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Introduction
The primary topic of this thesis are finitely additive measures, which we define to
be real-valued finitely additive set functions on a σ-algebra of sets. In Chapter 1,
we introduce the total variation and show that a bounded finitely additive mea-
sure can be written as a difference of two nonnegative finitely additive measures,
which is an analogue of the Jordan decomposition of a σ-additive measure.

Bounded finitely additive measures are of crucial importance in our investiga-
tions. In Chapters 2 and 3, we study two of their decompositions. The first one
is a decomposition into a “σ-additive part” and a “purely finitely additive part”.
It was originally presented by Yosida and Hewitt in the article [2]. Our proof of
their result is different and completely self-contained. The second decomposition
is an analogue of the Lebesgue decomposition for σ-additive measures.

Bounded finitely additive measures defined on the Borel σ-algebra form a
normed linear space. When dealing with the Lebesgue decomposition, we define
its subspace of bounded finitely additive measures which are zero on Lebesgue null
sets. This subspace plays an important role in the final chapter of this thesis. We
use it to characterize the dual space of the space of essentially bounded functions
in Theorem 38. The proof is based on Theorem 35, which states that the dual
space of the space of bounded Borel functions is isometrically isomorphic to the
space of bounded finitely additive measures on the Borel σ-algebra.

It is a well-known fact that a σ-additive measure which takes real values must
be bounded. However, it was not known to us whether the same is true for finitely
additive measures defined on a σ-algebra. We used the techniques developed in
Chapter 4 to show that there exists an unbounded finitely additive measure (we
refer the reader to Proposition 36). Although the proof is not very difficult, we
are not aware of any appearance of this result in the literature.

All the other proofs in this thesis were devised according to the instructions of
the thesis supervisor independently of those that can be found in the literature.

Let us discuss the above mentioned results in a broader context. In the def-
inition of a finitely additive measure, it would be sufficient to assume that the
uderlying structure of sets is an algebra and not necessarily a σ-algebra. This
concept is thoroughly treated in the monograph [1] by Rao. The reason why we
worked with finitely additive measures defined on a σ-algebra is that they allow
us to characterize dual spaces of certain spaces of functions as described in one
of the previous paragraphs.

Yosida and Hewitt proved their decomposition theorem for any bounded
finitely additive measure defined on an algebra of sets. Hence their approach
is more general. On the other hand, it heavily relies on lattice theory and some
of the proofs are very technical (the reader is referred to Chapter 1 of [2]). Our
proof covers only the case of finitely additive measures defined on a σ-algebra,
but it is elementary and we believe it to be more readable.

One must be careful when formulating an analogue of the Lebesgue decompo-
sition theorem for bounded finitely additive measures on an algebra. The defini-
tions of absolute continuity and singularity for a general finitely additive measure
given in [1, Definition 6.1.1 nad Definition 6.1.14] are different from those for
σ-additive measures. The Lebesgue decomposition theorem in which these alter-
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native notions are used is true for any bounded finitely additive measure on an
algebra [1, 6.2.4].

Let us conclude this section with a comment regarding the content of Chap-
ter 4, where we characterize the dual space of the space of bounded Borel functions
and the dual space of the space of essentially bounded functions. In each case, we
find a linear isometry from the dual space onto a space of finitely additive mea-
sures. The same results are proved in [4, Theorem IV.5.1 and Theorem IV.8.16],
except that the isometric isomorphisms produced in [4] are inverse to the ones
provided by us. The proofs we present require only basics of functional analysis.
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1. Total variation and the Jordan
decomposition
In this chapter we present basic properties of the total variation and the positive
and negative variations of a finitely additive measure.

1.1 Total variation
Definition 1. Let X be an abstract set and A ⊂ P(X) a σ-algebra. A finitely
additive measure is a mapping µ : A → R such that for any finite collection
{Ai}n

i=1 ⊂ A of pairwise disjoint sets

µ

(
n⋃

i=1
Ai

)
=

n∑
i=1

µ(Ai).

The total variation |µ| : A → [0, ∞] is defined by setting

|µ|(A) = sup
{

n∑
i=1

|µ(Ai)| : A1, . . . , An ∈ A pairwise disjoint subsets of A

}

for A ∈ A.

Note that we defined finitely additive measure on a σ-algebra. It would be
possible to define it more generally on an algebra of sets. However, our convention
simplifies the technical details and enables us to focus on the essential parts of the
theory we want to develop. Unless otherwise stated, we presume every finitely
additive measure to be defined on a σ-algebra A.

Theorem 2. If µ is a σ-additive measure, then |µ| is σ-additive.

Proof. Assume that µ is σ-additive. Let Ej ∈ A, j = 1, 2, . . ., be a sequence of
pairwise disjoint sets and define E =

∞⋃
j=1

Ej. We want to prove

|µ|(E) =
∞∑

j=1
|µ|(Ej).

First, we prove the inequality
∞∑

j=1
|µ|(Ej) ≤ |µ|(E). For each j = 1, 2, . . . take

nj ∈ N and Aji ∈ A, i = 1, 2, . . . , nj, pairwise disjoint sets such that
nj⋃

i=1
Aji ⊂ Ej.

All the sets Aji are pairwise disjoint and for n ∈ N we have
n⋃

j=1

nj⋃
i=1

Aji ⊂ E. It
follows that

n∑
j=1

nj∑
i=1

|µ(Aji)| ≤ |µ|(E).

Taking the supremum of each summand of the outer sum on the left side we
obtain

n∑
j=1

|µ|(Ej) ≤ |µ|(E).
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The last inequality holds for arbitrary n ∈ N, so the desired inequality is proved.
Now we will prove |µ|(E) ≤

∞∑
j=1

|µ|(Ej). Take m ∈ N and Ai ∈ A, i = 1, . . . , m,

pairwise disjoint sets such that
m⋃

i=1
Ai ⊂ E. Then we have

m∑
i=1

|µ(Ai)| =
m∑

i=1

⏐⏐⏐⏐⏐⏐µ
⎛⎝ ∞⋃

j=1
(Ai ∩ Ej)

⎞⎠⏐⏐⏐⏐⏐⏐ =
m∑

i=1

⏐⏐⏐⏐⏐⏐
∞∑

j=1
µ(Ai ∩ Ej)

⏐⏐⏐⏐⏐⏐
≤

m∑
i=1

∞∑
j=1

|µ(Ai ∩ Ej)| ≤
∞∑

j=1

m∑
i=1

|µ(Ai ∩ Ej)| ≤
∞∑

j=1
|µ|(Ej),

where in the second equality we used the σ-additivity of µ. This amounts to
m∑

i=1
|µ(Ai)| ≤

∞∑
j=1

|µ|(Ej).

The proof is completed by taking the supremum of the left side.
�

Theorem 3. If µ is a finitely additive measure, then |µ| is finitely additive.

Proof. We proceed analogously as in the proof of Theorem 2. Let Ej ∈ A,
j = 1, 2, . . . , n, be a finite sequence of pairwise disjoint sets. Denote by E their
union. The theorem states that |µ|(E) =

n∑
j=1

|µ|(Ej). Keeping the definition of
the sets Aji from the previous proof, we get the same inequalities as before:

n∑
j=1

nj∑
i=1

|µ(Aji)| ≤ |µ|(E)

n∑
j=1

|µ|(Ej) ≤ |µ|(E).

We obtain the proof of the remaining inequality from the second part of the proof
of Theorem 2 if we replace the symbol ∞ by n and use finite additivity instead
of σ-additivity.

�
The following elementary result is proved in [4, Lemma III.1.5].

Proposition 4. Let µ be a finitely additive measure. If µ is bounded, then |µ| is
also bounded.

Remark. Theorem 3 combined with Proposition 4 implies that if µ is a bounded
finitely additive measure, so is |µ|.

Definition 5. We denote by M(X, A) the linear space of all bounded finitely
additive measures and by Mσ(X, A) the linear space of all real valued σ-additive
measures. For µ ∈ M(X, A), we define ∥µ∥ = |µ|(X).

Proposition 6. (M(X, A), ∥ · ∥) is a normed linear space.
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Proof. We must verify that ∥ · ∥ has the properties of norm.
With the use of the inequality

|µ|(A) ≥ |µ(A)|, A ∈ A, (1.1)

which is an immediate consequence of Definition 1, it is easy to show that µ is
identically zero if and only if |µ| is identically zero. Now let a ∈ R. From the
definition of |µ|, it follows that |aµ| = |a| · |µ|. Finally, for two finitely additive
measures µ1 and µ2, it holds that

|µ1 + µ2| ≤ |µ1| + |µ2|. (1.2)

Indeed, if A ∈ A and Ai ∈ A, i = 1, 2, . . . , n, is a finite collection of pairwise
disjoint subsets of A, then

n∑
i=1

|(µ1 + µ2)(Ai)| ≤
n∑

i=1
|µ1(Ai)| +

n∑
i=1

|µ2(Ai)| ≤ |µ1|(A) + |µ2|(A)

and taking the supremum on the left side yields |µ1 + µ2|(A) ≤ |µ1|(A) + |µ2|(A).
For A = X, this becomes the triangle inequality ∥µ1 + µ2∥ ≤ ∥µ1∥ + ∥µ2∥.

�
The next theorem is similar to a statement taught in the course in the theory of
measure and integral. For the proof we refer the reader to [4, Lemma III.4.4].

Theorem 7. Every real valued σ-additive measure is bounded, i. e. Mσ(X, A)
is a subspace of M(X, A).

In contrast, we establish the existence of a finitely additive measure which is
not bounded in Proposition 36.

1.2 Jordan decomposition
Definition 8. Let µ be a finitely additive measure. We define the positive and
the negative variation of µ by setting µ+ = 1

2(|µ| + µ) and µ− = 1
2(|µ| − µ),

respectively.

Theorem 9 (Jordan decomposition). Let µ be a bounded finitely additive mea-
sure. Then µ+ and µ− are nonnegative bounded finitely additive measures satis-
fying the relations µ+ + µ− = |µ|, µ+ − µ− = µ.

Proof. By Proposition 4, |µ| is bounded. This fact together with the inequal-
ity (1.1) implies that µ+ and µ− are nonnegative and bounded.

Because |µ| is finitely additive by Theorem 3, the finite additivity of µ+ and
µ− is obvious. The remaining relations follow directly from Definition 8.

�

Proposition 10. Let µ be a finitely additive measure and A a measurable set.
Then we have

µ+(A) = sup{µ(F ) : F ⊂ A, F ∈ A}, µ−(A) = − inf{µ(F ) : F ⊂ A, F ∈ A}.
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Proof. From the definitions of µ+ and |µ|, we obtain

µ+(A) = 1
2(µ(A) + |µ|(A)) = 1

2

(
µ(A) + sup

{
n∑

i=1
|µ(Ai)|

})

= sup
{

1
2

(
µ(A) +

n∑
i=1

|µ(Ai)|
)}

,

where the supremum is taken over all n ∈ N and all collections A1, . . . , An ∈ A
of pairwise disjoint subsets of A. We ought to prove

sup{µ(F ) : F ⊂ A, F ∈ A} = sup
{

1
2

(
µ(A) +

n∑
i=1

|µ(Ai)|
)}

.

It is sufficient to show
1. For each F ⊂ A, F ∈ A, there exists a value 1

2(µ(A) +
n∑

i=1
|µ(Ai)|) greater

or equal to µ(F ): Fix such F and set n = 2, A1 = F , A2 = A \ F . Then
we have

1
2(µ(A) + |µ(F )| + |µ(A \ F )|) = 1

2(µ(F ) + µ(A \ F )+

+|µ(F )| + |µ(A \ F )|) ≥ 1
2(µ(F ) + |µ(F )|) ≥ µ(F ).

2. For each value 1
2(µ(A) +

n∑
i=1

|µ(Ai)|), there exists F ⊂ A, F ∈ A such

that µ(F ) is greater or equal to 1
2(µ(A) +

n∑
i=1

|µ(Ai)|): Take an arbitrary
1
2(µ(A)+

n∑
i=1

|µ(Ai)|). Without loss of generality we can assume that
n⋃

i=1
Ai =

A (otherwise, we would add the set A \
n⋃

i=1
Ai to the collection {Ai}n

i=1).
Define

I+ = {i ∈ {1, . . . , n} : µ(Ai) ≥ 0}, I− = {i ∈ {1, . . . , n} : µ(Ai) < 0}.

Then we obtain
1
2

(
µ(A) +

n∑
i=1

|µ(Ai)|
)

= 1
2

⎛⎝∑
i∈I+

µ(Ai) +
∑
i∈I−

µ(Ai) +
∑
i∈I+

µ(Ai) −
∑
i∈I−

µ(Ai)
⎞⎠

= µ

⎛⎝ ⋃
i∈I+

Ai

⎞⎠ .

Hence we can take F = ⋃
i∈I+

Ai.

To prove the second claim, we observe that µ− = (−µ)+. Using the first part of
the proposition, we get

µ−(A) = (−µ)+(A) = sup{−µ(F ) : F ⊂ A, F ∈ A}
= − inf{µ(F ) : F ⊂ A, F ∈ A},

which concludes the proof.
�
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Proposition 11. Let µ be a bounded finitely additive measure. Then we have
µ+ = sup{µ, 0} and µ− = − inf{µ, 0} (the partial ordering on the set of measures
is defined as follows: µ ≤ ν if and only if µ(A) ≤ ν(A) for every A ∈ A).

Proof. First, we show that µ+ = sup{µ, 0}. By Theorem 9, µ+ and µ− are
nonnegative. Hence 0 ≤ µ+ and the equality µ = µ+ − µ− implies µ ≤ µ+.

Let ν be a finitely additive measure such that µ ≤ ν and 0 ≤ ν. We want
to prove that µ+ ≤ ν. If A, F ∈ A, F ⊂ A, then ν(A) ≥ ν(F ) because ν is
nonnegative. Since µ ≤ ν, we have

sup{µ(F ) : F ⊂ A, F ∈ A} ≤ sup{ν(F ) : F ⊂ A, F ∈ A}.

The supremum on the left side is µ+(A) by Proposition 10 and the supremum on
the right side is ν(A) because ν is monotone. This proves µ+(A) ≤ ν(A).

The second claim of the proposition follows from the identity µ− = (−µ)+.
�
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2. Yosida-Hewitt decomposition
The aim of this chapter is to show that every bounded finitely additive measure
can be written as a sum of a σ-additive part and a purely finitely additive part
(see Definition 14). Furthermore, the decomposition is unique.

2.1 Decomposition of a nonnegative measure
Definition 12. Let µ be a bounded nonnegative finitely additive measure. We
define

µc(A) = inf
{ ∞∑

i=1
µ(Ai) : Ai ∈ A,

∞⋃
i=1

Ai ⊃ A

}
, A ∈ A.

Proposition 13. Let µ be a bounded nonnegative finitely additive measure. Then
µc is σ-additive and 0 ≤ µc ≤ µ (where 0 denotes the measure which is identically
zero). If µ is σ-additive, then µ = µc.

Proof. Assume that Ej ∈ A, j = 1, 2, . . ., are pairwise disjoint sets and E =
∞⋃

j=1
Ej. As a first step we shall prove µc(E) ≤

∞∑
j=1

µc(Ej). For each j = 1, 2, . . .

let Aji ∈ A, i = 1, 2, . . ., be a sequence of sets such that
∞⋃

i=1
Aji ⊃ Ej. Then we

have
∞⋃

j=1

∞⋃
i=1

Aji ⊃ E, and so by the definition of µc

µc(E) ≤
∞∑

j=1

∞∑
i=1

µ(Aji).

All that remains is to take the infimum of each sum
∞∑

i=1
µ(Aji) on the right side.

The second step is to prove µc(E) ≥
∞∑

j=1
µc(Ej). Take Ai ∈ A, i = 1, 2, . . .,

such that
∞⋃

i=1
Ai ⊃ E. Since µ is nonnegative, for a fixed n ∈ N, we get

µ(Ai) ≥ µ

⎛⎝ n⋃
j=1

(Ai ∩ Ej)
⎞⎠ .

Consequently, using the finite additivity of µ, we obtain

∞∑
i=1

µ(Ai) ≥
∞∑

i=1
µ

⎛⎝ n⋃
j=1

(Ai ∩ Ej)
⎞⎠ =

∞∑
i=1

n∑
j=1

µ(Ai ∩ Ej) =

=
n∑

j=1

∞∑
i=1

µ(Ai ∩ Ej) ≥
n∑

j=1
µc(Ej).

We derived ∞∑
i=1

µ(Ai) ≥
n∑

j=1
µc(Ej).
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Taking the infimum of the left side and letting n approach ∞ gives the second
inequality. Hence the σ-additivity of µc is proved.

Clearly, µc is nonnegative. The inequality µc ≤ µ follows at once if we observe
that for a given A ∈ A, µ(A) is in the set whose infimum is µc(A).

Finally, assume that µ is σ-additive. To prove that µ equals µc, it is enough to
show µ ≤ µc. For A ∈ A, let Ai ∈ A, i = 1, 2, . . ., be a sequence of sets satisfying
∞⋃

i=1
Ai ⊃ A. We have

µ(A) ≤
∞∑

i=1
µ(Ai)

because µ is σ-additive and nonnegative. Taking the infimum of the right side
yields µ(A) ≤ µc(A).

�

Definition 14. Let µ be a bounded nonnegative finitely additive measure. We
say that µ is purely finitely additive if every σ-additive λ : A → [0, +∞) such
that λ ≤ µ is identically zero.

The following proposition states the existence of the decomposition we seek
in the special case of a nonnegative bounded finitely additive measure.

Proposition 15. Let µ be a bounded nonnegative finitely additive measure and
define µf = µ − µc. Then µf is purely finitely additive.

Proof. The inequality 0 ≤ µc ≤ µ from Proposition 13 shows that µf is nonneg-
ative and that µc is bounded, hence µf is bounded as well. By Proposition 13
again, µc is σ-additive, therefore finitely additive, which implies µf is finitely
additive.

Let λ : A → [0, +∞) be a σ-additive measure such that λ ≤ µ − µc. The
proof will be completed if we show 0 ≥ λ. Take A ∈ A and Ai ∈ A, i = 1, 2, . . .,
such that

∞⋃
i=1

Ai ⊃ A and
∞∑

i=1
µ(Ai) < +∞. Since µc and λ are nonnegative and

σ-additive, we have µc(A) ≤
∞∑

i=1
µc(Ai) and λ(A) ≤

∞∑
i=1

λ(Ai). Consequently,

∞∑
i=1

µ(Ai) − µc(A) ≥
∞∑

i=1
µ(Ai) −

∞∑
i=1

µc(Ai) ≥

≥
∞∑

i=1
(µ(Ai) − µc(Ai)) ≥

∞∑
i=1

λ(Ai) ≥ λ(A).

The expressions in the inequalities above are defined because of the assumption
∞∑

i=1
µ(Ai) < +∞. Taking the infimum of the left side of

∞∑
i=1

µ(Ai) − µc(A) ≥ λ(A)
yields 0 ≥ λ(A).

�

Corollary 16. Let µ be bounded nonnegative finitely additive measure. Then µ
is purely finitely additive if and only if µc = 0.

Proof. To prove the first implication, assume that µ is purely finitely additive.
By Proposition 13, µc is nonnegative, σ-additive and µc ≤ µ. Therefore µc

satisfies the requirements on λ in Definition 14, which implies µc = 0.
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Conversely, if µc = 0, then Proposition 15 implies µf = µ − µc = µ is purely
finitely additive.

�

Proposition 17. Let µ be a bounded nonnegative finitely additive measure. Let
ν1, ν2 be nonnegative finitely additive measures such that ν1 is σ-additive, ν2 is
purely finitely additive and µ = ν1 + ν2. Then ν1 = µc and ν2 = µf .

Proof. Take A ∈ A and a sequence of sets Ai ∈ A, i = 1, 2, . . ., satisfying
∞⋃

i=1
Ai ⊃ A. We have 0 ≤ ν1 ≤ µ because ν2 is nonnegative. Therefore

ν1(A) ≤
∞∑

i=1
ν1(Ai) ≤

∞∑
i=1

µ(Ai),

where we also used that ν1 is σ-additive. By taking the infimum of the right side,
we obtain ν1(A) ≤ µc(A).

From Proposition 15 we get that µ decomposes into µc + µf . Comparison of
the two decompositions gives

µc(A) − ν1(A) = ν2(A) − µf (A) ≤ ν2(A).

We already showed that µc −ν1 is nonnegative. It is also σ-additive and less than
or equal to the purely finitely additive measure ν2, thus it must be identically
zero. Hence µc = ν1 and from the equality of the two decompositions we conclude
that µf = ν2.

�
Proposition 17 alternatively follows from a more general Theorem 22, which is
proved in the next section.

2.2 Decomposition in the general case
Lemma 18. Let µ1 and µ2 be nonnegative purely finitely additive measures. Then
µ1 + µ2 is purely finitely additive.

Proof. First, we observe that in Definition 12, it is enough to consider only
disjoint sets Ai whose union is A. Indeed, if Ai ∈ A, i = 1, 2, . . ., are sets satisfying
∞⋃

i=1
Ai ⊃ A, we can find disjoint sets Bi, i = 1, 2, . . ., such that Bi ⊂ Ai ∩ A and

∞⋃
i=1

Bi = A. For those sets, we have
∞∑

i=1
µ(Bi) ≤

∞∑
i=1

µ(Ai).
Define µ = µ1 + µ2. Then µ is nonnegative and finitely additive. By Corol-

lary 16, it is sufficient to show that µc = 0. We will prove that for each A ∈ A:

µc(A) ≤ (µ1)c(A) + (µ2)c(A). (2.1)

Let
∞∑

i=1
µ1(Ai) be an element of the set whose infimum is (µ1)c(A) and

∞∑
j=1

µ2(Bj)

an element of the set whose infimum is (µ2)c(A). Because of the observation at
the beginning of this proof, we can presume that the sets Ai are disjoint and their
union is A. The same can be presumed for the sets Bj.

11



Denote by Eij the intersection Ai ∩ Bj for i, j ∈ N. Then Eij are pairwise
disjoint measurable sets and their union is A, hence

∞∑
i,j=1

µ(Eij) is an element of

the set whose infimum is µc(A). We have

Ai =
∞⋃

j=1
Eij, Bj =

∞⋃
i=1

Eij.

Since µ1 is nonnegative, we get for n ∈ N:

µ1(Ai) ≥ µ1

⎛⎝ n⋃
j=1

Eij

⎞⎠ =
n∑

j=1
µ1(Eij).

Letting n → ∞, this becomes

µ1(Ai) ≥
∞∑

j=1
µ1(Eij). (2.2)

Analogously to (2.2), we derive

µ2(Bj) ≥
∞∑

i=1
µ2(Eij). (2.3)

Finally, using (2.2) and (2.3), we obtain

µc(A) ≤
∞∑

i,j=1
µ(Eij) =

∞∑
i,j=1

(µ1(Eij) + µ2(Eij)) ≤
∞∑

i=1
µ1(Ai) +

∞∑
j=1

µ2(Bj).

Taking the infimum of both sums on the right hand side yields (2.1).
If µ1 and µ2 are purely finitely additive, Proposition 16 implies (µ1)c = 0 and

(µ2)c = 0. It follows from (2.1) that µc = 0, which was to be proved.
�

Definition 19. Let µ be a bounded finitely additive measure. We say that µ is
purely finitely additive if µ+ and µ− are purely finitely additive measures.

Proposition 20. Let µ be a bounded finitely additive measure. Then µ is purely
finitely additive if and only if |µ| is purely finitely additive.

Proof. If µ is purely finitely additive, then µ+ and µ− are purely finitely additive
by Definition 19. Theorem 9 states that |µ| = µ+ + µ− and this sum is purely
finitely additive by Lemma 18.

To prove the converse implication, assume that |µ| is purely finitely additive.
If λ : A → [0, +∞) is σ-additive and λ ≤ µ+, then λ ≤ |µ|. From Definiton 19, it
follows that λ = 0, which proves that µ+ is purely finitely additive. In the same
way, we can show that µ− is purely finitely additive. Hence µ is purely finitely
additive by definition.

�

Theorem 21. Purely finitely additive measures form a linear subspace of the
space M(X, A).

12



Proof. Proposition 20 tells us that if we want to prove a measure is purely finitely
additive, it is sufficient to show that its total variation is purely finitely additive.
In the following, we use this several times without stating it again explicitly.

The set of purely finitely additive measures contains the zero measure, so it
remains to prove that it is closed under addition and scalar multiplication.

First, we prove that if µ1 and µ2 are purely finitely additive measures, then
µ1 + µ2 is purely finitely additive. Proposition 20 implies that |µ1| and |µ2|
are purely finitely additive. Because total variation is nonnegative, |µ1| + |µ2|
is purely finitely additive by Lemma 18. The inequality (1.2) from the proof
of Proposition 6 implies that a σ-additive measure λ : A → [0, +∞) such that
λ ≤ |µ1 + µ2| satisfies λ ≤ |µ1| + |µ2| and is therefore zero. Hence |µ1 + µ2| is
purely finitely additive.

Now we prove that if µ is purely finitely additive and a ∈ R, then aµ is also
purely finitely additive. For a = 0, the claim is obviously true.

In the case a > 0, we show that |aµ| = a|µ| is purely finitely additive. Take
a σ-additive measure λ : A → [0, +∞) satisfying λ ≤ |aµ|, which is equivalent
to 1

a
λ ≤ |µ|. This implies 1

a
λ = 0, hence λ = 0, which shows that |aµ| is purely

finitely additive.
To prove the claim in the case a < 0, it is enough to prove it for a = −1.

That is easily done, because the total variations of µ and −µ are the same.
�

Theorem 22 (Yosida-Hewitt decomposition). Let µ be a bounded finitely additive
measure. Then there exists a unique decomposition µ = µc + µf , where µc is a
σ-additive measure and µf is a purely finitely additive measure.

Proof. Because µ+ and µ− are nonnegative finitely additive measures, we know
from Proposition 15 that µ+ = (µ+)c + (µ+)f and µ− = (µ−)c + (µ−)f . We use
these decompositions to express µ:

µ = µ+ − µ− = ((µ+)c − (µ−)c) + ((µ+)f − (µ−)f ).

By Proposition 13, (µ+)c and (µ−)c are σ-additive, hence their difference is also
σ-additive. By Proposition 15, (µ+)f and (µ−)f are purely finitely additive and
their difference is purely finitely additive because purely finitely additive measures
form a linear space by Theorem 21. We define µc = (µ+)c − (µ−)c and µf =
(µ+)f − (µ−)f to obtain the required decomposition.

Next, we prove uniqueness. Let µ = ν1 + ν2, where ν1 is σ-additive and ν2 is
purely finitely additive. By comparing the two decompositions, we get

µc − ν1 = ν2 − µf .

The difference ν2−µf is purely finitely additive by Theorem 21. In Proposition 20,
we showed that |µc − ν1| = |ν2 − µf | must be purely finitely additive. Theorem 2
claims that |µc − ν1| is also σ-additive. In other words, it is a nonnegative purely
finitely additive measure which is equal to a σ-additive measure. As a consequence
of Definition 14, we obtain that |µc − ν1| = 0, which implies µc − ν1 = 0. This
completes the proof.

�
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Proposition 23. Let µ be a bounded finitely additive measure and let µ = µc +µf

be the decomposition of µ from Theorem 22. Then we have

|µ| = |µc| + |µf |.

Proof. The inequality in one direction is a special case of (1.2). It remains to
prove |µc|+ |µf | ≤ |µ|. In the proof of Theorem 22, we defined µc as (µ+)c −(µ−)c

and µf as (µ+)f − (µ−)f , from which we have

|µc| + |µf | = |(µ+)c − (µ−)c| + |(µ−)f − (µ−)f |.

Again by (1.2), the expression on the right side is less than or equal to

|(µ+)c| + |(µ−)c| + |(µ+)f | + |(µ−)f |.

The finitely additive measures (µ+)c, (µ−)c, (µ+)f and (µ−)f are nonnegative,
therefore equal to their total variations. Hence the expression further simplifies
to

(µ+)c + (µ−)c + (µ+)f + (µ−)f = µ+ + µ− = |µ|.
This proves the second inequality.

�

2.3 Projection onto the space Mσ(X, A)
Definition 24. We define the mapping P : M(X, A) → Mσ(X, A) by setting
P (µ) = µc, where µc is the σ-additive part of µ from Theorem 22.
Proposition 25. The mapping P is a projection onto Mσ(X, A). The kernel of
P consists of purely finitely additive measures.

Proof. Let µ1 and µ2 be elements of M(X, A) and a, b ∈ R. Then the finitely
additive measure aµ1 + bµ2 decomposes as

aµ1 + bµ2 = (a(µ1)c + b(µ2)c) + (a(µ1)f + b(µ2)f ).

We have that a(µ1)c + b(µ2)c is σ-additive and a(µ1)f + b(µ2)f is purely finitely
additive because σ-additive as well as purely finitely additive measures form a
vector space. Since the decomposition into a σ-additive part and a purely finitely
additive part is unique, we obtained

(aµ1 + bµ2)c = a(µ1)c + b(µ2)c.

It follows from the definition of P that P is linear.
We next show that P is idempotent. If µ ∈ M(X, A), then µc = µc + 0 and

the uniqueness of the decomposition implies (µc)c = µc. From this we have

P (P (µ)) = P (µc) = µc = P (µ).

The projection P is onto Mσ(X, A) because if we take µ ∈ Mσ(X, A), then
P (µ) = µ.

If µ ∈ M(X, A) satisfies P (µ) = 0, then µc = 0, therefore µ is purely finitely
additive. Conversely, if µ is purely finitely additive, then the uniqueness of the
decomposition implies P (µ) = µc = 0. This completes the proof.

�
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Remark. Let µ ∈ M(X, A). The identity from Proposition 23 is equivalent to
|µ| = |P (µ)|+ |µ−P (µ)|. Consequently, ∥µ∥ = ∥P (µ)∥+∥µ−P (µ)∥, from which
it follows that ∥P (µ)∥ ≤ ∥µ∥. This estimate together with Proposition 25 shows
that P is a bounded linear operator of norm less than or equal to 1 (P maps
every bounded σ-additive measure to itself, so the norm is in fact 1).

Combining this with Theorem 22, we obtain that the linear space M(X, A)
is a topological sum of the subspace of real valued σ-additive measures and the
subspace of purely finitely additive measures.

Proposition 26. The projection P satisfies P (µ+) = P (µ)+, µ ∈ M(X, A).

Proof. Let µ be a bounded finitely additive measure. Proposition 23 states
that |µ| decomposes into the sum |µc| + |µf |. By Theorem 2, |µc| is σ-additive
and by Proposition 20, |µf | is purely finitely additive. From uniqueness of the
decomposition we have |µ|c = |µc|. Next, we use the linearity of P to get

P (µ) = P (µ+) − P (µ−), |P (µ)| = |µc| = |µ|c = P (|µ|) = P (µ+) + P (µ−).

Thus the definition of the positive variation implies

P (µ)+ = 1
2(P (µ) + |P (µ)|) = P (µ+),

which was to be proved.
�

15



3. Lebesgue decomposition
Definition 27. Let G be an open subset of Rd and B(G) the σ-algebra of Borel
subsets of G. Let λ denote the Lebesgue measure on Rd. We define

Mac(G, B(G)) = {µ ∈ M(G, B(G)) : ∀A ∈ B(G) : λ(A) = 0 ⇒ µ(A) = 0},

Ms(G, B(G)) = {µ ∈ M(G, B(G)) : ∃B ∈ B(G) : λ(B) = 0 ∧ |µ|(G \ B) = 0}.

It is well known that every σ-additive real valued measure µ on B(G) uniquely
decomposes into the sum µac + µs, where µac is absolutely continuous with re-
spect to λ and µs and λ are mutually singular. This decomposition is called the
Lebesgue decomposition. For a precise formulation of this statement and the def-
initions involved, see [3, 13.8. and 13.10]. The conditions defining Mac(G, B(G))
and Ms(G, B(G)) correspond to the conditions defining absolutely continuous
and singular σ-additive measures, respectively.

In the following, we prove an exact analogue of the Lebesgue decomposition
theorem for finitely additive measures.

Proposition 28. The sets Mac(G, B(G)) and Ms(G, B(G)) are linear subspaces
of M(G, B(G)).

Proof. Both of these sets contain the zero measure. It remains to prove that they
are closed under addition and scalar multiplication. The case of Mac(G, B(G))
is trivial, so we treat only the case of Ms(G, B(G)). Let µ, ν ∈ Ms(G, B(G)).
Then there exist B1, B2 ∈ B(G) such that λ(B1) = λ(B2) = 0 and |µ|(G \ B1) =
|ν|(G \ B2) = 0. If we set B = B1 ∪ B2, then λ(B) ≤ λ(B1) + λ(B2) = 0 and

|µ + ν|(G \ B) ≤ |µ|(G \ B) + |ν|(G \ B) ≤ |µ|(G \ B1) + |ν|(G \ B2) = 0.

This proves µ + ν ∈ Ms(G, B(G)). For a ∈ R, we have

|aµ|(G \ B1) = |a| · |µ|(G \ B1) = 0,

which proves aµ ∈ Ms(G, B(G)).
�

Theorem 29 (Lebesgue decomposition). Let µ ∈ M(G, B(G)). Then µ can be
written as µ = µac + µs, where µac ∈ Mac(G, B(G)) and µs ∈ Ms(G, B(G)), in
exactly one way.

Proof. First, we prove the existence of the decomposition. For a nonnegative
µ ∈ M(G, B(G)), define µs by setting

µs(E) = sup{µ(F ) : B(G) ∋ F ⊂ E, λ(F ) = 0}, E ∈ B(G).

Step 1: We will show that µs ∈ M(G, B(G)). Because µ is bounded, it follows
from the definition of µs that µs is bounded. Let A, B ∈ B(G) be disjoint and
F ∈ B(G), F ⊂ A ∪ B such that λ(F ) = 0. Define F1 = A ∩ F and F2 = B ∩ F .
Then we have B(G) ∋ F1 ⊂ A, λ(F1) = 0 and B(G) ∋ F2 ⊂ B, λ(F2) = 0. From
the definition of µs, we obtain

µ(F ) = µ(F1) + µ(F2) ≤ µs(A) + µs(B).
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Taking the supremum of the left side yields µs(A ∪ B) ≤ µs(A) + µs(B).
To prove the opposite inequality, take F1 ∈ B(G), F1 ⊂ A such that λ(F1) = 0

and F2 ∈ B(G), F2 ⊂ B such that λ(F2) = 0. Denote by F the union F1 ∪ F2.
Then we have B(G) ∋ F ⊂ A ∪ B, λ(F ) = λ(F1) + λ(F2) = 0. Again from the
definition of µs, we obtain

µ(F1) + µ(F2) = µ(F ) ≤ µs(A ∪ B).

Taking the supremum of both summands on the left side yields µs(A) + µs(B) ≤
µs(A ∪ B). From the equality µs(A) + µs(B) = µs(A ∪ B) the finite additivity of
µs follows by induction.

Step 2: Next we prove that µs ∈ Ms(G, B(G)). By the definition of µs(G),
for each n ∈ N, there exists a set Fn ∈ B(G) such that µ(Fn) ≥ µs(G) − 1

n
and

λ(Fn) = 0. If we set F =
∞⋃

n=1
Fn, then the nonnegativity of µ implies

µ(F ) ≥ µ(Fn) ≥ µs(G) − 1
n

for each n ∈ N, hence µ(F ) ≥ µs(G). Because F is a countable union of Lebesgue
null sets, it is also a Lebesgue null set. Hence it is one of the sets over which
we take supremum in the definition of µs(G), and so µs(G) ≥ µ(F ). This proves
µs(G) = µ(F ) and since λ(F ) = 0, µ(F ) is equal to µs(F ). The finite additivity
of µs, which was proved in Step 1, implies µs(G\F ) = µs(G)−µs(F ) = 0. A non-
negative finitely additive measure is equal to its total variation. Applying this to
µs, we obtain |µs|(G \ F ) = 0, from which we conclude that µs ∈ Ms(G, B(G)).

Step 3: Define µac = µ − µs. If A ∈ B(G) satisfies λ(A) = 0, then it follows
from the definition of µs(A) that µs(A) = µ(A), hence µac(A) = 0. This shows
that µac is an element of Mac(G, B(G)). The decomposition for a nonnegative
finitely additive measure was found.

For a general µ ∈ M(G, B(G)), we define µs = (µ+)s − (µ−)s and µac =
(µ+)ac − (µ−)ac. By Proposition 28, µs ∈ Ms(G, B(G)) and µac ∈ Mac(G, B(G)).
Also, µac + µs is a decomposition of µ because

µ = µ+ − µ− = (µ+)s + (µ+)ac − (µ−)s − (µ−)ac = µs + µac.

This completes the proof of the existence of the decomposition.
To prove that the decomposition is unique, it is sufficient to show

Mac(G, B(G)) ∩ Ms(G, B(G)) = {0}.

Let µ be an element of the intersection of Mac(G, B(G)) and Ms(G, B(G)). Then
there exists B ∈ B(G) such that λ(B) = 0 and |µ|(G \ B) = 0. For an arbitrary
set E ∈ B(G), we have λ(B ∩ E) = 0, which implies µ(B ∩ E) = 0. Additionally,

|µ((G \ B) ∩ E)| ≤ |µ|((G \ B) ∩ E) = 0,

hence µ((G\B)∩E) = 0. We obtain the following identity for the value of µ(E):

µ(E) = µ(B ∩ E) + µ((G \ B) ∩ E) = 0.

Since E ∈ B(G) was arbitrary, µ is the zero measure, which was to be proved.
�
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Proposition 30. Let µ ∈ M(G, B(G)) and let µ = µac + µs be the Lebesgue
decomposition of µ from Theorem 29. Then it holds that

|µ| = |µac| + |µs|.

Proof. The proof is similar to that of Proposition 26. The inequality |µ| ≤
|µac|+|µs| follows from the relation (1.2). By the same relation and the definitions
of µac and µs from Step 3 of the preceding proof, we have

|µac| = |(µ+)ac − (µ−)ac| ≤ |(µ+)ac| + |(µ−)ac| = (µ+)ac + (µ−)ac,

|µs| = |(µ+)s − (µ−)s| ≤ |(µ+)s| + |(µ−)s| = (µ+)s + (µ−)s.

These relations together imply

|µac| + |µs| ≤ (µ+)ac + (µ−)ac + (µ+)s + (µ−)s = µ+ + µ− = |µ|.

This proves the inequality |µ| ≥ |µac| + |µs|.
�

Definition 31. We define the mapping S : M(G, B(G)) → Mac(G, B(G)) by
setting S(µ) = µac, where µac is as in Theorem 29.

Remark. The mapping S is a projection onto Mac(G, B(G)) and the kernel of
S is Ms(G, B(G)). The proof of this statement is almost identical to the proof
of Proposition 25 so it will be omitted. Proposition 30 implies that S has the
property that ∥µ∥ = ∥S(µ)∥ + ∥µ − S(µ)∥ for µ ∈ M(G, B(G)).

As in the case of the projection P , we obtain that S is a bounded operator
of norm 1 and M(G, B(G)) is a topological sum of the subspaces Mac(G, B(G))
and Ms(G, B(G)). The reader might want to compare this remark to the one
after Proposition 25.

Proposition 32. The projection S satisfies S(µ)+ = S(µ+), µ ∈ M(G, B(G)).

Proof. Let µ be a bounded finitely additive measure. By Proposition 30,
|µ| = |µac| + |µs|. Because µs ∈ Ms(G, B(G)), there exists B ∈ B(G) such that
λ(B) = 0 and |µs|(G \ B) = 0. This condition also guarantees that |µs| is an
element of Ms(G, B(G)).

Let A ∈ B(G) be a Lebesgue null set. Then each Borel subset A1 of A is
also Lebesgue null, which implies µac(A1) = 0. From the definition of the total
variation of µac, it follows that |µac|(A) = 0, hence |µac| ∈ Mac(G, B(G)).

The uniqueness of the Lebesgue decomposition yields |µ|ac = |µac|. If we use
the linearity of the projection S, then we can complete the proof similarly to the
proof of Proposition 26.

�
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4. Dual spaces isometrically
isomorphic to spaces of measures

4.1 Dual space of the space of bounded Borel
functions

Definition 33. Let G ⊂ Rd be an open set. We define (Bb(G), ∥ · ∥∞) to be
the linear space of all bounded Borel functions on G equipped with the supremum
norm (which is defined as ∥f∥∞ = sup{|f(x)| : x ∈ G} for f ∈ Bb(G)).

The symbol Bs(G) will denote the set of simple functions in Bb(G).

Remark. The normed linear space (Bb(G), ∥ · ∥∞) is a Banach space. The proof
of this fact is a standard exercise in functional analysis and we omitt it. The set
Bs(G) is clearly a linear subspace of Bb(G). Moreover, it is dense in Bb(G). The
proof of this classical result is also omitted.

The purpose of this section is to characterize the dual space of (Bb(G), ∥ ·∥∞).
To do so, we will need to apply the following result of functional analysis.

Lemma 34. Let (X, | · |) be a normed linear space, Y a dense linear subspace of
X and y∗ a bounded linear functional on Y . Then y∗ can be uniquely extended to
a bounded linear functional x∗ on X. The extension satisfies ∥x∗∥ = ∥y∗∥.

Proof. This statement is taught in the introductory course of functional analysis,
hence the proof will be only indicated briefly. For x ∈ X \ Y , find a sequence
{yn}∞

n=1 of points in Y such that lim
n→∞

yn = x. If there exists x∗ with the required
properties, it must satisfy

x∗(x) = lim
n→∞

y∗(yn). (4.1)

On the other hand, formula (4.1) correctly defines a linear functional on X. The
inequality ∥x∗∥ ≥ ∥y∗∥ holds because x∗ is an extension of y∗. The opposite
inequality follows from the estimation

|x∗(x)| = lim
n→∞

|y∗(yn)| ≤ lim
n→∞

∥y∗∥ · |yn| = ∥y∗∥ · |x|.

�

Theorem 35. The dual space of (Bb(G), ∥ · ∥∞) is isometrically isomorphic to
the space M(G, B(G)). The operator T defined by setting

T (x∗) = µ, x∗ ∈ Bb(G)∗,

where
µ(A) = x∗(χA), A ∈ B(G)

is a linear isometry mapping Bb(G)∗ onto M(G, B(G)).
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Proof. Step 1: T maps Bb(G)∗ into M(G, B(G)). Let x∗ be a bounded linear
functional on Bb(G) and set µ = T (x∗). We must prove that µ is a bounded
finitely additive measure. For two disjoint sets A and B in B(G), we have

µ(A ∪ B) = x∗(χA∪B) = x∗(χA + χB) = x∗(χA) + x∗(χB) = µ(A) + µ(B),

from which the finite additivity of µ follows by induction. Now take an arbitrary
set A ∈ B(G). Because ∥χA∥∞ ≤ 1, the boundedness of x∗ implies

|µ(A)| = |x∗(χA)| ≤ ∥x∗∥.

This shows that µ is bounded.
Step 2: T is a linear isometry. It is easy to check the linearity of T . To

show that T is an isometry, let x∗ ∈ Bb(G)∗ and µ = T (x∗). We must prove
∥x∗∥ = ∥µ∥. Consider the functional y∗ = x∗|Bs(G) (the restriction of x∗ to the
subspace of simple functions). By the remark after Definition 33, Bs(G) is dense in
Bb(G). Lemma 34 implies ∥x∗∥ = ∥y∗∥, therefore it suffices to show ∥y∗∥ = ∥µ∥.

Let s ∈ Bb(G) be a simple function such that ∥s∥∞ ≤ 1. It can be written as

s =
n∑

i=1
ciχEi

, (4.2)

where n ∈ N, E1, . . . En ∈ B(G) are disjoint sets and c1, . . . , cn ∈ R. We can
assume that all the sets Ei are nonempty. Then ∥s∥∞ ≤ 1 implies |ci| ≤ 1 for
i = 1, . . . , n. Using the linearity of y∗, we obtain

|y∗(s)| =
⏐⏐⏐⏐⏐y∗

(
n∑

i=1
ciχEi

)⏐⏐⏐⏐⏐ ≤
n∑

i=1
|ci| · |y∗(χEi

)| ≤
n∑

i=1
|µ(Ei)| ≤ ∥µ∥. (4.3)

We proved that |y∗(s)| ≤ ∥µ∥ for an arbitrary simple function s ∈ Bb(G) such
that ∥s∥∞ ≤ 1, or equivalently, ∥y∗∥ ≤ ∥µ∥.

To show the opposite inequality, take a finite collection {Ei}n
i=1 of disjoint sets

in B(G). For i = 1, . . . , n, define

ci =

⎧⎨⎩1, if y∗(χEi
) ≥ 0,

−1, if y∗(χEi
) < 0.

Then the simple function s =
n∑

i=1
ciχEi

satisfies ∥s∥∞ ≤ 1. By the definition of µ,
µ(Ei) = x∗(χEi

) = y∗(χEi
) for i = 1, . . . , n, which yields

n∑
i=1

|µ(Ei)| =
n∑

i=1
|y∗(χEi

)| =
n∑

i=1
ciy

∗(χEi
) = y∗(s) ≤ |y∗(s)| ≤ ∥y∗∥.

Taking the supremum of the left side, we get ∥µ∥ ≤ ∥y∗∥.
Step 3: The mapping T is onto M(G, B(G)). We want to show that for a fixed

µ ∈ M(G, B(G)), there is a linear functional x∗ ∈ Bb(G)∗ such that T (x∗) = µ.
First, we find a suitable functional y∗ on the set of simple functions and then we
extend it to obtain x∗. If χA is a characteristic function of A ∈ B(G), we define

y∗(χA) = µ(A). (4.4)
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Now let s ∈ Bb(G) be a simple function of the form (4.2). We will check that y∗

is well-defined by the formula

y∗(s) =
n∑

i=1
ciy

∗(χEi
).

Denote by r1, . . . , rm the values of s. The function s attains a given value rj

exactly on those sets Ei for which ci = rj because the sets Ei are pairwise disjoint.
Using this observation, we get

y∗(s) =
n∑

i=1
ciy

∗(χEi
) =

m∑
j=1

∑
i∈{1,...,n},

ci=rj

ciy
∗(χEi

) =
m∑

j=1
rjy

∗(χs−1(rj)),

where the last equality holds because of the relation (4.4) defining y∗ on character-
istic functions. The rightmost expression defines the value y∗(s) unambiguously.

The linearity of y∗ follows directly from the definition. The same argument
as the one used in Step 2 shows that ∥y∗∥ ≤ ∥µ∥, hence y∗ is bounded. By
Lemma 35, y∗ has a unique extension x∗ ∈ Bb(G)∗. It follows from (4.4) that the
functional x∗ satisfies T (x∗) = µ.

�
We often required that a finitely additive measure µ be bounded. The next
proposition shows that this condition does not hold automatically.

Proposition 36. There exists an unbounded finitely additive measure.

Proof. First we establish the existence of an unbounded linear functional y∗

on the space Bs(G). Take an algebraic basis B of Bs(G) whose elements have
norm 1. Choose a sequence e1, e2, . . . of elements in B and define y∗(ei) = i for
all i ∈ N. On the remaining elements of B, set the value of y∗ arbitrarily (for
example as 0). Then y∗ can be extended to an unbounded linear functional on
the space Bs(G).

Define µ by setting µ(A) = y∗(χA) for A ∈ B(G). If A, B ∈ B(G) are disjoint,
then we have y∗(χA∪B) = y∗(χA) + y∗(χB), hence µ is a finitely additive measure.
To obtain a contradiction, assume that µ is bounded. Let s ∈ Bs(G) satisfy
∥s∥∞ ≤ 1. By an estimation similar to (4.3), we obtain |y∗(s)| ≤ ∥µ∥, which
implies y∗ is bounded, a contradiction.

�

4.2 Dual space of L∞(G)
Definition 37. Let G be an open subset of Rd. We denote by (L∞(G), ∥ · ∥L∞)
the normed linear space of essentially bounded functions, where the norm ∥ · ∥L∞

is defined by setting

∥f∥L∞ = ess sup
x∈G

|f(x)|, f ∈ L∞(G).

Remark. As in the case of Bb(G) in the previous section, it is well known that
L∞(G) is a Banach space and that characteristic functions form a dense linear
subspace of L∞(G).
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Recall that in Definition 27, we introduced the space Mac(G, B(G)) of finitely
additive measures in M(G, B(G)) which are zero on Lebesgue null sets.

Theorem 38. The dual space of (L∞(G), ∥ · ∥L∞) is isometrically isomorphic to
the space Mac(G, B(G)). The operator T defined by setting

T (x∗) = µ, x∗ ∈ L∞(G)∗,

where
µ(A) = x∗(χA), A ∈ B(G)

is a linear isometry mapping L∞(G)∗ onto Mac(G, B(G)).

Proof. Fix x∗ ∈ L∞(G)∗ and let y∗ : Bb(G) → R be a functional given by the
equality

y∗(f) = x∗(f), f ∈ Bb(G),

where on the right hand side, we regard f as an element of L∞(G). Because
x∗ is linear, y∗ is also linear. We will show that y∗ satisfies ∥y∗∥ = ∥x∗∥. If
f ∈ Bb(G), then the inequality |f(x)| ≤ ∥f∥∞, which holds for every x ∈ G,
implies ∥f∥L∞ ≤ ∥f∥∞. We obtain

|y∗(f)| = |x∗(f)| ≤ ∥x∗∥ · ∥f∥L∞ ≤ ∥x∗∥ · ∥f∥∞

and because f was arbitrary, it follows that ∥y∗∥ ≤ ∥x∗∥. Now take f ∈ L∞(G)
such that ∥f∥L∞ ≤ 1 and define g by setting

g(x) =

⎧⎨⎩f(x), if |f(x)| ≤ ∥f∥L∞ ,

0, if |f(x)| > ∥f∥L∞ .
(4.5)

The function g is equal to f a. e. and satisfies ∥g∥∞ ≤ ∥f∥L∞ ≤ 1. We have

∥y∗∥ ≥ |y∗(g)| = |x∗(g)| = |x∗(f)|,

where we used the fact that x∗ does not distinguish functions that are equal
almost everywhere. Taking the supremum on the right side yields ∥y∗∥ ≥ ∥x∗∥.

We proved that y∗ ∈ Bb(G)∗. Let µ denote T (x∗). By the definition of y∗,

µ(A) = y∗(χA), A ∈ B(G).

It immediatelly follows from Theorem 35 that T is an isometric isomorphism into
M(G, B(G)) (because the norms of x∗ and y∗ are equal).

It remains to prove that the finitely additive measure µ is an element of
Mac(G, B(G)) and T maps L∞(G) onto Mac(G, B(G)). Take A ∈ B(G) such
that λ(A) = 0. The characteristic function of A is zero almost everywhere, hence

µ(A) = x∗(χA) = x∗(0) = 0.

We verified that µ satisfies the condition defining Mac(G, B(G)).
Let µ be a finitely additive measure in Mac(G, B(G)). By Theorem 35, there

exists y∗ ∈ Bb(G)∗ such that µ(A) = y∗(χA) for each set A ∈ B(G). We want to
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use y∗ to define a functional x∗ ∈ L∞(G)∗ whose image under T is µ. Assume
that s is a simple function in Bb(G) and set

x∗(s) = y∗(s), (4.6)

where on the left side, we consider s an element of L∞(G), therefore it actually
represents a whole class of functions, which are equal almost everywhere. We must
show that x∗ is well-defined. If two simple functions s1, s2 ∈ Bb(G) are equal a. e.,
then s̃ = s1 −s2 is a simple function which is zero almost everywhere. This allows
us to express s̃ as a finite sum

n∑
i=1

ciχAi
, where ci ∈ R are nonzero and Ai ∈ B(G)

satisfy λ(Ai) = 0 for i = 1, . . . , n. From the fact that µ ∈ Mac(G, B(G)), it
follows that µ(Ai) = 0 for i = 1, . . . , n. We obtain

y∗(s̃) = y∗
(

n∑
i=1

ciχAi

)
=

n∑
i=1

ciy
∗(χAi

) =
n∑

i=1
ciµ(Ai) = 0,

which implies y∗(s1) = y∗(s2). Hence x∗(s) is well-defined by (4.6).
The functional x∗ is linear because y∗ is linear. We will prove that x∗ is

bounded. Let s ∈ L∞(G) be a simple function such that ∥s∥L∞ ≤ 1. Analogously
to (4.5), we can define a simple bounded function t such that t is equal to s a. e.
and ∥t∥∞ ≤ ∥s∥L∞ ≤ 1. These properties of t yield

|x∗(s)| = |x∗(t)| = |y∗(t)| ≤ ∥y∗∥.

We proved that x∗ is a bounded linear functional on the subspace of simple func-
tions in L∞(G) which is dense in L∞(G) by the remark preceding this theorem.
Lemma 34 now implies that x∗ can be extended to the whole space L∞(G). For
A ∈ B(G), we have µ(A) = y∗(χA) = x∗(χA). This proves that µ is the image of
x∗ under T , therefore the mapping T is onto Mac(G, B(G)).

�

Remark. Let us denote by L1(G) the space of integrable functions defined on
an open set G ⊂ Rd. As a consequence of the previous theorem, we obtain
the following interesting result: The space L1(G) is complemented in its second
conjugate. We only sketch the proof briefly.

Since L1(G)∗ is isometrically isomorphic to L∞(G), we can identify L1(G)∗∗

with Mac(G, B(G)) by Theorem 38. Then the natural embedding maps L1(G)
into Mac(G, B(G)).

Let ν be a σ-additive measure in Mac(G, B(G)). Radon-Nikodým theorem
implies there exists a function f ∈ L1(G) such that ν(E) =

∫
E fdλ for all E ∈

B(G). It is possible to show that the natural embedding discussed above maps f
to ν. Consequently, the embedding maps L1(G) onto the space Mσ(G, B(G)) ∩
Mac(G, B(G)) of σ-additive measures in Mac(G, B(G)).

In Definition 24, we introduced the projection P which sends a bounded
finitely additive measure µ to its σ-additive part. It is not very difficult to prove
that if P is defined on M(G, B(G)), then the restriction of P to Mac(G, B(G))
is a projection onto the space of σ-additive measures in Mac(G, B(G)). Because
P is bounded, Mσ(G, B(G)) ∩ Mac(G, B(G)) is complemented in Mac(G, B(G)).
It follows that L1(G) is complemented in its second conjugate.
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