices)

Figure 8
(13 vertices)

Figure 22
(9 vertices)

Figure 23
(17 vertices)

Figure 24
(41 vertices)

Figure 25
(21 vertices)

Figure 26
(11 vertices)

0

100

200

300

400

500

600

700

800

900

1000

1100

1000

163

28

199

1000

144

199

138

7.6 3.14

68.81

813

126

51

3.2 0.26 0.02 2.78 10.1
0.17 1.66

ite
ra

tio
ns

(m
ed

ia
n,

th
ou

sa
nd

s)

Original approach Initial implementation Final implementation

Figure 20: Comparison of the original method, our initial implementation and
our final implementation. The plot shows the median number of iterations from
Table 5 and Table 6. Fewer is better.

41

Success Time IterationsInput rate avg/med avg/med

Without corridors:
Figure 5 (15 vertices) 100% 0.18s/0.09s 5.50k/3.20k
Figure 8 (13 vertices) 100% 0.02s/0.01s 0.49k/0.26k
Figure 22 (9 vertices) 100% 0.00s/0.00s 0.12k/0.02k
Figure 23 (17 vertices) 100% 0.12s/0.08s 4.15k/2.78k
Figure 24 (41 vertices) 100% 0.62s/0.36s 15.28k/10.10k
Figure 25 (21 vertices) 100% 0.01s/0.00s 0.29k/0.17k
Figure 26 (11 vertices) 100% 0.05s/0.03s 2.83k/1.66k
With corridors:
Figure 5 (15 vertices) 100% 0.35s/0.16s 4.57k/2.50k
Figure 8 (13 vertices) 100% 0.05s/0.04s 1.01k/0.69k
Figure 22 (9 vertices) 100% 0.01s/0.01s 0.28k/0.08k
Figure 23 (17 vertices) 100% 0.87s/0.54s 17.85k/11.55k
Figure 24 (41 vertices) 100% 1.61s/1.35s 20.16k/16.90k
Figure 25 (21 vertices) 100% 0.04s/0.02s 0.90k/0.39k
Figure 26 (11 vertices) 100% 0.12s/0.07s 3.78k/2.24k

Table 5: Benchmark of our final implementation of both our modes. The bench-
mark was run 100 times for each input graph. Success rate shows how often was
the algorithm able to generate a valid layout. We provide average and median
values for both the time and the number of iterations.

Figure 21: Building blocks used for benchmarks.

42

Success Time IterationsInput rate avg/med avg/med

Original approach:
Figure 5 (15 vertices) 40% 38.00s/33.00s 667k/1000k
Figure 8 (13 vertices) 80% 14.70s/2.25s 62k/163k
Figure 22 (9 vertices) 100% 0.56/0.07s 16k/28k
Figure 23 (17 vertices) 40% 19.00s/46.00s 400k/199k
Figure 24 (41 vertices) 8% 50.00s/55.00s 920k/1000k
Figure 25 (21 vertices) 60% 30.00s/24.00s 500k/144k
Figure 26 (11 vertices) 100% 10.00s/20.00s 183k/199k
Our initial implementation:
Figure 5 (15 vertices) 86% 2.77s/1.10s 323.54k/138.29k
Figure 8 (13 vertices) 100% 0.30s/0.16s 14.90k/7.60k
Figure 22 (9 vertices) 100% 0.18s/0.06s 11.56k/3.14k
Figure 23 (17 vertices) 100% 2.03s/1.41s 96.65k/68.81k
Figure 24 (41 vertices) 58% 9.37s/10.28s 764.15k/813.83k
Figure 25 (21 vertices) 100% 1.93s/1.83s 132.33k/126.41k
Figure 26 (11 vertices) 100% 1.21s/0.73s 87.96k/51.00k

Table 6: Top table shows a benchmark of the implementation of the original
method. Bottom table shows a benchmark of our initial implementation before
we applied the speedups proposed in this thesis. Success rate shows how often
was the algorithm able to generate a valid layout. We provide average and median
values for both the time and the number of iterations.

43

3

0

2

1

4

5

7

8

6

0

1

2

3 4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7 8

0
1

2

3
4

5

6
7

8

01

2 3
4

5
6

7

8

0

1
2

3

4

5

6

78

Figure 22: Layouts generated from a simple input graph with 9 vertices. Various
sets of building blocks are used.

44

13

10

3

4 5

0

1 2

11

12

7

8

9

14

15 16

6

0

1

2

3

4

5 6

7

8

9

10
11

12

13

14

15
16

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0
1

2

3

4
5

6

7

8

9 10
11

1213

14

15

16

01
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0

123

4
5

6

7
8

9

10

11

12

13
14

15

16

0

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16

Figure 23: Layouts generated from a complex graph with multiple interconnected
cycles. Various sets of building blocks are used.

45

3

6

11 12

14 15

16

7

13

4 8 5

2 0 1

9 10 14 15

26 25

31 32 33

35

40

38

34

37 39

36

23 24 21

30

22

29 28

27

16 17

0

1

2

3

4

5

6 7

8

9

10

11

12

13

14
15

16 17

18

19

20

21 22

23
24

25

26

27

28
29

30

31

32

33

34

35
36

37

38

39

40

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30
31

32
33

34

35

36

37

38
39

40

0

1 2

3

4

5

6

7

8

9

10

11

12
13

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35
36

37

38 39

40

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 21

2223

24

25

26

27 28

29

30
31

32

33

34

35

36

37

38

39
40

0 1
2

3

4

5

6
7

8
9

10

1112

13
14

15

16

17

18

19

20

21

22

23

24

25

26

27

2829

30

31

3233

34 35

36

37

38

39

40

Figure 24: Layouts generated from a large graph with 41 vertices. Various sets
of building blocks are used.

46

1

4 2

3

5 6

8 7

9

0

14

16 17 21

18 20 19

15

13

10 11

12

0

1

2

3

4

5

6
7

8

9

10

11

12

1314

15
16

17

18

19

20

21

0

1

2

3
4

5

6

7

8

9

10

11
12

13

14
15

16

17
18

19

20

21

0

1

2
3

4

5

6

7
8

9

10

11
12

13

14

15

16

17 18
19

20

21

0

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

16

17

18

19

20

21

Figure 25: Layouts generated from a graph that is based on a map from Dragon
Age: Origins. We tried to choose room shapes that are similar to those found in
the map.

47

0

1 2 3 4

5

6 7 8

9 10

0

1 2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6
7

8

9

10

0 1

2

3
4

5

6

7

8

910

0

1
2

3

45
6

7

8

9

10

0

1

2
34

5

6

7 8

9

10

0

1

2

3

4

5

6
7

8

9

10

Figure 26: Layouts generated from a graph that is based on a map from World
of Warcraft. A set of simple rectangular building blocks is used.

48

Conclusion
We presented an algorithm for procedural generation of tile-based maps from
user-defined building blocks. It takes a level connectivity graph as an input and
produces layouts that satisfy connectivity constraints imposed by the graph. Our
method is based on the previous work of Ma et al. They first decompose the
input graph to smaller subgraphs and then use simulated annealing to lay them
out one at a time.

The original method was enhanced with several new features. Users can now
easily specify door positions of building blocks and explicitly set the probability
distribution of choosing individual room shapes. We also presented a method to
quickly generate layouts with rooms connected by short corridors as usually found
in dungeon levels. Moreover, we proposed several performance improvements,
including tweaks of simulated annealing and smarter decomposition of the input
graph.

The resulting application consists of two parts. The first part is a C# library
with the layout generator itself. It is implemented as a framework that lets pro-
grammers easily extend or replace individual components of the algorithm. The
second part is a simple GUI that is controlled with config files written in YAML.
It allows game designers to use the generator without any prior programming
knowledge.

We demonstrated that our method can handle various input graphs and build-
ing blocks sets. Because our method is stochastic, we benchmarked the speed of
the generator by running it multiple times for every input. Results of these bench-
marks showed that, on average, our algorithm is over 100 times faster then the
original one, and able to generate a layout in under one second for all our inputs
in the basic mode without corridors. This makes our algorithm fast enough to be
used directly in a game or as an inspiration for game designers.

Future works
Unity plugin

Even though we tried to make the API of the generator user-friendly, the process
of creating level connectivity graphs and room shapes can still be quite time-
consuming. It would be, therefore, convenient to create a plugin for Unity (or
any other game engine) that would connect our library directly to the game
engine. It would allow users to draw input graphs in a GUI and possibly even
design room shapes and assign materials to walls, floor, etc. After creating a map
description, the plugin would be used to spawn the map in the game.

Designing new constraints

When implementing new features, we always tried to create a simple API and find
ways to keep the convergence rate of the generator as good as possible. Authors
of the original paper demonstrated that the algorithm can be used to generate
layouts spanning multiple floors and layouts that must avoid intersecting user-
defined obstacles. Even though we could possibly come up with a proof of concept

49

of such constraints, there was not enough time to think it through and implement
it properly.

Speed improvements

Even though we managed to significantly speed up the original method, there is
always a room for improvements. One possibility is to try a different stochastic
method for evolving layouts. Another possibility is to improve the generator
planner - either by making it multithreaded or by applying some heuristic to
control which layouts are expanded.

50

Bibliography
[1] M. Armstrong, S. Hurley, and S. Palmer. Borderlands, 2009.

[2] A. Aubry. YamlDotNet. https://github.com/aaubry/YamlDotNet, v4.3.

[3] Boost C++ libraries. https://www.boost.org/, v1.66.0.

[4] M. Buchetics. RangeTree. https://github.com/mbuchetics/RangeTree,
v1.0.

[5] M. Chrobak and T. Payne. A linear-time algorithm for drawing a planar
graph on a grid. Information Processing Letters, 54(4):241–246, 1989.

[6] J. Dormans and S. Bakkes. Generating missions and spaces for adaptable
play experiences. IEEE Transactions on Computational Intelligence and AI
in Games, 3(3):216–228, 2011.

[7] G. Gygax and D. Arneson. Dungeons & Dragons, 1974.

[8] J. Hedengren. Simmulated annealing tutorial. http://apmonitor.com/
me575/index.php/Main/SimulatedAnnealing, 2013.

[9] J. Hopcroft, J. Schwartz, and M. Sharir. On the complexity of motion plan-
ning for multiple independent objects; pspace- hardness of the ”warehouse-
man’s problem”. International Journal of Robotics Research, 3(4):76–88,
1984.

[10] A. Johnson. Clipper. http://www.angusj.com/delphi/clipper.php, 2014.

[11] C. Ma, N. Vining, S. Lefebvre, and A. Sheffer. Game level layout from design
specification. Computer Graphics Forum, 34(2), 2014. https://github.
com/chongyangma/LevelSyn.

[12] Microsoft. Windows forms. https://docs.microsoft.com/en-us/dotnet/
framework/winforms/.

[13] J. Newton-King. Newtonsoft.Json. https://github.com/JamesNK/
Newtonsoft.Json, v11.0.

[14] M. Persson and J. Bergensten. Minecraft, 2009.

[15] C. Poole and R. Prouse. nUnit. https://github.com/nunit/nunit, v3.9.

[16] E. Schaefer, D. Brevik, M. Schaefer, E. Sexton, and K. William. Diablo,
1996.

[17] N. Shaker, J. Togelius, and M. J. Nelson. Procedural Content Generation in
Games: A Textbook and an Overview of Current Research. Springer, 2016.

[18] Unity Technologies. Company facts. https://unity3d.com/
public-relations.

51

https://github.com/aaubry/YamlDotNet
https://www.boost.org/
https://github.com/mbuchetics/RangeTree
http://apmonitor.com/me575/index.php/Main/SimulatedAnnealing
http://apmonitor.com/me575/index.php/Main/SimulatedAnnealing
http://www.angusj.com/delphi/clipper.php
https://github.com/chongyangma/LevelSyn
https://github.com/chongyangma/LevelSyn
https://docs.microsoft.com/en-us/dotnet/framework/winforms/
https://docs.microsoft.com/en-us/dotnet/framework/winforms/
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/JamesNK/Newtonsoft.Json
https://github.com/nunit/nunit
https://unity3d.com/public-relations
https://unity3d.com/public-relations

[19] Unity Technologies. Unity user manual. https://docs.unity3d.com/
Manual/index.html, v2018.1.

[20] M. Toy, G. Wichman, K. Arnold, and J. Lane. Rogue, 1980.

52

https://docs.unity3d.com/Manual/index.html
https://docs.unity3d.com/Manual/index.html

List of Figures

1 Output of the original algorithm from Ma et al. (c) and (d)
demonstrate layouts that were generated from the level connec-
tivity graph in (a) and building blocks shown in (b). 5

2 Configuration spaces. (a) shows the configuration space (red lines)
of the free square with respect to the fixed l-shaped polygon. It
defines all the locations of the center of the square such that the
two blocks do not intersect and are in contact. (b) shows the
intersection (yellow dots) of configuration spaces of the moving
square with respect to the two fixed rectangles. 6

3 Incremental layout. (b) and (c) show two partial layouts after
laying out the first chain. (d) shows a full layout after extending
(b) with the second chain. (e) shows a full layout after extending
(c) with the second chain. 8

4 Chain decomposition. (b) shows an example of how can (a) be
decomposed into chains. Each color represents one chain. Numbers
show in what order were the chains created. 8

5 Backtracking. (b) shows an example of a bad partial layout be-
cause there is not enough space to connect nodes 0 and 9. Back-
tracking to a different partial layout (c) is needed to generate a full
layout (d). 9

6 Corridors. (b) shows how is the second type of configuration spaces
used to create space between rooms in the second chain. (c) shows
how are corridors added to (b). (d) shows a full layout. 15

7 Example of explicitly defined door positions. 16
8 Different probabilities of individual room shapes. 18
9 Benchmark of our changes of simulated annealing. The plot shows

the median number of iterations from Table 2. Fewer is better. . . 21
10 Chain decomposition. Blue nodes are contained in a chain with

a corresponding number. (a) shows the input graph. (b) shows a
partial chain decomposition after the first iteration of Algorithm 6.
(c) shows a complete chain decomposition of the graph. 23

11 Benchmark of our changes of chain decomposition. The plot shows
the median number of iterations from Table 3. Fewer is better. . . 25

12 Tree representation of the generation process. Each node repre-
sents a generated layout. (a) shows the original method and (b)
shows our method with lazy evaluation. 26

13 Benchmark of using and not using lazy evaluation. The plot shows
the median number of iterations from Table 4. Fewer is better. . . 28

14 UML diagram of the MapDescription class and the IMapDescription
interface. 32

15 UML diagram of the ILayout interface and the IEnergyLayout
interface. 33

16 UML diagram of configuration interfaces. 33

53

17 UML diagram of the IMapLayout interface, the IRoom interface
and the IDoorInfo interface. 34

18 Flowchart of the ChainBasedGenerator class. 35
19 Screenshost of the GUI. A description of its individual controls can

be found in the User documentation. 39

20 Comparison of the original method, our initial implementation and
our final implementation. The plot shows the median number of
iterations from Table 5 and Table 6. Fewer is better. 41

21 Building blocks used for benchmarks. 42
22 Layouts generated from a simple input graph with 9 vertices. Var-

ious sets of building blocks are used. 44
23 Layouts generated from a complex graph with multiple intercon-

nected cycles. Various sets of building blocks are used. 45
24 Layouts generated from a large graph with 41 vertices. Various

sets of building blocks are used. 46
25 Layouts generated from a graph that is based on a map from

Dragon Age: Origins. We tried to choose room shapes that are
similar to those found in the map. 47

26 Layouts generated from a graph that is based on a map from World
of Warcraft. A set of simple rectangular building blocks is used. . 48

54

List of Tables

1 Benchmark of the original implementation. Success rate shows how
often was the algorithm able to generate a valid layout. We provide
average and median values for both the time and the number of
iterations. 11

2 Benchmark of our changes of simulated annealing. The benchmark
was run 100 times for each input graph. Success rate shows how
often was the algorithm able to generate a valid layout. We provide
average and median values for both the time and the number of
iterations. 20

3 Benchmark of our changes of chain decomposition. The benchmark
was run 100 times for each input graph. Success rate shows how
often was the algorithm able to generate a valid layout. We provide
average and median values for both the time and the number of
iterations. 24

4 Benchmark of using and not using lazy evaluation. The benchmark
was run 100 times for each input graph. Success rate shows how
often was the algorithm able to generate a valid layout. We provide
average and median values for both the time and the number of
iterations. 27

5 Benchmark of our final implementation of both our modes. The
benchmark was run 100 times for each input graph. Success rate
shows how often was the algorithm able to generate a valid layout.
We provide average and median values for both the time and the
number of iterations. 42

6 Top table shows a benchmark of the implementation of the origi-
nal method. Bottom table shows a benchmark of our initial imple-
mentation before we applied the speedups proposed in this thesis.
Success rate shows how often was the algorithm able to generate a
valid layout. We provide average and median values for both the
time and the number of iterations. 43

55

A. Attachments

A.1 Contents of the attached CD
• /Binaries/GUI - binaries of the GUI application

• /Binaries/MapGeneration - binaries of the the layout generator

• /Documentation - user documentation

• /Source - source code

• /Thesis/thesis.pdf - this thesis

56

	Introduction
	Analysis and related work
	Algorithm
	Configuration spaces
	Incremental layout
	Simulated annealing

	Shortcomings
	Overall speed
	Corridors between rooms

	Algorithm
	Tile-based output
	New features
	Corridors between rooms
	Explicit door positions
	Custom constraints
	Different probabilities for room shapes

	Performance improvements
	Simulated annealing parameters
	Chain decomposition
	Lazy evaluation

	Framework
	Analysis
	Extensibility
	Input format
	Output format
	Planar graphs
	Polygon geometry
	Benchmarks

	Used technologies
	Solution structure
	Data structures
	IMapDescription interface
	ILayout interface
	IConfiguration interface
	IMapLayout and IRoom interfaces

	Algorithms
	ChainBasedGenerator class
	IChainDecomposition interface
	ILayoutEvolver interface
	IConfigurationSpaces interface
	ILayoutOperations interface
	IGeneratorPlanner interface
	ILayoutConverter interface

	GUI

	Results
	Benchmarks

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Attachments
	Contents of the attached CD

