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Introduction

Invariant theory has played a very important role in the development of modern
commutative algebra. To see why this daring statement should be possibly true
it is sufficient to realise that studying a property of ’being invariant’ led to the
discovery of some of the most essential theorems in this field, such as Hilbert’s
basis theorem, Hilbert’s Nullstellensatz or Lasker-Noether theorem ([5], page 1).
This theory has rich history, too. Its popularity reached the top in the second half
of the nineteenth and in the twentieth century with work of David Hilbert, Emmy
Noether or Claude Chevalley for instance. Moreover, it is good to mention that
symmetric polynomials (the most famous invariants) were objects of interest of
even Gauss, who used them to give his second proof of the fundamental theorem
of algebra in 1816 ([2], page 314).
This thesis should serve as an introductory text to the theory of invariants, namely
to polynomials which are invariant under action of finite subgroups of GL(n, k),
rings of those invariants and generators of such rings. This text is inspired by
Ideals, varietes, and algorithms, a book of David Cox, John Little and Donal
O’Shea. The first three chapters are significantly based on ideas of Cox, Little
and O’Shea. However, the fourth chapter, concerning relations among generators
of the ring of invariants, will be analysed differently, using only algebra-theoretic
arguments (such as the weak form of Nullstellensatz) instead of Groebner bases
and elimination theory like it is done in Ideals, varietes, and algorithms, since it
is not an object of study of this thesis.
Let us now start with some of the most fundamental definitions and statements
which we will use throughout this whole text.
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1. Preliminaries

We assume that the reader has some prior knowledge of basic algebraic terms,
such as groups, rings, (algebraically closed) fields, (prime) ideals, a congruence
modulo ideal (which is always an equivalence relation) and ring homomorphisms,
as they are part of the standard Algebra I. and II. courses (for details see [2], [3]
or [1]). Note that all rings in this text are assumed to be commutative with a unit
element and each of them is not considered to be a prime ideal in itself. When
talking about composition of permutations, we will use right-to-left evaluation
each time.
We will start our discussion with definitions of some of the most common objects
of algebraic geometry, such as multivariable polynomials, affine varieties, and
coordinate rings. All these definitions will be used later in the text.

Definition 1.1. Let x1, ..., xn be variables (or indeterminates), n ∈ N, n ≥ 1.
Then a monomial in x1, ..., xn is a product of the form

x1
α1 · x2

α2 · ... · xn
αn ,

where all of the exponents α1, ..., αn are nonnegative integers. The total degree of
such monomial is the sum α1 + ...+ αn.

Note. Let α = (α1, ..., αn) be an n-tuple of nonnegative integers. Then xα denotes
the monomial x1

α1 ·x2
α2 · ... ·xn

αn . The total degree of the monomial xα, denoted
by ♣α♣, is naturally defined as ♣α♣ = α1 + ... + αn. We will use this notation in
order to define a polynomial in the next paragraph.

Definition 1.2. Let k be a field, n ∈ N, n ≥ 1, x1, ..., xn variables. A polynomial
f in x1, ..., xn over k is a finite k-linear combination (with coefficients in k) of
monomials in x1, ..., xn. So, every polynomial can be written (uniquely up to
order) as

f =
∑

α

aαx
α; aα ∈ k,

where the sum is over a finite number of n-tuples α = (α1, ..., αn). The total
degree of f is the maximum ♣α♣ such that aα ̸= 0. The set of all polynomials in
x1, ..., xn with coefficients in k (or a polynomial ring, as one can easily verify) is
denoted by k[x1, ..., xn].

Definition 1.3. Let 0 ̸= f =
√

α aαx
α ∈ k[x1, ..., xn] and let > be the lexicograph-

ical ordering of n-tuples of nonnegative integers. Then we define the multidegree
of f as

multideg(f) = max¶α ∈ Nn
0 : aα ̸= 0♦,

where max stands for the maximum with respect to >. The leading coefficient of
f is then

LC(f) = amultideg(f) ∈ k,

the leading monomial of f is

LM(f) = xmultideg(f),

and, finally, let the leading term of f be

LT (f) = LC(f) · LM(f).

3



Note. Let f ∈ k[x1, ..., xn], i.e., f = f(x1, ..., xn). Note that it is not required
for all variables x1, ..., xn to appear in f . By f(x1, ..., xn) we only mean that all
variables appearing in f are among x1, ..., xn.

Example. Let us consider polynomial ring Q[x, y, z]. An example of a polyno-
mial in this ring can be f(x, y, z) = 4

5
x5y7z7 − xy. According to the above note,

g(x, y, z) = y is also a valid polynomial in Q[x, y, z].

Lemma 1.4. Let f ∈ k[x1, ..., xn], where k is infinite. Then f(a) = 0 for all
a ∈ kn if and only if f is the zero polynomial.

Proof. Suppose f(a) = f(a1, ..., an) = 0 for every a ∈ kn. Using induction on the
number of variables, we will show that f must be the zero polynomial then.
The base case is n = 1, meaning f ∈ k[x1]. Let’s set m = deg(f). If f is nonzero
then f has at most m roots ([1], page 78). But k being infinite by assumption
forces f to be the zero polynomial.
Next, assume that the statement is true for every polynomial in k[x1, ..., xn−1].
Surely, we can write f as

f =
m
∑

i=0

gi(x1, ..., xn−1)x
i
n, (1.1)

where all gi’s are polynomials in the first n − 1 variables and m is the greatest
exponent of xn occurring in f . By choosing any (a1, ..., an−1) of kn−1 we get a one-
variable polynomial f(a1, ..., an−1, xn) ∈ k[xn]. In this situation, the assumption
on f and the base case give us that f(a1, ..., an−1, xn) is the zero polynomial
in k[xn]. But then (1.1) implies that gi(a1, ..., an−1) = 0 for all i ∈ ¶0, ...,m♦.
Moreover, all gi’s vanish on every point of kn−1, as follows from the arbitrariness
of choice of (a1, ..., an−1). We can now use our inductive hypothesis to get that
gi is the zero polynomial for each i. It follows that f itself must be the zero
polynomial.
The converse is trivial.

We are now going to define the fundamental object of algebraic geometry.

Definition 1.5. Let k be a field and let S ⊆ k[x1, ..., xn]. Consider the set

V(S) =
{

(a1, ..., an) ∈ kn : f(a1, ..., an) = 0 for all f ∈ S
}

.

Then V(S) is called the affine variety defined by S. We say that a nonempty affine
variety V is irreducible if for any two affine varieties V1, V2 ⊆ kn an expression
V = V1 ∪ V2 implies V = V1 or V = V2.

Note. Therefore, an affine variety is actually a set of all common solutions of
f(x1, ..., xn) = 0, as f varies over S.

Example. Let k = R. It is obvious that V(x2 + y2 − 4) in R2 is equal to the circle
of radius 2 centred at the origin. However, V(x2 +y2 −4, y−x) in R2 equals only

to a set of two points
{

[
√

2,
√

2],[−
√

2,−
√

2]
}

and V(x2 + y2 − 4, y− x, y− x2) is
empty.

Definition 1.6. Let V ⊆ kn be an affine variety. Then we define

I(V ) =
{

f ∈ k[x1, ..., xn]; f(a1, ..., an) = 0 for all (a1, ..., an) ∈ V
}

.
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Lemma 1.7. I(V ) is an ideal of k[x1, ..., xn] for every affine variety V ⊆ kn.

Proof. We need to check that I(V ) contains the zero element and whether it is
closed under addition and multiplication by elements of k[x1, ..., xn]. The zero
polynomial vanishes on every point of kn. In particular, it vanishes on V , because
V ⊆ kn. Therefore, 0 ∈ I(V ). Now, let f, g ∈ I(V ), h ∈ k[x1, ..., xn] and
(a1, ..., an) ∈ V . Then

(f + g)(a1, ..., an) = f(a1, ..., an) + g(a1, ..., an) = 0 + 0 = 0.

Hence, f + g ∈ I(V ). Similarly,

(h · f)(a1, ..., an) = h(a1, ..., an) · f(a1, ..., an) = h(a1, ..., an) · 0 = 0.

Thus, h · f ∈ I(V ), what completes the proof.

Lemma 1.8. Let V be an affine variety in kn. Then V is irreducible if and only
if I(V ) is prime.

Proof. See ([3], page 7).

Definition 1.9. Let V ⊆ km and W ⊆ kn be affine varieties. A mapping ϕ :
V → W is said to be a polynomial mapping if there exist polynomials f1, ..., fn ∈
k[x1, ..., xm] such that the following condition is satisfied:

ϕ(a1, ..., am) =
(

f1(a1, ..., am), ..., fn(a1, ..., am)
⎡

for all (a1, ..., am) ∈ V . If so, then we say that ϕ is represented by (f1, ..., fn).

Note. In case of W = k, the definition above says that for a map ϕ : V → k
to be a polynomial mapping it means there exists a polynomial f ∈ k[x1, ..., xm]
representing ϕ.

Note. Now, we are going to explore the situation that two polynomials represent
the same polynomial function. So, for instance, let V = V(x2 −1, x+y, z5 −3) ⊆
R3 and f = x2 − yz2 + z3. Then f represents a polynomial function ϕ : V → R,
ϕ(x, y, z) = f(x, y, z). Now, consider

g = x2 − yz2 + z3 + A · (x2 − 1) +B · (x+ y) + C · (z5 − 3),

where A,B,C are arbitrary polynomials in R[x, y, z]. Then for every point a =
(a1, a2, a3) ∈ V we have

g(a) = f(a) + A(a) · 0 +B(a) · 0 + C(a) · 0 = f(a),

because x2 − 1, x+ y and z5 − 3 all vanish on every point of V by the definition
of V . It means that g represents the same polynomial function ϕ as f . To sum
up, adding any polynomial h ∈ I(V ) to f does not change the value of f at any
point of V . This leads to the following lemma.

Lemma 1.10. Let V ⊆ kn be an affine variety and f, g ∈ k[x1, ..., xn]. Then
f and g represent the same polynomial function on V if and only if f − g ∈
I(V ). More generally, (f1, ..., fm) and (g1, ..., gm) represent the same polynomial
mapping from V to km if and only if fi − gi ∈ I(V ) for each i ∈ ¶1, ...,m♦.
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Proof. We will only prove the first part of the statement as the second part follows
immediately from the first one. So, let f and g represent the same polynomial
function on V . Then (f − g)(a) = f(a) − g(a) = 0 at every point a ∈ V . Thus,
f−g ∈ I(V ) by the definition of I(V ). Conversely, let f−g ∈ I(V ). By definition,
0 = (f − g)(a) = f(a) − g(a) for all a ∈ V . It follows that f and g represent the
same polynomial function on V .

Corollary. There is a one-to-one correspondence between the distinct polynomial
functions ϕ : V → k and the equivalence classes of polynomials under congruence
modulo I(V ).

Definition 1.11. Let V ⊆ kn be an affine variety. The set of all polynomial
functions ϕ : V → k will be denoted by k[V ].

For the purposes of this text it is necessary to define a structure of a commu-
tative ring on two sets, namely on k[V ] and on k[x1, ..., xn]/I.

Note. Consider ϕ, ψ ∈ k[V ] and a ∈ V . Then we can define addition and multi-
plication on k[V ] as follows:

(ϕ+ ψ)(a) = ϕ(a) + ψ(a),

(ϕ.ψ)(a) = ϕ(a).ψ(a),

(−ϕ)(a) = −ϕ(a).

In addition, ϕ+0 = ϕ and ϕ.1 = ϕ where 0 is the zero function and 1 denotes the
function identically equal to 1. Now, let f1, f2 ∈ k[x1, ..., xn] be representatives
of ϕ and g1, g2 ∈ k[x1, ..., xn] be representatives of ψ. Then, for a ∈ V we have

f1(a) = ϕ(a) = f2(a), g1(a) = ψ(a) = g2(a),

(f1 + g1)(a) = f1(a) + g1(a) = ϕ(a) + ψ(a) = f2(a) + g2(a) = (f2 + g2)(a),

(f1.g1)(a) = f1(a).g1(a) = ϕ(a).ψ(a) = f2(a).g2(a) = (f2.g2)(a),

(−f1)(a) = (−ϕ)(a) = −ϕ(a) = −(f2)(a) = (−f2)(a).

Hence, the operations are well-defined and by the equations above we have just
defined a commutative-ring structure on k[V ]. All the axioms of a commutative
ring hold because they are satisfied in k[x1, ..., xn].

Definition 1.12. Let V ⊆ kn be an affine variety. Then the coordinate ring of
V is the ring k[V ].

Note. Let I be an ideal of k[x1, ..., xn] and let [f ], [g] ∈ k[x1, ..., xn]/I. We define
the basic ring operations on k[x1, ..., xn]/I as follows:

[f ] + [g] = [f + g], [f ].[g] = [f.g],

−[f ] = [−f ],

1 = [1], 0 = [0] = I.

These operations are well-defined and the proof can be found in [2], page 220.
Therefore, we have a commutative-ring structure on k[x1, ..., xn]/I, too.
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The last corollary can be specified a bit more.

Theorem 1.13. Let V ⊆ kn be an affine variety and set F : k[x1..., xn]/I(V ) →
k[V ] such that F

(

[f ]
⎡

= ϕ, where f represents the polynomial function ϕ. Then
F is a ring isomorphism.

Proof. F is well-defined by Lemma 1.10, so we need to show that F is a bijective
homomorphism. By definition, every ϕ of k[V ] is represented by some polynomial

f of k[x1, ..., xn]. Hence, F is onto. Now, suppose F
(

[f ]
⎡

= F
(

[g]
⎡

. Then

Corollary 1 of Lemma 1.10 implies that [f ] = [g] in k[x1, ..., xn]/I(V ), what
proves that F is injective. Finally, F must respect the identity element, addition
and multiplication. So, take [f ], [g] ∈ k[x1, ..., xn]/I(V ) arbitrarily. By definition,
we already know that [f ] + [g] = [f + g] and [f ].[g] = [f.g]. In addition, f + g
(or f.g) represents ϕ+ ψ (or ϕ.ψ), whenever f represents ϕ and g represents ψ.
Then we have

F
(

[f ] + [g]
⎡

= F
(

[f + g]
⎡

= ϕ+ ψ = F
(

[f ]
⎡

+ F
(

[g]
⎡

,

F
(

[f ].[g]
⎡

= F
(

[f.g]
⎡

= ϕ.ψ = F
(

[f ]
⎡

.F
(

[g]
⎡

,

F
(

[1]
⎡

= idk[V ].

We see that F is a homomorphism and the proof is complete.

Theorem 1.14. (The weak Nullstellensatz): Let k be an algebraically closed
field. Then V(I) is nonempty for every proper ideal I ⊆ k[x1, ..., xn].

Proof. See [2], page 168 or [3], page 10.
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2. Symmetric polynomials

We are now ready to introduce some theory of symmetric polynomials. They
appear more naturally than one may think. For instance, consider monic poly-
nomial f = x3 + bx2 + cx + d ∈ k[x]. Let α, β, and γ be the roots of f in the
algebraic closure k of k. In k[x] we then have

x3 + bx2 + cx+ d = (x− α)(x− β)(x− γ).

Expanding the right-hand side gives

x3 + bx2 + cx+ d = x3 − (α+ β + γ)x2 + (αβ + αγ + βγ)x− αβγ.

Therefore, the coefficients of f are polynomials in its roots α, β and γ. Further-
more, any change in ordering of roots does not change f itself, so after expanding
we always get the same right-hand side. This means that the coefficients of f re-
main unchanged after permuting its roots. This leads to the following definition.

Definition 2.1. Let f ∈ k[x1, ..., xn] be a polynomial. Then f is said to be
symmetric (or Sn-invariant), if f remains unchanged after we permute its vari-
ables. Formally,

f(xπ(1), ..., xπ(n)) = f(x1, ..., xn)

for every permutation π ∈ Sn.

Example. Let f, g, h ∈ k[x, y], such that f = x + y, g = x2 + 4xy + y2, and
h = x − y. Then definitely f and g are symmetric while h is not whenever the
characteristics of k is different from 2

(

if char(k)=2 then h = f and, hence, h

is symmetric
⎡

. Turning into n-variable case, another example of a symmetric

polynomial is F =
√

1≤i<j≤n(xi − xj)
2.

Note. When talking about symmetric polynomials, we need to be precise and
specify the ring of polynomials we work with. We have already seen that the field
we are working over matters. However, other problems may possibly occur, even
with k fixed. For example, it might be the case that a polynomial is symmetric
in k[X1], but is not symmetric in k[X2], where X1, X2 are some sets of variables
and X1 ⊂ X2. As an example consider the polynomial f from the above example.
Then f is symmetric in k[x, y], but f is not symmetric in k[x, y, z].

Note. It follows immediately that a sum and a product of symmetric polynomials
is again a symmetric polynomial and constant polynomials are symmetric, too.
Hence, the set of all symmetric polynomials forms a subring of the

corresponding ring of polynomials. We will generalise this fact in the next
chapter. However, we can already describe generators of the ring of symmetric
polynomials. To do so, we will need the following crucial definition.

Definition 2.2. Let k[x1, ..., xn] be a given polynomial ring. Then for i ∈ N0 we
define a polynomial σi ∈ k[x1, ..., xn] as follows:

σ0 = 1,

σ1 = x1 + ...+ xn,
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...

σl =
∑

1≤i1<i2<...<il≤n

xi1
xi2

· · ·xil
,

...

σn = x1x2 · · ·xn,

σm = 0 for m > n,

where σl is a sum of
(

n

l

⎡

terms.

Note. By generalising the case of f = x3 + bx2 + cx + d from above we see
that σ1, ..., σn all appear (up to a sign) as coefficients of every monic polynomial
f ∈ k[x] of degree n if we name the roots of f by x1, x2, ..., xn. Formally, σ1, ..., σn

satisfy the relation

n
∏

i=1

(x− xi) = xn − σ1x
n−1 + σ2x

n−2 − ...+ (−1)n−1σn−1x+ (−1)nσn

in k[x1, ..., xn, x]. It is easy to see that σ1, ..., σn are all symmetric polynomials.
Such σ1, ..., σn are called elementary symmetric functions (or polynomials).

There are certainly more places where one can (rather unexpectedly) find
symmetric polynomials in mathematics. Just to mention one more, realise that
the inequality of algebraic and geometric means (AM-GM inequality) can be
formulated as

σ1

n
≥ n

√
σn,

where xi’s are nonnegative reals.
The following famous theorem solves our problem of generators of the ring of

symmetric polynomials.

Theorem 2.3. (The fundamental theorem of symmetric polynomials):
Let k[x1, ..., xn] be given. Then every symmetric polynomial in k[x1, ..., xn] can be
written uniquely as a polynomial in the elementary symmetric functions σ1, ..., σn.

Proof. At first, let f be a symmetric polynomial in k[x1, ..., xn], order Nn
0 lexico-

graphically and let LT (f) = a0x
α, where α = (α1, ..., αn) as before. Observe that

α1 ≥ ... ≥ αn: Suppose, for the sake of contradiction, that there is an index i such
that αi < αi+1. Let β = (..., αi+1, αi, ...), where β is the vector of exponents which
we get from α by swapping αi and αi+1. It follows that β > α. But then a0x

β

is a term of f(..., xi+1, xi, ...), because a0x
α is a term of f(x1, ..., xn). However, f

is symmetric by assumption, what forces f(..., xi+1, xi, ...) = f(x1, ..., xn). This
implies that a0x

β is a term of f , and that is a contradiction with the maximality
of α.
We will now remove the leading term from f . For this purpose, let

g0 = σα1−α2

1 σα2−α3

2 · · ·σαn−1−αn

n−1 σαn

n .

Clearly, for each l ∈ ¶1, ..., n♦ it is true that LT (σl) = x1x2 · · ·xl. This implies
that

LT (g0) = LT (σ1)
α1−α2LT (σ2)

α2−α3 · · ·LT (σn)αn

9



= xα1−α2

1 (x1x2)
α2−α3 · · · (x1 · · ·xn)αn = xα1

1 xα2

2 · · ·xαn

n = xα.

Therefore, f and g0 have the same leading monomial. Consequently, f and a0g0

have the same leading term, i.e., either f − a0g0 = 0 or, at least,

multideg(f − a0g0) < multideg(f).

We know that both f and a0g0 are symmetric. Thus, f1 = f −a0g0 is symmetric.
If f1 is the zero polynomial then we are done. If not, we can eliminate the leading
term of f1 in the same way we did it for f in order to get f2 = f1 − a1g1, where
a1 ∈ k and g1 is again a product of σi’s to the appropriate powers. Once more,
either f2 = 0 and the process is over, or at least, the multidegree of f2 is strictly
less than the one of f1. In case of f2 ̸= 0 we can repeat this procedure as many
times as needed and end up with a polynomial sequence f, f1, f2, f3, ... such that

multideg(f) > multideg(f1) > multideg(f2) > · · · .

It is important to realise that the lexicographic order is a well-ordering on Nn
0 .

Thus, the sequence must be finite. However, our procedure can come to an end
if and only if there exists some index l ∈ N such that fl+1 = 0. But then

f =
l
∑

i=0

aigi

proves the existence of an expression of f as a polynomial in σi’s.
It remains to prove the uniqueness. Suppose there are two polynomial expressions
of f in σ1, ..., σn, namely

f = h1(σ1, ..., σn) = h2(σ1, ..., σn),

where h1 and h2 are some polynomials in k[y1, ..., yn]. We want h1 = h2.
Let h = h1 − h2. Then the equation above says that h(σ1, ..., σn) = 0 in
k[x1, ..., xn]. We will show that h = 0 in k[y1, ..., yn], what will consequently
imply the desired uniqueness. For the sake of contradiction suppose h ̸= 0. Let
h =

√

β aβy
β, β = (β1, ..., βn). By substituting σi’s into h we have h(σ1, ..., σn) =

√

β hβ, where hβ = aβσ
β1

1 σ
β2

2 · · ·σβn
n . It is straightforward to see that

LT (hβ) = aβx
β1+···+βn

1 xβ2+···+βn

2 · · ·xβn

n .

Now, consider ϕ : Nn
0 → Nn

0 , such that

ϕ
(

(β1, ..., βn)
⎡

= (β1 + · · · + βn, β2 + · · · + βn, ..., βn).

Observe that ϕ is injective: Suppose ϕ(β) = ϕ(γ). Then βn = γn because of the
last coordinate. But then βn−1 = γn−1 because of the last but one coordinate,
and so on. It follows that β = γ.
We see that hβ’s have pairwise different leading terms. Since there are only
finitely many of them and, in particular, the ordering is linear, we can choose
β such that LT (hβ) > LT (hγ)

(

meaning multideg(hβ) > multideg(hγ)
⎡

for all

γ ̸= β. It follows that LT (hβ) is strictly greater than any term of any hγ for
γ ̸= β. But this exactly means that the term LT (hβ) cannot be cancelled in
h(σ1, ..., σn), leaving h(σ1, ..., σn) ̸= 0 in k[x1, ..., xn] – a contradiction.
The proof is now complete.
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The proof of the above theorem is useful in finding the desired polynomial
expression itself:

Exercise. Let f = (x2 + y2)(x2 + z2)(y2 + z2) ∈ k[x, y, z]. Then

f = x4y2 + x4z2 + x2y4 + 2x2y2z2 + x2z4 + y4z2 + y2z4.

Since f is obviously symmetric, it can be expressed in terms of σ1, σ2 and σ3.
The leading term of f is x4y2 = LT (σ2

1σ
2
2). Then

f1 = f − σ2
1σ

2
2

= −2x4yz − 2x3y3 − 8x3y2z − 8x3yz2 − 2x3z3 − 8x2y3z − 13x2y2z2

−8x2yz3 − 2xy4z − 8xy3z2 − 8xy2z3 − 2xyz4 − 2y3z3.

In this situation, the leading term of f1 is −2x4yz = −2LT (σ3
1σ3). We have

f2 = f1 + 2σ3
1σ3

= −2x3y3 − 2x3y2z − 2x3yz2 − 2x3z3 − 2x2y3z − x2y2z2 − 2x2yz3

−2xy3z2 − 2xy2z3 − 2y3z3.

Now, the leading term of f2 is −2x3y3 = −2LT (σ3
2). Similarly,

f3 = f2 + 2σ3
2

= 4x3y2z + 4x3yz2 + 4x2y3z + 11x2y2z2 + 4x2yz3 + 4xy3z2 + 4xy2z3.

This time, the leading term of f3 is 4x3y2z = 4LT (σ1σ2σ3). But then

f4 = f3 − 4σ1σ2σ3 = −x2y2z2.

Hence, it is obvious that
f4 + σ2

3 = 0.

Finally, it follows that

f = σ2
1σ

2
2 − 2σ3

1σ3 − 2σ3
2 + 4σ1σ2σ3 − σ2

3.

Exercise. Suppose we have the following system of equations in k[x, y]:

x+ y = a,

x2 + xy + y2 = b,

x3 + x2y2 + y3 = c.

We want to find the relation between a, b and c, assuming the solution of the
system exists. We have

x+ y = a = σ1

x2 + xy + y2 = b = (x+ y)2 − xy = σ2
1 − σ2

=⇒ a2 − σ2 = b =⇒ a2 − b = σ2

x3 + x2y2 + y3 = c = (x+ y)3 + x2y2 − 3x2y − 3xy2

= σ3
1 + σ2

2 − 3σ1σ2.

But then
c = a3 + (a2 − b)2 − 3a(a2 − b).

11



It might be useful to look for some sufficient conditions for a polynomial to
be Sn-invariant. We will prove a few of them and show some other properties of
symmetric polynomials in the rest of this chapter.

Definition 2.4. Let f ∈ k[x1, ..., xn]. Then f is homogeneous of total degree l,
if every monomial appearing in f has total degree l.

Example. The i-th elementary symmetric polynomial σi is homogeneous of total
degree i.

Note. Let f ∈ k[x1, ..., xn]. Then f can be written uniquely (up to order) as a
sum of homogeneous polynomials, because f =

√

l fl, where fl is the sum of all
terms of f of total degree l. Such fl is said to be an l-th homogeneous component
of f . Hence, we receive another criterion for a polynomial to be symmetric.

Lemma 2.5. Let f ∈ k[x1, ..., xn]. Then f is symmetric if and only if all homo-
geneous components of f are symmetric.

Proof. Suppose f is symmetric, π ∈ Sn and let xπ(1), ..., xπ(n) be a permutation
of variables. It is obvious that π does not change the total degree of the terms of
f , i.e., if a is a term of f of total degree l, then, after permutation of variables,
ã is again a term of total degree l. Therefore, the symmetricity of f implies that
all homogeneous components of f must be symmetric, too. Conversely, let all
homogeneous components fl of f be symmetric. Since f =

√

l fl and all fl’s are
symmetric, f must be symmetric as well.

Exercise. Let f ∈ k[x1, ..., xn]. If

f(x1, x2, x3, ..., xn) = f(x2, x1, x3, ..., xn) = f(x2, x3, ..., xn, x1),

then f is symmetric. Hence, in order to verify whether f is symmetric or not, it
is sufficient to check two specific permutations instead of n!.

Proof. We will show that ϕ = (1 2) and ψ = (1 2 ... n) generate Sn. Then the
statement will be an immediate consequence. To do so, we will use a fact, that
every permutation can be written as a product of disjoint cycles. Furthermore,
every cycle (x1 x2 ... xl) can be written as (x1 x2)(x2 x3)...(xl−1 xl). It follows
that Sn is generated by transpositions. We will use this to prove that ¶ϕ, ψ♦ is
also a generating set for Sn. It is useful to observe that for i ∈ ¶1, ..., n − 2♦ we
have

αi = (1 2 ... n)i(1 2)(1 2 ... n)−i = (i+ 1 i+ 2).

Indeed, (1 2 ... n)−1 = (n ... 2 1), so (1 2 ... n)−i = (1 2 ... n)n−i sends an element l
to an element l− i mod n whenever l ̸= i and it sends i to n. Similarly, (1 2 ... n)i

sends n − i to n and any other element l to l + i mod n. If l = i + 1, then
αi(l) = αi(i+ 1) = i+ 2. If l = i+ 2, then αi(l) = αi(i+ 2) = i+ 1. For all other
l’s we have αi(l) = (l). Hence, αi = (i+ 1 i+ 2) = (i+ 2 i+ 1). To complete the
proof, it is sufficient to show that (1 2), ..., (n − 1 n) generate all transpositions,
i.e., we want to prove that any transposition (a b) can be written as a product of
αi’s and (1 2), where a, b ∈ ¶1, ..., n♦, a ̸= b.
Without loss of generality, we can assume a < b, since (a b) = (b a). We will
use induction on l = b − a. The base case of l = 1 is trivial, because then
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(a b) = (i i + 1), what is either equal to ϕ or αi for some i ∈ ¶1, ..., n − 2♦.
Anyway, it is an element of our set. Now, suppose that l = b − a = m for some
m ∈ ¶2, ..., n−1♦ and that the statement is true for every l < m. In this situation,
we can write

(a b) = (a a+ 1)(a+ 1 b)(a a+ 1).

However, (a a+ 1) belongs to our set and the difference of b and a+ 1 is strictly
less than m. So, we can use the inductive assumption to receive that (a b) is
really of the desired form.

The following definition describes another important type of symmetric poly-
nomials.

Definition 2.6. Let l ∈ N. Then we define a polynomial sl ∈ k[x1, ..., xn] as

sl = xl
1 + ...+ xl

n.

Such sl is obviously symmetric and is called the l-th power sum.

Lemma 2.7. (The Newton identities):
Let k[x1, ..., xn] be given, m ∈ N. Then we have

1. If m ≥ n then
m
∑

i=0

(−1)iσism−i =
n
∑

i=0

(−1)iσism−i = 0,

where s0 = n · 1.

2. If m ≤ n then
m−1
∑

i=0

(−1)iσism−i + (−1)mmσm = 0.

Proof. For proof see ([4], pages 1-3).

Corollary. Let f ∈ k[x1, ..., xn] be symmetric, where k is a field of characteristic
zero. Then f can be written as a polynomial in the power sums s1, ..., sn.

Proof. The fundamental theorem of symmetric polynomials states that every
symmetric polynomial can be written as a polynomial in σi’s, i ∈ ¶1, ..., n♦.
Therefore, we only need to prove that each such σi can be written as a polyno-
mial in si’s. We will use induction on l to show that σl has the desired property.
The base case of l being equal to 1 is trivial, because σ1 = s1.
Now, suppose the statement holds for σ1, σ2, ..., σl−1. Using the second Newton
identity we receive

σl =
(−1)l+1

l

l−1
∑

i=0

(−1)iσisl−i.

Note that division by l is well-defined because of the assumption on k. Our
inductive hypothesis now completes the proof.

Note. Consider working in k[x1, ..., xn], where char(k) ̸= 2. An intuitive gener-
alisation of Sn-invariant polynomials might be the one concerning An-invariant
polynomials, i.e., polynomials which remain unchanged after every even permu-
tation, but may possibly change after any odd permutation. In fact, the set of
all An-invariant polynomials can be divided into three disjoint (up to the zero
polynomial) parts:

13



a) polynomials, which are Sn-invariant as well. Those are exactly the sym-
metric polynomials.

b) polynomials, which are invariant under even permutations, but change their
sign under an odd permutation, i.e.,

f(xπ(1), ..., xπ(n)) = sgn(π) · f(x1, ..., xn),

where π is a permutation on n elements. Such polynomials are called
alternating and a typical representative is the Vandermonde polynomial
Vn =

√

1≤i<j≤n(xi −xj), the determinant of the Vandermonde matrix. Note
the importance of the second powers of terms of F from the first example
of this chapter. In fact, the set of all alternating polynomials forms an
R-bimodule, where R is the ring of symmetric polynomials, since a sum of
two alternating polynomials is again an alternating polynomial, and a prod-
uct of a symmetric polynomial and an alternating polynomial is alternat-
ing, too. However, the alternating polynomials do not form an R-algebra,
since a product of two alternating polynomials is symmetric. Note that if
char(k) = 2, then ¶alternating polynomials♦ = ¶symmetric polynomials♦.

c) polynomials, which are An-invariant, but change dramatically after an odd
permutation. For instance, consider f(x, y, z) = x2y+xz2 +y2z ∈ k[x, y, z].
Then it is easy to see that f(x, y, z) = f(y, z, x) = f(z, x, y), which proves
that f is A3-invariant. However, f(y, x, z) = y2x+ yz2 + x2z ̸= ±f(x, y, z).

14



3. Finite matrix groups, rings of

invariants and their generators

We will now begin to discuss the general theory of invariants. Therefore, we need
to define finite matrix groups and action of a group on polynomials. From now
on, we will always assume k to be of characteristic zero.

Note. The set of all invertible n× n matrices with entries in a field k is denoted
by GL(n, k). A product of two invertible matrices is invertible, an inverse of
any invertible matrix is also invertible and finally, In is an invertible matrix, too.
Therefore, GL(n, k) with matrix multiplication, inversion and identity element
In, forms a multiplicative group, so-called general linear group.

Definition 3.1. A finite subset G ⊆ GL(n, k) is called a finite matrix group if it
is nonempty and closed under matrix multiplication. The order of G (denoted by
♣G♣) is defined as the number of elements of G.

Note. From the definition above it is by no means obvious that every nonempty
and finite subset of GL(n, k) closed under multiplication is actually a group,
because we did not verify all the group axioms. However, the following lemma
proves that the definition above makes sense and it also gives us some basic
properties of finite matrix groups. Even before, we can realise that multiplication
is associative in G, since it is associative in GL(n, k).

Lemma 3.2. Let G ⊆ GL(n, k) be a finite matrix group. Then

1. In ∈ G.

2. If A ∈ G, then Am = In for some positive integer m.

3. If A ∈ G, then A−1 ∈ G.

Proof. Let A ∈ G and consider X = ¶A,A2, A3, ...♦. Then X ⊆ G, because G is
closed under multiplication. Since G is finite, there must be some i, j ∈ N, i > j,
such that Ai = Aj. Since G ⊆ GL(n, k), A is invertible, so we can multiply this
equation by A−j in order to get Ai−j = In. This proves the second part of the
statement and tells us that In = Ai−j = Ai−j−1A = AAi−j−1, which implies that
A−1 = Ai−j−1 whenever i > j + 1, or if i = j + 1, then Ai−j = A1 = A = In.
However, either Ai−j−1 ∈ G, because Ai−j−1 ∈ X ⊆ G, or in the second case,
A−1 = I−1

n = In = A ∈ X ⊆ G. Hence, the statement A−1 ∈ G holds. For the
first part it is sufficient to realise that In = Ai−j ∈ X ⊆ G.

The following two examples should illustrate the definition properly.

Example. Linear algebra gives us a one-to-one correspondence between permuta-
tions of Sn and n×n permutation matrices over k (denoted by Pn) – for a chosen
π ∈ Sn we can create Mπ by permuting columns of the identity matrix according
to π. In addition, it tells us that

Mπ ·Mϕ = Mπ◦ϕ, (3.1)
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what implies that Pn is closed under multiplication. It has n! elements and thus
is a finite matrix group. We can also define a group isomorphism between these
two groups. Let f : Sn → Pn, such that

f(π) = Mπ.

Then it is trivial to see that f is both one-to-one and onto and (3.1) implies it
is also a homomorphism. Therefore, we will often use symbol Sn instead of Pn

when talking about permutation matrices.

Example. Let A ∈ GL(2, k), char(k) ̸= 2, such that A =

(

0 −1
1 0

)

and let G

be the cyclic group generated by A. Then

G =

⎧

⨄

⋃

(

1 0
0 1

)

,

(

0 −1
1 0

)

,

(

−1 0
0 −1

)

,

(

0 1
−1 0

)

∫

⎬

⋂

.

Obviously, G is a finite subset of GL(2, k) and it is closed under matrix multipli-
cation. Therefore, G is a finite matrix group.

Note. For the rest of this section let x denote the column vector of the variables
x1, ..., xn, i.e.,

x =

⎛

ˆ

ˆ

∐

x1
...
xn

∫

ˆ

ˆ

ˆ

.

So, from now on, f(x) is an abbreviation for f(x1, ..., xn).

Definition 3.3. Let G ⊆ GL(n, k) be a finite matrix group, f(x) ∈ k[x1, ..., xn].
Then f(x) is invariant under G if

f(x) = f(A · x)

for all A ∈ G. The set of all polynomials in k[x1, ..., xn] that are invariant under
G is denoted by k[x1, ..., xn]G.

Definition 3.4. Let f1, ..., fm ∈ k[x1, ..., xn]. Then the subset of k[x1, ..., xn] con-
sisting of all polynomial expressions in f1, ..., fm with coefficients in k is denoted
by k[f1, ..., fm],i.e.,

k[f1, ..., fm] =
{

f ∈ k[x1, ..., xn]
\

\

\f = g(f1, ..., fm); g ∈ k[y1, ..., ym]
}

.

Note. It is easy to prove that k[f1, ..., fm] is a subring of k[x1, ..., xn]: it is triv-
ially closed under addition and multiplication and it also contains every constant
polynomial; in particular, it contains the zero and the identity element. We say
that such subring is generated by f1, ..., fm over k.

Example. Consider the group Sn ⊆ GL(n, k) of permutation matrices. Then
the theory of Sn-invariant polynomials from above gives us that k[x1, ..., xn]Sn =
{

symmetric polynomials in k[x1, ..., xn]
}

. Moreover, the fundamental theorem of
symmetric polynomials proves

k[x1, ..., xn]Sn = k[σ1, ..., σn].
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Lemma 3.5. Let G ⊆ GL(n, k) be a finite matrix group. Then the set of invari-
ants k[x1, ..., xn]G is a subring of k[x1, ..., xn].

Proof. The proof is very straightforward and uses only the definition of invariance.

We can now generalise Lemma 2.5 of Chapter 2.

Theorem 3.6. Let G ⊆ GL(n, k) be a finite matrix group, f ∈ k[x1, ..., xn]. Then
f is invariant under G if and only if all of its homogeneous components are.

Proof. Let f ∈ k[x1, ..., xn] be invariant under G and choose A = (aij) ∈ G. We
already know that f can be written as f =

√

l fl, where fl is the l-th homogeneous
component of f . Then

f(x) = f(A · x) =
∑

l

fl(A · x) =
∑

l

∑

i1+...+in=l

fi1,...,in
(A · x), (3.2)

where fi1,...,in
(x) = ci1,...,in

.x1
i1 · ... · xn

in , and where ij’s are nonnegative integers
and 0 ̸= ci1,...,in

∈ k. By the definition of matrix multiplication,

(3.2) =
∑

l

∑

i1+...+in=l

ci1,...,in
.(a11x1 + ...+ a1nxn)i1 · ... · (an1x1 + ...+ annxn)in .

It is obvious that every monomial in (aj1x1 + ...+ ajnxn)ij has total degree equal
to ij. Hence, ci1,...,in

.(a11x1+...+a1nxn)i1 ·...·(an1x1+...+annxn)in is homogeneous
of total degree l. It follows that fl(x) is the l-th homogeneous component of f(x)
if and only if fl(A · x) is the l-th homogeneous component of f(A · x). So, if f is
invariant under G, then it must be invariant componentwise, i.e., its homogeneous
components must be invariant under G as well. The converse is now trivial.

Lemma 3.7. Let G ⊆ GL(n, k) be a finite matrix group and suppose there exist
m ∈ N and A1, ..., Am ∈ G such that every A ∈ G can be written in the form

A = B1B2 · · ·Bl,

where Bi ∈ ¶A1, ..., Am♦ for every i ∈ ¶1, ..., l♦, and where l ∈ N (i.e., A1, ..., Am

generate G). Then f is invariant under G if and only if

f(x) = f(A1 · x) = · · · = f(Am · x).

Proof. The proof uses simple induction. For details see [2], page 325.

Note. Note how this lemma generalises the last Exercise 2 of Chapter 2. All it
says is that it is always sufficient to check the invariance just on the generators.

We have already seen that k[x1, ..., xn]Sn is finitely generated by σ1, ..., σn. It
is natural to ask what we can say about k[x1, ..., xn]G in general. Is it always the
case that k[x1, ..., xn]G is finitely generated? Well, the answer is yes and we shall
prove it through the Noether’s degree bound theorem. The theorem essentially
uses the concept of the Reynolds operator.
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Definition 3.8. Let G ⊆ GL(n, k) be a finite matrix group. Then a map RG :
k[x1, ..., xn] → k[x1, ..., xn] defined by the formula

RG(f)(x) =
1

♣G♣
∑

A∈G

f(A · x)

for f(x) ∈ k[x1, ..., xn] is called the Reynolds operator of G.

Note. Division by ♣G♣ is well-defined, because we assume k to be of characteristic
zero.

We can now state some of the most important properties of RG.

Lemma 3.9. Let G ⊆ GL(n, k) be a finite matrix group and let RG be the
Reynolds operator of G. Then:

1. RG is k-linear in f .

2. If f ∈ k[x1, ..., xn], then RG(f) ∈ k[x1, ..., xn]G.

3. If f ∈ k[x1, ..., xn]G, then RG(f) = f .

4. If f ∈ k[x1, ..., xn]G and g ∈ k[x1, ..., xn], then RG(f · g) = f ·RG(g).

5. RG is a surjective mapping from k[x1, ..., xn] to k[x1, ..., xn]G.

6. RG ◦RG = RG.

Proof. 1. This is an immediate consequence of the definition.
2. Let B ∈ G. Then we have

RG(f)(B · x) =
1

♣G♣
∑

A∈G

f
(

A · (B · x)
⎡

=
1

♣G♣
∑

A∈G

f
(

(AB) · x
⎡

. (3.3)

We can write G as ¶A1, ..., A♣G♣♦. However, AiB ̸= AjB, whenever i ̸= j (other-
wise, we could multiply the equation by B−1 to get Ai = Aj for some i and j,
what is a contradiction). Hence, ¶A1B, ..., A♣G♣B♦ has ♣G♣ distinct elements and,
since G is closed under multiplication, it is a subset of G. It follows that the set
is equal to G, so we can write G = ¶AB♣A ∈ G♦. So, the set of all f

(

(AB) · x
⎡

’s

equals the set of all f(A · x)’s. Thus,

(3.3) =
1

♣G♣
∑

A∈G

f(A · x) = RG(f)(x).

=⇒ RG(f)(B · x) = RG(f)(x)

As B ∈ G was chosen arbitrarily, this proves 2.
To prove 3., let f be invariant under G. Then

RG(f)(x) =
1

♣G♣
∑

A∈G

f(A · x) =
1

♣G♣
∑

A∈G

f(x) = f(x).

For 4., take any g ∈ k[x1, ..., xn] and realise that

RG(f · g)(x) =
1

♣G♣
∑

A∈G

(f · g)(A · x) =
1

♣G♣
∑

A∈G

f(A · x) · g(A · x)
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=
1

♣G♣
∑

A∈G

f(x) · g(A · x) = f(x) · 1

♣G♣
∑

A∈G

g(A · x) = f(x) ·RG(g)(x).

5. k[x1, ..., xn]G is the codomain of RG by the second part. For a given f ∈
k[x1, ..., xn]G, f itself is a preimage of f by 3.
Finally, RG(f) is an element of k[x1, ..., xn]G by 2. Therefore, we can use 3. to

obtain RG

(

RG(f)
⎡

= RG(f).

Example. Consider a matrix group G from the Example 3 preceding Definition

3.3. Then

RG(xy)(x) =
1

4

(

xy + (−y)x+ (−x)(−y) + y(−x)
⎡

= 0.

This shows that the Reynolds operator of f might be zero, although the input
polynomial f was not.

Note. Let f ∈ k[x1, ..., xn] be a monomial of total degree l, i.e, f(x) = x1
i1 ·...·xn

in ,
i1 + ...+ in = l and let A ∈ GL(n, k). Then

f(A · x) = (a11x1 + ...+ a1nxn)i1 · ... · (an1x1 + ...+ annxn)in .

In the proof of Theorem 3.6 we found out that f(A · x) is homogeneous of total
degree l. It follows that for any finite matrix group G if RG(f) is nonzero, then
it is a homogeneous invariant of total degree l.

The following useful and very important theorem, which Emmy Noether was
the first to prove, tells us that the ring of invariants is always finitely generated.
Furthermore, it also gives us an explicit algorithm for finding the generators.

Theorem 3.10. (The Noether’s bound) Let G ⊆ GL(n, k) be a finite matrix
group. Then

k[x1, ..., xn]G = k
[

RG(xβ) : ♣β♣ ≤ ♣G♣
]

.

In particular, k[x1, ..., xn]G is generated by finitely many homogeneous invariants.

Proof. Let f =
√

γ cγx
γ ∈ k[x1, ..., xn]G. By using Lemma 3.9, we get

f
3.
= RG(f) = RG

(

∑

γ

cγx
γ

)

1.
=
∑

γ

cγRG(xγ).

The equation above tells us that every G-invariant polynomial is a linear com-
bination of RG(xα) with coefficients in k. Thus, we just need to show that for
every α = (α1, ..., αn) ∈ Nn

0 , the homogeneous invariant RG(xα) can be expressed
as a polynomial in RG(xβ)’s, where ♣β♣ ≤ ♣G♣.
To do this, we will take the same path as Emmy Noether did before: we will not
fix any α and then prove that for this particular α we can find an appropriate
polynomial for RG(xα). Instead, we will fix a natural number l, and we will take
a look at all RG(xα)’s with ♣α♣ = l and then try to prove the statement for all
such α’s at once. We will show that a certain k-linear combination of these is
actually equal to the l-th power sum, which is a symmetric polynomial. Such
information is going to be really helpful, since we already have a solid apparatus
of working with symmetric polynomials, especially the last Corollary 2 of the
previous chapter. Using this particular result, we will show that every power sum
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Sl is a polynomial in S1, ..., S♣G♣. By that time we will have already proved that
for every 1 ≤ i ≤ ♣G♣, Si is a polynomial in RG(xβ)’s, ♣β♣ = i, altogether with
some auxiliary variables, and the theorem will then become an easy consequence.
To do this formally, firstly fix l ∈ N and set

(x1 + · · · + xn)l =
∑

♣α♣=l

aαx
α. (3.4)

Note, that every monomial of total degree l is contained in the sum (and no else
monomial is), since aα’s are all positive integers by the multinomial theorem.
We will use the following notation: for any A = (aij) ∈ G, set Ai = (ai1, ..., ain).
Hence, Ai · x = ai1x1 + ...+ ainxn. Moreover, for every α = (α1, ..., αn) ∈ Nn

0 let

(A · x)α = (A1 · x)α1 · ... · (An · x)αn .

Using this notation we receive

RG(xα) = RG(xα)(x) =
1

♣G♣
∑

A∈G

(

xα ◦ (A · x)
⎡

=
1

♣G♣
∑

A∈G

(A1 · x)α1 · ... · (An · x)αn =
1

♣G♣
∑

A∈G

(A · x)α.

As we have mentioned already, we want to prove the statement for all α’s, such
that ♣α♣ = l, at once. Thus, we must not allow any particular α to cancel out
during our calculations. For this purpose, we will use new variables u1, ..., un. If
we now substitute ui(Ai · x) for xi in (3.4), then for any A ∈ G we receive

(

u1(A1 · x) + ...+ un(An · x)
⎡l

=
∑

♣α♣=l

aα

(

u1(A1 · x)
⎡α1 · ... ·

(

un(An · x)
⎡αn

=
∑

♣α♣=l

aα(A · x)αuα,

where uα = uα1

1 · ... · uαn
n . Summing over all A ∈ G we have

∑

A∈G

(

u1(A1 · x) + ...+ un(An · x)
⎡l

=
∑

A∈G

⎤

∑

♣α♣=l

aα(A · x)αuα

⎣

=
∑

♣α♣=l

aα

⎤

∑

A∈G

(A · x)α

⎣

uα =
∑

♣α♣=l

aα♣G♣RG(xα)uα. (3.5)

Note the usefulness of our new variables: the sum on the right-hand side now
contains every RG(xα) with ♣α♣ = l.
There is even one more set of new variables we need. Let us introduce a new
variable UA for each A ∈ G, so that UA = u1(A1 · x) + ... + un(An · x). In
this situation, the left-hand side of (3.5) is equal to the l-th power sum Sl in
k[UA;A ∈ G], i.e.,

Sl =
∑

♣α♣=l

aα♣G♣RG(xα)uα.

Since l was chosen arbitrarily, Si =
√

♣α♣=i aα♣G♣RG(xα)uα for every i ∈ N. More-
over, Sl is symmetric in k[UA;A ∈ G] and the corollary mentioned above implies
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that it can be written as a polynomial in S1, ..., S♣G♣, i.e., Sl = F (S1, ..., S♣G♣) for
some F ∈ k[y1, ..., y♣G♣].

=⇒
∑

♣α♣=l

aα♣G♣RG(xα)uα = F
⎤

∑

♣β♣=1

aβ♣G♣RG(xβ)uβ, ...,
∑

♣β♣=♣G♣

aβ♣G♣RG(xβ)uβ

⎣

.

Now, the need for variables u1, ..., un is even more obvious. It may possibly be
the case that some terms in the sum in (3.5) may not be expressible in suitable
RG(xβ)’s, while the whole sum is. At the end, however, we would get the desired
polynomial expression for the whole sum, but not for any particular RG(xα).
Therefore, we would be able to say nothing about the existence of such expression
for that one specific RG(xα). But since we used the new variables, by comparing
the coefficients of uα on both sides, we see that for each particular α with ♣α♣ = l,
aα♣G♣RG(xα) is equal to some polynomial in RG(xβ)’s, ♣β♣ ≤ ♣G♣. By assumption,
k is of zero characteristic, which forces aα♣G♣ to be nonzero. But then we can
divide the equation to receive that RG(xα) itself is a polynomial in RG(xβ)’s,
♣β♣ ≤ ♣G♣. The theorem is now proven.
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4. Relations among generators

and the geometry of orbits

The last theorem of the previous chapter states that for k[x1, ..., xn] and any finite
subgroup G ⊆ GL(n, k) there exist homogeneous invariant polynomials f1, ..., fm

such that
k[x1, ..., xn]G = k[f1, ..., fm].

The main goal of this chapter is to study algebraic relations of these generators,
and, consequently, give a more precise characterisation of the ring of invariants.
As we already mentioned in the Introduction, we will take a rather different
path in proving the final theorems than Cox, Little, and O’Shea did in [2].

Definition 4.1. Let F = (f1, ..., fm). Then we define a set IF as

IF =
{

h ∈ k[y1, ..., ym] : h(f1, ..., fm) = 0 in k[x1, ..., xn]
}

.

Here come some of the most important properties of IF .

Lemma 4.2. Let k[x1, ..., xn]G = k[f1, ..., fm], F = (f1, ..., fm) and let IF ⊆
k[y1, ..., ym] be as above. Then

1. IF is a proper ideal of k[y1, ..., ym] (so-called ideal of relations for F ). Fur-
thermore, it is a prime ideal.

2. Let f ∈ k[x1, ..., xn]G and let f = g(f1, ..., fm) be one representation of f in
terms of f1, ..., fm. Then all such representations are given by

f = g(f1, ..., fm) + h(f1, ..., fm),

where h varies over IF .

Proof. 1. At first, we have to prove that IF is an ideal. Well, 0 ∈ k[y1, ..., ym]
belongs to IF , since 0(f1, ..., fm) = 0 in k[x1, ..., xn]. Next, take any h1, h2 ∈ IF

and g ∈ k[y1, ..., ym]. Then:

h1(f1, ..., fm) = h2(f1, ..., fm) = 0

=⇒ (h1 + h2)(f1, ..., fm) = h1(f1, ..., fm) + h2(f1, ..., fm) = 0 + 0 = 0

&

=⇒ (g · h1)(f1, ..., fm) = g(f1, ..., fm) · h1(f1, ..., fm) = g(f1, ..., fm) · 0 = 0.

It is a proper ideal, since 1(f1, ..., fm) = 1 ̸= 0, therefore, 1 (and also every
nonzero constant polynomial) is not an element of IF .
Now, suppose f · g ∈ IF for f, g ∈ k[y1, ..., ym]. Then

0 = (f · g)(f1, ..., fm) = f(f1, ..., fm) · g(f1, ..., fm).

By assumption, k is a field, and hence, k[x1, ..., xn] is a domain. So, f(f1, ..., fm) =
0 or g(f1, ..., fm) = 0, meaning f ∈ IF or g ∈ IF . This proves part 1.
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2. Fix g ∈ k[y1, ..., ym] such that g(f1, ..., fm) = f and choose h ∈ IF arbitrarily.
Then

g(f1, ..., fm) + h(f1, ..., fm) = g(f1, ..., fm) + 0 = f,

so every g(f1, ..., fm) + h(f1, ..., fm) is a representation of f . Conversely, suppose
f = g(f1, ..., fm) for some g ∈ k[y1, ..., ym]. We want to show that

g(f1, ..., fm) = g(f1, ..., fm) + h(f1, ..., fm)

for some h ∈ IF . We have

f = g(f1, ..., fm) = g(f1, ..., fm) +
(

g(f1, ..., fm) − g(f1, ..., fm)
⎡

= g(f1, ..., fm) + (g − g)(f1, ..., fm).

It suffices to prove that (g − g)(f1, ..., fm) = 0 in k[x1, ..., xn]. However,

(g − g)(f1, ..., fm) = g(f1, ..., fm) − g(f1, ..., fm) = f − f = 0.

The following theorem gives a nice characterisation of k[x1, ..., xn]G as a quo-
tient of k[y1, ..., ym] modulo IF .

Theorem 4.3. Let k[x1, ..., xn]G = k[f1, ..., fm] and let F = (f1, ..., fm). Then
k[y1, ..., ym]/IF and k[x1, ..., xn]G are ring-isomorphic.

Proof. Consider ϕ : k[y1, ..., ym] → k[x1, ..., xn]G such that

ϕ(g) = g(f1, ..., fm).

Now, ϕ is a homomorphism, so-called evaluation homomorphism. The kernel of
ϕ is exactly IF . Moreover, k[x1, ..., xn]G = k[f1, ..., fm] by assumption, meaning
every invariant is a polynomial in f1, ..., fm. Consequently, ϕ is onto and the first
isomorphism theorem now yields the result.

The ideal of relations IF is closely related to another important term in the
invariant theory.

Definition 4.4. Let k[x1, ..., xn]G = k[f1, ..., fm] and set F = (f1, ..., fm). Then
we define VF to be the affine variety of IF , i.e.,

VF = V(IF ) ⊆ km.

Theorem 4.5. Let F = (f1, ..., fm), k[f1, ..., fm] = k[x1, ..., xn]G. Consider ϕ :
kn → km given by the formula

ϕ(a) =
(

f1(a), ..., fm(a)
⎡

,

where a = (a1, ..., an) ∈ kn. Then:

1. VF is the smallest affine variety in km containing the image of ϕ.

2. I
(

ϕ(kn)
⎡

= IF = I(VF ).

3. VF is an irreducible variety.
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4. k[VF ] ∼= k[x1, ..., xn]G.

Proof. At first, we will show that

IF = I
(

ϕ(kn)
⎡

. (4.1)

⊆: Let h ∈ IF and take any P ∈ ϕ(kn). Hence, there must be some a ∈ kn such

that P =
(

f1(a), ..., fm(a)
⎡

. Observe that

h(P) = h
(

f1(a), ..., fm(a)
⎡

= 0

by assumption on h.
⊇: Let h ∈ I

(

ϕ(kn)
⎡

and set g = h(f1, ..., fm) ∈ k[x1, ..., xn]. But then g(a) = 0
for all a ∈ kn. We assume k to be of characteristic zero, and hence, infinite.
Lemma 1.4 now forces g to be the zero polynomial, meaning h ∈ IF .
It follows that

VF = V(IF ) = V

⎤

I
(

ϕ(kn)
⎡

⎣

. (4.2)

However, I
(

ϕ(kn)
⎡

is the greatest possible set of polynomials vanishing on the

image of ϕ. It is an immediate consequence that VF = V

⎤

I
(

ϕ(kn)
⎡

⎣

is the

smallest affine variety containing the whole image of ϕ, since the mapping V :
¶ideals♦ → ¶affine varieties♦; I ↦→ V(I), is inclusion reversing ([3], page 4 and 6).
Furthermore,

I(VF )
(4.2)
= I

(

V

⎤

I
(

ϕ(kn)
⎡

⎣

)

[3],6
= I

(

ϕ(kn)
⎡ (4.1)

= IF .

So, we have already proved 1. and 2. The statement 3. follows from Lemma

1.8 and the first part of Lemma 4.2. Similarly, 4. follows immediately from 2.,
Theorem 1.13 and Theorem 4.3.

Definition 4.6. Let G ⊆ GL(n, k) be a finite matrix group and let a be an
element of kn. The G − orbit of a is the set G · a = ¶A · a;A ∈ G♦. The set of
all G− orbits in kn is denoted by kn/G and we call it the orbit space.

Note. We can define an equivalence relation ∼G on kn as follows:

x ∼G y ⇐⇒ (∃A ∈ G) : (x = A · y).

It is very straightforward to check that ∼G is reflexive, symmetric and transitive.
It is obvious that the equivalence classes of ∼G are exactly the G-orbits, what
means that the set of equivalence classes is just kn/G. It is a well-known fact
that two classes are either the same or disjoint.

Theorem 4.7. Let k[x1, ..., xn]G = k[f1, ..., fm], F = (f1, ..., fm),a ∈ kn, where k
is algebraically closed. Then

1. The polynomial mapping ϕ : kn → VF defined in the previous theorem is
surjective.
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2. The map sending the G − orbit G · a ⊆ kn to the point ϕ(a) ∈ VF induces
a one-to-one correspondence between kn/G and VF .

Proof. 1. We have ϕ : kn → VF ;ϕ(a) =
(

f1(a), ..., fm(a)
⎡

for a ∈ kn. Now,

choose any P = (p1, ..., pm) ∈ V(IF ). We want to find some element in kn, whose
image is P. What it basically means is that we are trying to solve the following
system of equations:

f1,P = f1(x1, ..., xn) − p1 = 0,

...

fm,P = fm(x1, ..., xn) − pm = 0.

Note that each fi,P ∈ k[x1, ..., xn] is a G-invariant polynomial, since it is equal
to the sum of two G-invariant polynomials, what is an element of k[x1, ..., xn]G.
Now, observe that the system has a solution if and only if

V(f1,P, ..., fm,P) ̸= ∅.

So, suppose, for the sake of contradiction, that there is no such solution. Then

V(f1,P, ..., fm,P)
[3],4
= V

(

(f1,P, ..., fm,P)
⎡

is empty. Now, the Weak Nullstellen-

satz (Theorem 1.14) tells us that

(f1,P, ..., fm,P) = k[x1, ..., xn].

Particularly, there exist some c1, ..., cm ∈ k[x1, ..., xn] such that

c1f1,P + ...+ cmfm,P = 1.

Using the Reynolds operator on both sides of the above equation we have

RG

(

m
∑

i=1

cifi,P

)

= RG(1)

L. 3.9
=⇒

m
∑

i=1

RG(ci)fi,P =
m
∑

i=1

RG(ci)(fi − pi) = 1

in k[x1, ..., xn]G. If we use the isomorphism from Theorem 4.3, we can take a
look at this equation in k[y1, ..., ym]/IF to receive

u(y1, ..., ym) =
√m

i=1 R̂G(ci)(yi − pi) = 1 mod IF .

Now, what is u(P) equal to? Well, on one hand, u(P) = 1 mod IF , since u is
constantly equal to 1 mod IF . On the other hand, however, (yi − pi)(P) = 0 for
each i, and thus, u(P) must be 0 mod IF . Hence, we get a contradiction, since
0 ̸= 1 mod IF , meaning ϕ is surjective.
2. Let ϕ : kn/G → VF be the mapping sending the G-orbit G · a to ϕ(a) =
(

f1(a), ..., fm(a)
⎡

. We need to show that ϕ is a well-defined bijection.

Note that each fi is a G-invariant, and thus, fi(A · x) = fi(x) for every A ∈ G.
Now, take any b ∈ G · a. It means that there is some A ∈ G, such that b = A · a.
But then ϕ is well-defined, because

ϕ(G · b) =
(

f1(b), ..., fm(b)
⎡

=
(

f1(A · a), ..., fm(A · a)
⎡
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=
(

f1(a), ..., fm(a)
⎡

= ϕ(G · a).

By part 1., ϕ is surjective, i.e., for every v ∈ VF there is some a ∈ kn, such that
ϕ(a) = v. But then ϕ(G · a) = v, implying ϕ is surjective, too.
Finally, we need to prove that ϕ is injective. So, take two distinct orbits G ·a and
G · b. By the note preceding this theorem, G · a and G · b are disjoint. We want
to show that ϕ(G ·a) ̸= ϕ(G ·b). In order to do so, we will find a polynomial g of
k[x1, ..., xn]G such that g(a) ̸= g(b). We will then express g in terms of f1, ..., fm

and show that fi(a) ̸= fi(b) for some i and the theorem will follow.
Consider the set S = G · a ∪ G · b \ ¶a♦. Then S is finite. Moreover, S is an
affine variety by [3], page 5. Therefore, S = V(M) for some M ⊆ k[x1, ..., xn].
Note that there must exist a polynomial f ∈ M , such that f(a) ̸= 0, since
we left a outside of S. Now, for every A ∈ G we see that f(A · b) = 0 and
f(A · a) = f(a) ̸= 0, whenever A · a = a and f(A · a) = 0 otherwise.
Set g = RG(f). But then g(b) = RG(f)(b) is a sum of zeros, and, hence, is zero
itself. On the other hand, g(a) = c

♣G♣
f(a), where c denotes the cardinality of the

set of those elements A of G, such that A · a = a. Since k is assumed to be of
characteristic 0, we see that 0 ̸= g(a) ̸= g(b) = 0.
The polynomial g belongs to k[x1, ..., xn]G by Lemma 3.9 and can therefore be
written as a polynomial h in f1, ..., fm. Furthermore, we have already showed
that h(f1, ..., fm)(a) ̸= h(f1, ..., fm)(b). It follows that there must be some index
i, such that fi(a) ̸= fi(b). Consequently, ϕ(G · a) ̸= ϕ(G · b), what proves the
injectivity of ϕ.

Note. By definition, kn/G is just a set. However, in case of k being algebraically
closed, the last theorem enables us to define a structure of an affine variety on
kn/G in the following way:
There is a bijection ϕ between kn/G and VF by part 2. and ϕ : kn → VF is a
surjective polynomial mapping by 1. Therefore, we have

kn
ϕ
� VF

ϕ−1

↪� kn/G;

a ↦→ ϕ(a) ↦→ G · a.

Altogether, if we identify kn/G with VF , then there exists a surjective polynomial
mapping ϕ̃, such that

ϕ̃ : kn
�kn/G; ϕ̃(a) = G · a.

So, if k = k, then not only kn/G has a structure of an affine variety, but this
structure also has a property that there exists a surjective polynomial mapping ϕ̃
from kn to kn/G. Moreover, the structure of an affine variety on kn/G is uniquely
determined up to isomorphism (see [2], page 346).
Finally, using Theorem 4.5 and Theorem 4.7, observe that

k[kn/G] ∼= k[VF ] ∼= k[x1, ..., xn]G,

i.e., the coordinate ring of kn/G is just the ring of G-invariant polynomials.
This final result now should not be very surprising, since if we take any f ∈
k[x1, ..., xn]G and a ∈ kn, then f(a) = f(A · a) for all A ∈ G. This means that f
has always the same value on whole G-orbits and, thus, f defines a polynomial
function on kn/G.

26



Conclusion

In this thesis, we studied polynomials with the property of being invariant under
given group action. At the beginning, we focused on Sn-invariant polynomials.
The fundamental theorem of symmetric polynomials gave us the proof that the
ring k[x1, ..., xn]Sn is finitely generated by elementary symmetric functions and
it also provided us with the algorithm of finding an expression of a symmetric
polynomial in terms of σ1, ..., σn. Another necessary and sufficient conditions for
a polynomial to be symmetric were given.
Next, we defined how a finite linear matrix group acts on the vector of variables
and then we examined invariance in general. We tried to generalise some of the
facts about symmetric polynomials. We were particularly interested in answering
a question concerning whether or not it is always the case that k[x1, ..., xn]G is
finitely generated, what we proved to be true.
When we had proved that k[x1, ..., xn]G = k[f1, ..., fm], we discussed relations
among these generators, using the ideal of relations IF and its variety. Imme-
diately, another important characterisations of the ring of invariants came up,
namely that it is isomorphic to the quotient ring k[y1, ..., ym]/IF and k

[

V(IF )
]

.
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