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Abstract
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Supervisor: Prof. Ing. Václav Hlaváč, CSc.
Supervisor’s e-mail address: hlavac@fel.cvut.cz

Abstract: This thesis belongs to the implementation category of diploma
theses. The work contributes to the EC project COSPAL, IST-2003-004176.
The main goal of the project was the creation of the system of control and
processing of the camera information for the assembly task. The demon-
strator is used within the scope of the COSPAL project to solve a child’s
game – shape sorter puzzle. For solving the puzzle, the industrial robot CRS
Robotics A465 was used. The robot has been available at the supervisor’s
place.
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úkolem této práce bylo vytvoření systému řízení a zpracování informace z
kamer pro úlohy montážního typu. Demonstrátor je používán v rámci pro-
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Chapter 1

Motivation

1.1 Introduction
Artificial cognitive systems are one of the key technologies which will proba-
bly have a significant impact in many areas of human activity in the future.
Lately, a great emphasis has been given to the field of cognitive systems
by agencies funding research worldwide. This diploma project contributes to
one of European Commission supported projects with the acronym COSPAL,
IST-2003-004176, running in years 2004 and 2007. COSPAL is the acronym
for “COgnitive Systems using Perception-Action Learning”. The advisor
of this diploma project is responsible for the team from the Czech Techni-
cal University in Prague participating in the project. Results of this work
directly support experimental activities of the project. Cognitive abilities
developed in the project have to be presented in the demonstrator exploiting
an industrial robot.

The COSPAL project tries to develop a new system architecture and new
learning strategies for the artificial cognitive system. The project COSPAL
studies how the cognitive system can learn its capabilities from scratch based
on its own exploration of the environment. The project also likes to answer
the question which capabilities have to be innate and which can be learned.
These tasks are rather complicated. The strategy chosen in the COSPAL
demonstrator was to use a simple children toy for experimentation, a shape
sorter puzzle. A kid, usually around two years of its age, learns to insert
puzzle pieces (prisms of different colours and shapes of their bases) into the
box through the holes in its top side. The base of the prism must match the
shape of the hole.

The demonstrator is a system consisting of a six degrees of freedom (DOF)
electrically driven industrial robot equipped with camera(s), planar working
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area, a gripper (oriented downwards) and the shape sorter puzzle. The actual
setup is relatively easy. However, the tasks solved by it could be interesting
from the cognitive system research point of view. The goal of this diploma
project has been to adapt the existing industrial robot, its control system for
the demonstrator, construct the gripper and write the basic system software.
This software should allow the experimenters to explore the demonstrator in
their research and experiments.

Figure 1.1: COSPAL project demonstrator solving shape sorter puzzle.

The biological cognitive system, e.g., a monkey or a child, is capable
of reaching the state of a fully learned system. This is an ideal limit state
which the COSPAL system will never achieve. The system has no information
about the task and the environment. In the COSPAL scenario, the system
has to find out the tasks according to the relations between objects in the
environment. The more information the system has a priori, the simpler the
solution can be. There are many ways how to advise the system, e.g., to show
the basics of the game – provide a learning sequence (find an object, move
a robot gripper to the object, grip the object, move the gripper to a box,
release the object into an appropriate hole), give feedback for single actions
and sequences of actions.
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The results of this diploma project were used for the first time in exper-
iments prepared for the review meeting of the COSPAL project held in the
laboratory of the advisor’s institution in September 2006. The higher level
of the system exploring reinforcement learning was prepared for the review
meeting by the fellow student Mr. Radim Krupička. His diploma project
had been running in parallel with the reported one.

Some more information about the COSPAL project is provided in the
following section.

1.2 Project COSPAL
The purpose of this project is to investigate design principles and architec-
tures for technical systems which are capable of learning basic cognitive skills
in a similar way as humans do. It might appear surprising that, for instance,
learning basic motor skills as done by children during the first three years of
their life are hard to simulate in a technical system [6].

To understand why the “simpler” capabilities of humans are more dif-
ficult to simulate than “higher level” capabilities like, for instance, playing
chess, one has to consider the different approaches in human learning and in
implementing technical systems, which appear to be intelligent.

Nowadays, technical systems typically consist of a predefined set of rules,
which control the system’s actions depending on the inputs. Unforeseen
inputs and constellations cannot be processed by such a system. Playing
chess is a very well suited problem for this kind of system design because
the chess game follows exact rules and has a finite (although large) number
of distinct constellations. Simulating certain cognitive capabilities of a one-
year-old child, however, cannot be implemented by a rule based system for
two reasons: First, there are no exact rules in basic behavioural schemes, they
remain too fuzzy and qualitative to be used in a technical system. Second,
the number of possible inputs and the number of possible constellations are
infinite in a way that for any number of rules there exist cases that are not
covered by the rules.

Due to these limitations of rule-based systems, several attempts were
made in the past to design systems showing fuzzy behaviour as well and
where rules were replaced with different methods of machine learning. In
machine learning, the technical system is supposed to adapt itself to a large
set of examples, the training data, and will generalize from the number of
used examples to all potential constellations.

The new aspects to be considered in context of the COSPAL project are
a suitable learning strategy and system architecture for simple perceptual
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schemes where the associations of input and behaviour are triggered by the
system’s own actions. Furthermore, a suitable interface to rule-based systems
is required in order to make the basic capabilities available to a system in
a larger context and to solve tasks. In order to evaluate the progress of
the COSPAL architecture, a technical system will do the same what small
children do: learn to manipulate simple objects like building blocks and to
puzzle objects into a shape sorter.

Figure 1.2: Overview of the COSPAL project architecture.
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Chapter 2

Problem formulation

The aim of the diploma thesis is to design and implement software support
enabling to use the industrial robot CRS A-456 and its control unit in the
demonstrator of the COSPAL project. The robot has been available and
the demonstrator has been developed at the Center for Machine Perception,
Faculty of Electrical Engineering, Czech Technical University in Prague. The
software support should allow the higher layers of the demonstrator to access
the robot.

The CRS A-456 and its control unit is equipped with the dedicated lan-
guage for robot programming named TROL. In the COSPAL demonstrator
both MATLAB and C++ modules are used. The MATLAB serves as the
user interface. One of the tasks of this diploma thesis is to extend the ex-
isting robot control software. The extension should support the feedback
loop having vision components in it. One or more stationary cameras should
be supported. In the original diploma thesis assignment, the camera on the
robot arm was foreseen. However, the COSPAL demonstrator did not need
this option and thus methods for moving the camera held by the robot grip-
per were not developed.

The above mentioned general assignment can be decomposed into several
subtask:

Extension of the robot control system. This will extend and upgrade
the control system of the robot. Calls from higher level languages as,
e.g., MATLAB and C++ should be supported.

Image acquisition module. The aim is to design and implement software
for acquiring images by a camera so that they could be used for the
assembly task.

Interface to shape sorter puzzle. The demonstrator uses a simplified two-
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dimensional (2D) shape sorter puzzle. The robot is used for manipulat-
ing the puzzle. The aim of this module is to create a simple dedicated
hardware of the puzzle which allows exploiting a simple magnetic grip-
per. The other task is to extend the software by manipulation abilities
dedicated to the shape sorter puzzle. Means for adjusting coordinate
systems of the robot and puzzle have to be provided.

Software methodology, documentation, testing. The diploma thesis should
follow common software design methodology. The design and imple-
mentation phases should be documented.
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Chapter 3

Available robot and its software

In this chapter the following topics are discussed:

1. CRS Robotics A465 Industrial Robot.

2. CRS Robotic C500 Robot Controller.

3. Computer.

4. Dragonfly R©Colour Camera.

5. TROL Robot Control Library.

6. MATLAB Interface for CRS A465 Robot.

7. MATLAB Toolboxes.

8. 2D COSPAL Puzzle Simulator.

These topics are divided into two sections. Section 3.1 discusses all the
hardware devices that were used for the project’s purposes. The following
section, Section 3.2, concerns the most important software equipment. In-
formation contained in the text below originate from the following literature
– [8], [3] and [7]. The cited sources are introduced in the text.

3.1 Hardware
The following devices were used at the workspace. The A465 industrial
robot (see Section 3.1.1) with the C500 robot controller (see Section 3.1.2)
were at the project’s disposal. The controller was connected to the computer
(see Section 3.1.3) which was equipped with the corresponding software (the
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software will be discussed later in Section 3.2). A colour camera was attached
to the computer. The camera (see Section 3.1.3) was supposed to take the
images of the scene. The images would be processed subsequently with the
software.

3.1.1 CRS Robotics A465 Industrial Robot

Figure 3.1: CRS Robotics A465 Industrial Robot.

The CRS Robotics A465 robot (see Figure 3.1) is designed with the same
range of motion and payloads as the human arm. The robot has six DOF
(degrees of freedom), realized by a sequence of seven links (rigid component
connecting the joints) and six revolute joints. Each joint is actuated by a
DC motor via a harmonic drive. The robot supports a maximum payload
of 2 kg. Typical uses for the A465 robot include a wide range of laboratory
automation and industrial processes such as machine loading, dispensing,
polishing, deburring, cutting, drilling, trimming, and parts transfer. The
last segment of the robot arm is equipped with a tool flange that allows easy
mounting of a variety of tools.

The robotic arm is situated in the six-dimensional Cartesian coordinate
system. The position and orientation of the arm is described by coordinates
<X, Y, Z, YAW, PITCH, ROLL>(see Figure 3.2(a)). The working area of
the robot is in Figure 3.2(b).
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(a) Robot coordinate system. (b) Robot working area.

Figure 3.2: Robot world coordinates and working area.

3.1.2 CRS Robotics C500 Robot Controller

(a) Front view. (b) Back view; the location of the
GPIO connector is marked.

Figure 3.3: CRS Robotics C500 Robot Controller.

All requests to the A465 robot are processed by the C500 robot controller
(see Figure 3.3) which is equipped with an Intel 286 CPU. The C500 provides
2 serial communication channels, one of which is connected to a special input
device, the so called teach pendant. The other serial channel is connected to
a DOS or Windows 3.1/95/NT/2000 PC; normally, this connection is used
for character based RAPL command transfer. The RAPL is the acronym for
“Robotic Automation Programming Language”, a programming language

11



developed by CRS Robotics. The controller does, however, also support
a proprietary master-slave protocol called ACI (Advanced Communication
Interface) which can be used for binary data transfer (e.g., download of RAPL
programs into the controller memory).

Furthermore, the controller provides several digital input and output
lines. This GPIO (General Purpose I/O) connector is located at the con-
troller rear panel (see Figure 3.3(b)).

3.1.3 Other Devices

PC

The machine that was used during the whole work is described in this para-
graph. The computer was equipped with AMD AthlonTMXP 2400+ CPU,
512 MB RAM, 80GB HDD and Nvidia GeForce4 MX 440 GPU. The C500
robot controller was connected via serial port, the camera used FireWire in-
terface. The computer ran under the Microsoft Windows 2000, 5.00.2195,
Service Pack 4. The software equipment (important for the work) consisted
of the MATLAB 7.1.0.246 (R14) Service Pack 3, CRS Robcomm Robot
Communication and Programming Software for Windows v4.32i and Bor-
land C++ 3.1 compiler.

Camera

The image acquisition device used in the diploma project was a Point Grey
Research colour camera Dragonfly R©(see Figure 3.4). The Dragonfly R©was a
FireWire camera equipped with a Computar 12,5 mm f1:1,3 lens.

Figure 3.4: Point Grey Research Dragonfly R©camera.
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3.2 Software
The following text covers the software that was in use. The C500 robot con-
troller is equipped with the TROL Robot Control Library (see Section 3.2.1).
This will be discussed first. The following topic is the MATLAB Interface for
CRS A465 Robot (see Section 3.2.2). A short introduction of the MATLAB
system is included in this part. Next section concerns the most important
MATLAB Toolboxes (see Section 3.2.3) used in this project. Section 3.2.4
introduces 2D COSPAL puzzle simulator.

3.2.1 TROL Robot Control Library

Programming of the A465 industrial robot has normally to be done in the
RAPL robot control language. While being well suited for typical industrial
applications, RAPL lacks the richness of data types and control structures of
modern high level languages, features which will be needed when implement-
ing more complex (e.g., 3D vision or real time control) tasks. For this rea-
son, an A465 control library was designed and implemented, which enabled
the programmer to control the robot from within his application written in
“C(++)” [8].

Robot Programming

The A465 is normally programmed in RAPL, a BASIC-like interpreter lan-
guage. It is possible either to issue single commands interactively – whereby
the PC acts as a terminal – or to load a complete RAPL program into the
controller memory, where it is executed. See [2] for further details.

What makes the A465 attractive is the possibility of downloading 8086
code (which was generated with a standard assembler or C-compiler) into the
controller’s program buffer and execute it there; in CRS terminology, these
programs are called PCPs (Process Control Program). Most of the low level
system routines (the so called RAPL BIOS) that initiate and control the
actions of the robot arm – similar to the PC BIOS – can be called by a PCP
via a software interrupt; thus, almost any desired action of the arm can be
initiated by a PCP. However, more complex applications, e.g., from the field
of computer vision, cannot be implemented as a PCP for several reasons:

• The size of a PCP (program code + data) may not exceed 64K.

• It is not possible to use hardware devices such as frame grabbers, LAN
adapters, etc.
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• PCPs are executed on an Intel 286 CPU, and the code must not be
register optimized. Thus, the execution speed of a PCP is not sufficient
for many applications [8].

TROL

TROL is a layered communication protocol designed for the data exchange
between a DOS/Windows PC and the C500 robot controller. It provides the
PC-programmer with a comfortable, high level API (Application Program
Interface) that gives him access to almost all RAPL BIOS functions. The
TROL API is a subset of the RAPL command set, but does in some cases
provide more functionality (e.g., the TROLDepart() command accepts full
6 DOF depart vectors, whereas the RAPL DEPART command does only
allow for translations). The parameters of any API function are transferred
via a serial communication channel to the controller, where the TROL server
(which is implemented as a PCP) decodes them and calls the appropriate
subroutine of the RAPL BIOS. The application programmer, however, does
not have to concern himself with PCP programming.

A TROL API function call will be handled as follows [8]:

1. First, range and plausibility checks of the function arguments are ap-
plied. Then, the function code and the parameters are transferred via
serial connection to the controller.

2. At the controller, the PCP server receives the request and decodes
the parameters. If appropriate, some additional plausibility and safety
checks of the arguments will be applied. Finally, the RAPL BIOS is
called and its return value transferred back to the calling API function.

3. The API function receives the BIOS code and returns it to the caller.

It is important to understand that TROL API functions behave strictly
synchronously [8]: they will not return before the corresponding RAPL BIOS
subfunction has been called (or an error has occurred). However, this does
not imply that the requested action (e.g., robot arm movement) has finished
on return of the API function!

Any errors will be reported by API return codes. Furthermore, TROL
provides several call back addresses which are called in the event of commu-
nication errors, thus allowing the user to write his own error handlers [8].
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The TROL Layer Model

This paragraph describes the communication protocol used by TROL to es-
tablish a communication link between the application and the PCP server
and will give an overview over the TROL’s layered communication model.
The architecture of the TROL’s communication model follows roughly the
suggestions of the OSI standard. Below, the four TROL communication
layers and their OSI 1 counterparts are given [8]:

TROL OSI
Physical Layer (1) Physical Layer (1)
Data Link Layer (2) Data Link Layer (2)
Transaction Layer (3) Session Layer (3)
Application Layer (4) Presentation Layer(6) & Application Layer(7)

3.2.2 MATLAB Interface for CRS A465 Robot

TROL Robot Control Library effectively raised the abilities of the A465
robot in the field of 3D-vision or real time control tasks. Because of the need
for controlling the robot in a mathematical environment as MATLAB, the
MATLAB Interface for CRS A465 Robot has been designed [3].

The MATLAB System

The MATLAB System consists of five main parts. These are the MAT-
LAB language, the working environment, Handle Graphics, the mathematical
function library and the Application Program Interface (API). The MAT-
LAB language is a high-performance language for technical computing. It
can be used for both small simple programs and large complex applications.
The second part is the MATLAB working environment. This is a set of
tools and facilities that the user and programmer work with. The examples
are data-managing and debugging. The third main part of the MATLAB
System is the handling of graphics. This graphical system makes it possible
to visualize 2D and 3D data, process images or build a complete Graphi-
cal User Interface on MATLAB applications. The MATLAB mathematical
function library contains a vast collection of computational algorithms from
elementary functions like sums to more sophisticated functions like matrix

1OSI: Open Systems Interconnection, a (logic) model for communication networks pro
posed by ISO.
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inverse. The final part of the MATLAB System is the Application Program
Interface. This library allows programmers to write for example C programs
that can interact with MATLAB through a dynamically linked calling routine
(DLL) [3].

The MATLAB API

The MATLAB API provides a way how to let MATLAB interact with exter-
nal data and programs. Functions supported by the API include the possibil-
ity to call C or Fortran programs from MATLAB, to import and export data
to and from the MATLAB environment and the ability to create client/server
relationships between other applications and MATLAB. The most important
feature of the MATLAB API for this project is that in MATLAB it is possi-
ble to call C subroutines as if they were built-in functions. These MATLAB
callable C functions are referred to as MEX-files. MEX-files are dynamically
linked subroutines that MATLAB can automatically load and execute.

The source code for an MEX-file consists of two distinct parts. The
computational routine contains the code that should be implemented in the
MEX-file. The other part is the gateway routine. This routine connects
the computational routine with MATLAB by the entry point mexFunction
comparable to main in C-file [3].

MATLAB Interface for CRS A465 Robot

Figure 3.5: Architecture of MATLAB Interface for CRS A465 Robot.

All of the functions of the interface are separate DLL’s. These DLL’s will
communicate through a DLL server with the TROL library. When calling
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the TINIT command, the server is initiated. This server ensures that the
robot will remain initialized until it is cleaned up with TCLEANUP. When
first started, the server function is locked. This capability was introduced to
make sure that communication with the robot controller is maintained when
all functions are cleared in MATLAB. If no lock were applied, the server
would also be cleared and it would be impossible to reinitialize the robot.
The architecture of the MATLAB Interface for CRS A465 Robot is shown in
Figure 3.5 [3].

3.2.3 Used MATLAB Toolboxes

There is a very important feature of the MATLAB environment which is a
family of add-on application-specific solutions called toolboxes. The tool-
boxes allow applying specialized technology. The toolboxes are, in fact, com-
prehensive collections of MATLAB functions that extend the MATLAB en-
vironment to solve particular classes of problems, such as signal processing,
control systems, neural networks, fuzzy logic, wavelets, simulation, and many
others.

Image Acquisition Toolbox

The Image Acquisition Toolbox implements an object-oriented approach to
image acquisition. The connection between MATLAB and specific image
acquisition devices is represented by a special object. Various aspects of the
acquisition process can be controlled. All image acquisition is initiated by a
trigger. The toolbox supports several types of triggers. Acquired frames are
stored in a memory buffer. The frames imported into the workspace behave
as any other multidimensional numeric array. Finally, the image acquisition
application can be enhanced by using event callbacks.

Image Processing Toolbox

The Image Processing Toolbox is a collection of functions that extend the
capability of the MATLAB numeric computing environment. The toolbox
supports a wide range of image processing operations, such as image process-
ing, analysis, visualization, and algorithm development. Noisy or degraded
images can be restored, shapes and textures analysed, and two images regis-
tered. Most toolbox functions are common MATLAB files and thus can be
easily modified.
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3.2.4 COSPAL 2D Puzzle Simulator

The COSPAL 2D Puzzle Simulator is an artificial environment for solving
cognitive related tasks. It was created by Erik Jonsson from the cooperative
Linköping University and is entirely implemented in MATLAB system. Vo-
jtěch Franc modified the simulator, so that it corresponded with needs of the
Prague COSPAL team. The main purpose of the simulator was to provide
a test bed for different architectural experiments. The simulator design took
also into account the compatibility with the real demonstrator in the future.
The artificial environment can be seen in Figure 3.6. More information can
be found in [4].

Figure 3.6: Artificial environment of the COSPAL 2D puzzle simulator.
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Chapter 4

Implementation

Chapter 2 discussed the diploma thesis tasks. The entire work is described
by those four tasks. The way the tasks divide the work is not too suitable
for writing the thesis. It is difficult to recognize hardware from software
related task. Another logical structuring of the text is used in the following
chapters. Furthermore, the sectioning honours the chronology of all actions.
This stands both for chapters and their contents. The work will be split into
the following two chapters:

1. COSPAL Project Demonstrator.

2. MATLAB Module for the COSPAL Project.

The construction of the COSPAL project demonstrator is covered in
Chapter 5. The demonstrator consists of the robot (the robot arm is equipped
with an electromagnet) and its controller, the puzzle, the camera and the
computer which is used for operating the whole demonstrator. The tasks
“Extension of the robot control system” and “Interface to shape sorter puz-
zle” are solved in that chapter.

Chapter 6 describes the MATLAB module that is used in the COSPAL
project. This module is responsible for many things, such as camera control,
robot control or integration to the COSPAL project. This chapter solves the
tasks “Image processing and analysis module” and “Interface to shape sorter
puzzle”.
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Chapter 5

COSPAL Project Demonstrator

Introduction
The construction of the COSPAL project demonstrator will be described in
this chapter. The status of the project at that time will be depicted in the
following lines. The A465 robot, the C500 robot control system, the camera
and the control computer were at the project’s disposal. There was no puzzle,
no suitable grabbing device. The camera had to be located somewhere. The
whole working environment had to be created.

The chapter will be divided into four sections. Each section will discuss
some part of the demonstrator construction. Section 5.1 will describe the
construction of the 2D puzzle. Everything related to the electromagnet con-
struction will be solved in Section 5.2. The electromagnet would not work
without some software modifications. This problem is handled in Section 5.3.
Section 5.4 will deal with the construction of a stand. This stand will be de-
signed to support the camera.

5.1 2D Puzzle Construction
In this work, a simplified 2D version of the classical 3D shape sorter puzzle
is used. One instance of a common 3D puzzle is shown in Figure 5.1. The
3D puzzle is a box, whose top face has holes of several shapes in it. The top
face of the box is removable which allows the kid to remove the pieces and
repeat the game.

Each hole represents a different geometrical shape (e.g., a triangle, a
square, a circle). The different puzzle pieces fit into different holes. The
puzzle pieces are usually coloured. Each piece is painted only with one colour.

After some discussions in the COSPAL project consortium, it was decided

20



(a) Puzzle 1. (b) Puzzle 2.

(c) Puzzle 3.

Figure 5.1: Shape sorter puzzle.

that a simple 2D version of a shape sorter puzzle will be used. This was a very
important decision. It enabled to get over some technical difficulties easily,
which could emerge with the 3D version of the puzzle. The main advantage
of that conclusion was having only a little impact on COSPAL project it-
self. The aim of the project is in cognitive learning, not in solving low-level
problems. For example, this change effected both the image processing (3D
scene is more complex than 2D one) and the objects manipulation in the first
place.

As it was mentioned earlier, the task was simplified by going from 3D
to 2D. This meant that a new shape sorter puzzle was needed. No suitable
puzzle was available, so a special one had to be made. Here is the list of all
the requirements the simplified 2D puzzle was expected to have:

• The base board replaces the top face of the classical 3D shape sorter
puzzle. It contains holes where the puzzle pieces will be placed. This
allows the pieces to be removed easily. This operation can be performed
by the robot.

• Each hole has a different shape. The puzzle pieces have to be recognized
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according to their shape. The shapes should have reasonable variability.
This would prevent pointless complications.

• Each piece fits only one hole. There are no pieces with the same shape.

• The puzzle pieces can be distinguished by colour. Each piece has dif-
ferent colour. The picked colours should be contrast enough.

• The manipulation method should be simple but effective. It is impor-
tant that the puzzle pieces can be placed one over another.

First of all, it was necessary to choose suitable materials for the puzzle
construction. The puzzle pieces were expected to keep their shape perfectly,
in addition to that, be lightweight enough. Otherwise it would be quite diffi-
cult for the electromagnet to operate with them. The material that fitted best
the needs was plywood. Plywood is widely used by hobby modellers because
of its typical features, such as resistance to cracking, shrinkage, twisting, etc.
Afterwards the base board with holes and appropriate pieces were cut off.
Each piece fitted exactly into one corresponding hole.

Another important property of the puzzle, the coloured pieces, had to
meet the given requirements. It was necessary for the robot to be able to
distinguish the pieces according to the their colour. There were two options
– either to paint all the pieces with a different colour or use glued coloured
papers. After some discussions the painting method was eliminated. The
advantage of the papers consisted in easy implementation and having less
problems in image segmentation (coloured paper has the same tone almost
in all places). Opaque papers were founded the most suitable. They cause
only a little or hardly any reflection and thus improve conditions for successful
image segmentation. However, before pasting papers on the pieces, one more
thing had to be done.

The last required feature of the puzzle was the ability of the pieces to be
gripped with the electromagnet (in other words – pieces are “grippable”). The
idea of the manipulation with the pieces was quite simple. The robot places
the electromagnet right on the piece. The electromagnet is turned on, the
piece is gripped. The robot moves the electromagnet to a different position.
The electromagnet is turned off. The piece is released and the robot moves
away. To make this work, certain modifications of the puzzle pieces were
required. A thin steel plate was glued on the top of each piece. This enabled
proper manipulation with the pieces.

At that moment the puzzle was almost finished. The placing of the papers
was the last thing which remained. At first, two layers of the papers were
used. This intention was not correct and caused many difficulties. The
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two layers showed up to be too thick. The electromagnet had problems with
gripping the pieces. The pieces also tended to fall of the electromagnet during
the electromagnet movement. The solution was obvious – only one layer of
paper had to be fasten with glue.

Before proceeding to the next task, the electromagnet construction, one
more thing has to be mentioned. The puzzle base board and the puzzle pieces
were placed on the board that was in the reach of the robot arm. In attempt
to improve the image processing of the scene, some minor adjustments to
the board were tried. Covering the board with a black cloth was the most
significant one. The tests proved this to be a good idea. The base board and
pieces were contrastive enough with the background.

5.2 Electromagnet Construction
In the previous section, the puzzle construction is discussed. According to
the decision, which was made at the beginning of the work, 2D version of
the shape sorter puzzle was chosen. The problem of how to grip the puzzle
pieces had to be solved. Consequently something capable of gripping a flat
plywood piece was needed. Two possible options were considered: to use
either a mechanical gripper or an electromagnet.

The first option, the mechanical gripper, was soon rejected. This ap-
proach had only one real advantage. The A465 robot was already equipped
with a working gripper. It was part of the original robot accessories. How-
ever, the original gripper did not fit the purpose – to grip the puzzle pieces.
It was necessary to find a way how to modify this gripper. It was expected to
be capable of operating with the flat puzzle pieces. No simple working solu-
tion regarding the gripper came up. For example, one proposal assumed the
usage of the original gripper (without modifications) and some sticks added
to the puzzle pieces. The stick would be approximately 5 cm long, placed
in the centre of the piece, perpendicular to the piece. However, it would be
impossible to lay a piece over another one.

As it was mentioned earlier, there were two options. The gripper, the first
option, was not suitable for the task. The second option, the electromagnet,
was chosen. The biggest disadvantage of this approach was that, in fact, no
working electromagnet was actually available. All possible alternatives were
considered. The outcome of the discussion was the following decision: an
electromagnet designed specially for the project’s purposes should be con-
structed and used. This was not only about the electromagnet construction
but also about other certain modifications. These things will be dealt with
for the rest of this section and in Section 5.3. At this moment, it would be
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a good idea to make a list of all the necessary tasks leading to the working
electromagnet:

• The electromagnet must be constructed (the device itself). It should
be able to manipulate with the puzzle pieces and should work reliably.

• The electromagnet has to be mounted on the robot arm. The construc-
tion should be simple but it should protect the electromagnet from the
damage caused by a careless manipulation.

• The computer has to control the electromagnet. It is needed to solve
and implement the way the computer communicates with a device the
electromagnet is connected to.

According to the preceding list, the first task was the electromagnet con-
struction. That was quite a simple task. The main part of an electromagnet
is an electromagnetic coil. The easiest way how to obtain one is to use an old
relay. A relay is an electrical component which is, in fact, built around a coil.
The only “problem” was to select the right one. The electromagnet had to be
strong enough to hold the puzzle pieces. The relay was downgraded – the ex-
pendable parts were removed. Adding some necessary electrical components
as some semiconductor diodes, a resistor and, of course, some wires an oper-
ational electromagnet was created (see electrical scheme in Figure 5.2). The
components were mounted on the relay coil. Finally, the wire was attached
to the relay. At that moment, the functional electromagnet was available.

Figure 5.2: Electrical scheme of the electromagnet.

The first task was successfully completed. The second task, mounting
the electromagnet on the robot arm, was a more complex one. As it was
said before, the A465 robot is equipped with the mechanical gripper. The
gripper is attached to the robot at the end of the arm. However, the arm’s
tool flange allows removing the gripper and replacing it with another device.
The robot had been used in different projects in the past and various devices
had been mounted on the arm. Some special holders had been developed for
those purposes. The most appropriate, the L-shaped holder, was mounted
in the A465 tool flange.
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The biggest issue, talking about the second task, had not been solved
yet. The electromagnet had to be connected in a way that would prevent the
electromagnet damage during the manipulation. The most critical operation
was gripping and placing the puzzle pieces. The attachment must guarantee
a secure approach of the electromagnet, for example, to the puzzle pieces,
the base board and the background desk.

There were many suggestions on how to solve this problem. The winning
proposition was based on a movable attachment. The main idea was to use
a thin short bar (approximately 20 cm long). The bar was fixed on one
side to the electromagnet. On the other side, it went through a hole in a
component that was attached to the L-shaped holder. See Figure 5.3. This
was only a brief description. The structure of the connection mechanism
was more complex. The most suitable tool for the construction was a child’s
construction set called “Merkur”. This is a Czech product that had educated
two or three generations of “future designers”. It seems to be very simple
but enables rather complicated constructions to do. The second task hereby
could be declared as done.

(a) Electromagnet 1. (b) Electromagnet 2. (c) Electromagnet 3.

Figure 5.3: Electromagnet.

The last remaining task from the electromagnet task list was about solv-
ing and implementing the communication with the computer. This task could
be divided into these three following subtasks:

• The electromagnet needs a power supply for proper work. The power
supply should provide enough power to hold the puzzle pieces.

• The power supply has to be controlled via computer. It must be pos-
sible to turn the electromagnet on and off programmatically.
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• According to the previous tasks either a new software will be created
or the current one upgraded to allow the MATLAB system to control
the electromagnet.

Two possible ways were taken into the consideration: to use either an
external device or the robot accessories.

The first idea concerned the external device capable of powering the elec-
tromagnet. It was also equipped with a serial port. A serial port RS-232 is
a serial communication physical interface which enables connecting a device
to a computer. The computer would be able to operate the electromagnet.
Finally, the MATLAB environment would be updated. A MATLAB library
allowing the electromagnet control would be created.

The second idea concerned using a special communication interface the
robot is equipped with. The interface would provide the computer with the
ability to power and control the electromagnet. Also in this case, the MAT-
LAB environment would have to be updated. Besides, the robot software
would be modified.

Both approaches had their advantages and disadvantages. For better
understanding, here is a short overview:

The external device The robot interface
Advantage standalone MATLAB library not all-in-one system
Disadvantage all-in-one system somebody else’s sources

In other words, a standalone MATLAB library would be programmed for
the external device. It would manage the communication through the serial
port. The bad thing is that an external device would be needed. The robot
would be dependent on that device. It would not be the all-in-one system.
It would be, in fact, a one-time solution with no capability of the further
enhancement in the future. On the other hand, the robot interface would
benefit from the all-in-one solution. The simulator would not be dependent
on an external device. That solution would enable to utilize upgraded robot
software in further projects. However, modifying and maintaining somebody
else’s source codes is always very problematic, especially when the documen-
tation is poor.

The second approach was picked after some discussions with some re-
searches of both ideas. The all-in-one system and the opportunity to prepare
the background for further projects decided that the second idea won. Some
difficulties were expected to be encountered during the robot software up-
grade. However, the advantages were assumed to outweigh the drawbacks.
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The C500 robot controller [1] has a total of 16 inputs and outputs that can
be used for any general purpose. These facilities are isolated from the main
controller power and logic circuits either mechanically or optically. This con-
figuration makes it very easy to interface to the C500. The general purpose,
or GPIO are those general purpose inputs and outputs that can be used to
interface other machines to the C500, either to be controlled by the C500 or
just to be monitored by the C500. The GPIO connector allows the C500 to
control and monitor external events. The C500 has 16 isolated inputs, and 16
isolated outputs, 12 outputs are low current optically isolated relay drivers
with 60 mA capacity. 4 outputs are 3 A relay contact outputs, with NC and
NO contacts. All relays are connected to a common point, which is fused on
the front panel. The GPIO connector is a female DD-50S connector.

50 pin male connector had to be constructed to use the GPIO connec-
tor. The GPIO connector provided both power for the electromagnet and
the ability to control the electromagnet. The wire leading from the elec-
tromagnet was attached to the connector. The functional description of the
GPIO connector from the robot manual was used to connect appropriate pins
on the male connector. This was important for proper functionality of the
electromagnet. See Figure 5.4.

(a) 50-pin connector. (b) Electrical scheme of the 50-pin
connector.

Figure 5.4: 50-pin connector and its electrical scheme.

This section solved the construction of electromagnet. At this moment,
the functional electromagnet capable of connecting to the robot was avail-
able. However, it was not able to work with GPIO port. The third task
of the electromagnet task list had not been finished yet. The third subtask
concerning the software modifications still had to be accomplished. This will
be finished in the next section.
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5.3 Software Upgrade
The third task of the electromagnet construction list will be accomplished
in this section. The last thing that prevented the computer from commu-
nication with the robot was the functionless software part. Two different
interfaces were available with the robot. The older one is “TROL robot con-
trol library” (hereinafter TROL library). The second one is extending the
TROL library and implements an interface to the MATLAB environment. It
is called “MATLAB Interface for CRS A465 Robot” (hereinafter MATLAB-
A465 interface). The documentation and source codes of both TROL library
and MATLAB-A465 interface were examined. As a result, the modification
of both interfaces was necessary. Some information about this topic can be
found in Section 3.2. For more information, the reference to the documenta-
tion can be found in the bibliography (see page 47).

Before getting started with the modifications description, a brief summary
will introduce the main ideas of how the things work. A MATLAB server
runs on the computer. When a function from the MATLAB-A465 interface
is called, it is processed with the server. The server communicates with the
TROL library. The function is recognized and TROL sends the function
identification and the data to the C500 robot controller. An instance of the
TROL PCP server is running in the C500 robot controller. According to the
identification data, the function is recognized. The PCP server handles this
function and calls RAPL BIOS directly. Furthermore, the error checks are
run during the function calls. The results are returned back for further error
handling.

Finally, it is possible to examine the modifications part by part. The
detailed description is in the code documentation located on the enclosed
CD (for CD contents see Appendix A). The MATLAB-A465 interface will
be the first and will be followed by the TROL library. The modifications of
the MATLAB-A465 interface:

1. Two functions were added to the MATLAB-A465 interface.

2. MATLAB server was modified to be able to proceed new function calls.

The modification of the MATLAB-A465 interface was relatively straight-
forward. Two functions were added to the interface – a simple MATLAB
function without any DLL library – tdigout – and an ordinary DLL function
of the MATLAB-A465 interface – trapl. The first one represents the top-
level function of the electromagnet control. It is responsible for turning the
electromagnet on and off. It calls the second function. The trapl function
is more complicated and more important. It processes the calls from the
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tdigout function. The main purpose is to call the MATLAB server and pass
it the data. The main idea of the electromagnet control is in using RAPL
commands. The MATLAB-A465 interface functionality was extended so that
it is possible to use RAPL commands directly within the MATLAB system.
The RAPL command is passed straight to the trapl function.

The second modification of the MATLAB-A465 interface are changes in
the MATLAB server itself. The main reason for doing so is the need to pro-
vide the functionality for the trapl function. When the trapl function calls
the MATLAB server, the server must handle this function. Accordingly, a
section which performs that activity was added. In this section, a TROL
library function TROLRAPL is called. TROLRAPL function will be exam-
ined below. The description of the MATLAB-A465 modification hereby can
be considered as finished.

The modifications of the TROL library:

1. TROL library was modified to be able to handle function calls from
MATLAB server.

2. Handling of the new function was added to TROL PCP server.

The work required updating the TROL library showed up to be less com-
plicated than it had been expected earlier. At first, a function had to be
added to TROL. This function – TROLRAPL – is called from MATLAB-
A465 interface. The purpose of the function is to work as an intermediate
between MATLAB server and TROL PCP server. When the TROLRAPL
function is called, it sends the passed data from the MATLAB server through
the serial port to the C500 robot controller.

The last modification involved the TROL PCP server which runs in the
C500 robot controller. Two changes were needed to finish the software up-
grade. One function was slightly updated (it was just a formal update and
thus it will not be discussed further) and a new function was added. First, the
PCP server processes the data sent through the serial port, then recognizes
the required service function (this is the update) – the HandleRAPL func-
tion and finally, it calls this function. The functionality of the HandleRAPL
function lies in direct communication with the RAPL BIOS.

The modification of the TROL PCP server was the last remaining thing
that prevented the electromagnet from working. From this moment on, fully
operational electromagnet was at the project’s disposal. It was possible to
control the electromagnet from the MATLAB system. The third task of the
electromagnet construction list was successfully accomplished.
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5.4 Camera Installation
The COSPAL project demonstrator will be finished in this section. At one
moment, the robot was equipped with the electromagnet, the electromagnet
was working and everything could be controlled via the MATLAB-A465 in-
terface which ran on the computer. The last thing to be done was to install
a camera.

There are two possible approaches – a camera can be either static or
dynamic. A common definition of a static camera is that the camera does
not move. Such a camera is usually located on a stand, has an overview of
the whole working area and needs only one initial calibration. On the other
hand, a dynamic camera changes its position often. It can be attached to
the robot – usual location is the robot arm near the gripper so that it looks
the same direction as the gripper, has only a limited view and needs regular
recalibrations. A two-camera system was expected at the first stages of the
work. One camera would be static and the other would be attached to the
robot arm. Some of the early experiments indicated that a well positioned
static camera could do the job. The camera mounted on the robot arm
showed up to be redundant.

(a) The refused camera
stand construction.

(b) The final camera stand
construction.

Figure 5.5: Camera stands.

The first idea where to place the camera was the top view position – the
camera would be directly above the working area. A new stand was built for
this purpose. It can be seen in Figure 5.5(a). However, the camera suffered
from vibrations. The structure of the stand did not prevent such a behaviour.
The problem was with the gallows-like part. It is quite hard to build a stand
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where camera does not suffer from various vibrations. This was too bad.
Thus, a new solution came up.

The majority of the problems originated from the fact that the top view
position was required. It was difficult to build an appropriate stand only with
limited resources. This seemed to be a significant complication. However, the
solution was simple. A fact that all the obtained images can be transformed
by means of a homography was used (see Section 5.4.1).

Because of the homography, the top view camera position was no longer
required. The camera could be located in any general position. The gallows-
like part of the stand could be removed and the camera was attached to the
stand, which can be seen in Figure 5.5(b). The tests proved this approach
to be correct. The camera installation task was finished.

5.4.1 Homography

A homography is one of often-used operations in the computer vision. That
is the reason why it deserves a more close explanation. At first, some exam-
ples of the homography will be shown. Afterwards, the term itself will be
introduced. The following information was gathered from [9], more details
can be found also there.

Two simple cases can be pointed out. The first example is a 2D homog-
raphy of a planar scene and its representation in a pinhole camera. This
can be used to rectify images of planar scenes to frontoparallel view. An
example (from this project) of an image mapped by a 2D homography is in
Figure 6.2. The second example is two pinhole cameras that share a single
centre of projection of a 3D scene (planar or non-planar). Panoramic images
can be stitched from the sequences of the photographs [9].

Finally, the term homography1 can be explained. Homography is any
mapping Pd → Pd that is linear in the embedding space Rd+1. That is, a
homography is given up to unknown scale and written as

u′ ' Hu, (5.1)

where H is a (d+1)×(d+1) matrix. The transformation maps any triplet of
collinear points to a triplet of collinear points. Non-singularity of the H ma-
trix causes the distinct points to be mapped to the distinct points. The (5.1)
uses homogeneous vectors. To become familiar with homogeneous notation,
it is instructive to show in detail how the non-homogeneous 2D point [u, v]T

(e.g., a point in an image) is actually mapped to the non-homogeneous image
1In literature, homography can be also referred to as “collineation” or “projective trans-

formation”.
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point [u′, v′]T by H using (5.1). With the components and the scale written
explicitly, the equation reads

α

 u′

v′

1

 =

 h11 h12 h13

h21 h22 h23

h31 h32 h33


 u

v
1

 . (5.2)

The third coordinate of u′ is set to 1. This tacitly assumes that u′ is not a
point at infinity. That means α 6= 0. Elimination of the scale α is desired to
compute [u′, v′]T . This yields the expression

u′ =
h11u + h12v + h13

h31u + h32v + h33

, v′ =
h21u + h22v + h23

h31u + h32v + h33

,

familiar to people who do not use homogeneous coordinates. Note that com-
pared to this expression (5.1) is simpler, linear, and can handle the case when
u′ is a point at infinity. These are the practical advantages of homogeneous
coordinates [9].

The homography has some important features, the invariants. It is collinear-
ity, closely related tangency and cross-ratio on a line. There are some sub-
groups of the projective transformation group – affine, similarity, metric (Eu-
clidean, isometric) and identity subgroup. Each subgroup enhances the in-
variants of the previous one, thus it is possible to write

projective ⊇ affine ⊇ similarity ⊇ metric ⊇ identity.

The identity is the most strict one. Everything is invariant. There are other
subgroups, but these are often met in computer vision [9].

Any homography can be uniquely decomposed as H = HP HAHS where

HP =

[
I 0
aT b

]
, HA =

[
K 0
0T 1

]
, HS =

[
R −Rt
0T 1

]
, (5.3)

and the matrix K is upper triangular. Matrices of the form of HS represent
Euclidean transformations. Matrices HAHS represent affine transformations
and matrices HP HAHS represent the whole group of projective transforma-
tions [9].

A frequent task in 3D computer vision is to compute the homography
from (point) correspondences. A set {ui,u′

i}
m
i=1 of ordered pairs of points

presents a correspondence. Each pair corresponds in the transformation. To
compute H, the homogeneous system of linear equations need to be solved

αiu′
i = Hui, i = 1, . . . ,m (5.4)
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for H and the scales αi. This system has m(d+1) equations and m+(d+1)2−1
unknowns; there are m of the αi, (d+1)2 components of H, while −1 suffices
to determine H only up to an overall scale factor. m = d+2 correspondences
are needed to determine H uniquely (up to scale) [9].

Summary
This chapter was aimed at the construction of the COSPAL project demon-
strator. Section 5.1 described the construction of the 2D shape sorter puzzle.
The two following sections discussed all tasks necessary to putting the elec-
tromagnet into service. The first of the two sections, Section 5.2, contained
the hardware related tasks, such as the electromagnet construction. The
software related tasks were described in Section 5.3. The last section of this
chapter, Section 5.4, was concerned with the works required for the camera
system construction. The demonstrator consisted of the robot arm (equipped
with the electromagnet) and its controller, the shape sorter puzzle, the cam-
era system and the computer. The demonstrator could be controlled from
the computer. The robot control system was extended and one part of the
“Interface to shape sorter puzzle” task was also accomplished.

Besides the accomplishment of the requested tasks a positive side-effect
was achieved. The utilization of the GPIO port for project’s purposes is
based on controlling only one pin (out of 50). The pin has two states –
on and off. This was the way how the electromagnet was turned on and
off. The idea of the side-effect is that, in fact, the TROL library and the
MATLAB-A465 interface can be upgraded to enable the full control of the
GPIO port.

The next chapter will deal with the creation of the module for MATLAB
system. This module will be an interface that could be used in COSPAL
project.
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Chapter 6

MATLAB Module for the
COSPAL Project

Introduction
This chapter is dedicated to the MATLAB module for the COSPAL project.
The COSPAL project demonstrator was already available at the time the
works on this module started. The main task was to create this module
so that it would be possible to use the demonstrator for COSPAL project’s
purposes.

One of the significant advantages of the COSPAL project is the modular
concept. Each module has a specific interface. It is possible to switch the
corresponding modules. For example, different segmentation methods can
be implemented, different object detection approaches can be tested, the
software simulator can be switched for the real demonstrator. The COSPAL
project uses a modified COSPAL 2D puzzle simulator. The simulator can
perform all the tasks the real demonstrator is capable of. The idea was
that the replaced module would work without any restrictions. The images
generated by the simulator would be replaced by the camera output, the real
robot arm would move instead of the simulator one. The puzzle pieces could
be recognised, gripped, moved and released again. A module with the same
interface as the software simulator had to be created. This would enable the
demonstrator to be used in further experiments.

As mentioned earlier, the COSPAL project demanded an operational
demonstrator. The demonstrator was already built (see Chapter 5) and it
was possible to control it. The robot control had been implemented by means
of the MATLAB-A465 interface (MATLAB Interface for CRS A465 Robot)
functions calls so far. However, this was very impractical indeed.
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6.1 Object-Oriented Design of the MATLAB
Module

Only a basic overview will be examined here. The details are situated in the
code documentation on the enclosed CD. The object-oriented design of the
MATLAB module can be seen in Figure 6.1. There are three objects – the
camera (see Section 6.2), the robot (see Section 6.3) and the control object
(see Section 6.4).

MATLAB-A465
Interface

COSPAL
module

Control

Camera

Robot
1

1

1

1

Figure 6.1: Object-oriented design of the MATLAB Module.

The camera object is responsible for all the things relevant to the camera
functionality. The next item is the robot object. It communicates right with
the MATLAB-A465 interface. In fact, it encapsulates the MATLAB-A465
interface functions. These functions are no longer used directly. The ma-
nipulation with the robot is realized by the methods belonging to the robot
object. The methods are not only exact copies of the MATLAB-A465 in-
terface functions, but they also use the functions to create complex actions.
The topmost item of the hierarchy is the control object. It has some im-
portant features. The control object defines the communication interface of
the MATLAB module. The methods are called in order to exploit all the
module abilities. The control object is superior to both other objects. More
complex actions can be created. They are based on the methods of the other
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two objects. The camera object methods take care of the image acquisition
and the robot object methods take care of the manipulation with the objects
in the scene.

The following text is divided, according to the objects, into three parts.
The first section is interested in the camera object, the second in the robot
object and the third in the control object.

6.2 Camera Object
The first object in the object-oriented design is the camera object. This is a
very simple object. It is responsible for the camera initialization in the MAT-
LAB environment and acquiring the images of the scene. The initialization
is a standard procedure but the image acquisition is a more interesting one.

There are two options on how the acquired image looks like. As men-
tioned above, the camera is located in a general position but the top view is
also required. Therefore, the first option represents the image in the way it is
obtained directly from the camera. While the second option returns a trans-
formed image (homography). In this case, the top view transformation is
taken into account. Any transformation can be used though, see Figure 6.2.

(a) Normal image. (b) Transformed image.

Figure 6.2: Image acquired from the camera before and after transformation.

6.3 Robot Object
This is the second object in the object-oriented design of the MATLAB
module. This object is far more complicated. It communicates with the
MATLAB-A465 interface. It directly uses the interface function to control
the robot. The robot object is responsible for the robot initialization and
robot operability. The MATLAB-A465 interface functions are used in two
possible ways, either their counterparts were implemented or the functions
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created a new compound method (the sequence of the MATLAB-A465 in-
terface functions represents a more complex action). Here are two examples.
First, the implementation of the “grip” ability of the robot:

1. Approach the working surface.

2. Turn on the electromagnet.

3. Draw away from the working surface.

Second, the implementation of the “restart” ability of the robot:

1. Turn off the electromagnet.

2. Set higher speed of the motion.

3. Move the robot arm the initial “ready” position.

4. Turn the semifinal joint so that the electromagnet points to the ground.

5. Set the robot to the standby position.

6. Set lower speed of the motion.

There are a few methods in the robot object that are created in such
a way, e.g., grip, release, robot homing, move to position, set speed. The
complete list will be presented in documentation on the enclosed CD.

6.4 Control Object
The last object in the object-oriented design is the control object. This
topmost object, see Figure 6.1, creates the main communication interface
of the MATLAB module. This interface enables the compatibility with the
COSPAL 2D simulator module. The methods of the control object are com-
plex procedures that often combine both the robot and the camera methods,
e.g., the calibration method.

The start-up method of this object causes both the camera and the robot
initialization. All of the control object methods are based on the various
ones of the robot and the camera object. These are the most interesting
methods of this object: image acquisition (several variants are available),
camera calibration, the robot arm movement, performing a special action,
object removal. Here goes the description of each method:
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Image Acquisition. The image acquisition methods are described in Sec-
tion 6.4.1.

Camera Calibration. The calibration of the camera is described in Sec-
tion 6.4.2.

The Robot Arm Movement. The movement of the robot arm around the
working area. It changes, in fact, the position of the electromagnet in
a 2D working area.

Performing a Special Action. This method is described in Section 6.4.3.

Object Removal. This method differs from the others. It is used when an
inserted object has to be removed from the environment. The object is
just erased from the simulator environment. In the real environment,
a supervisor must remove the object.

There are three methods that deserve a little more detailed description.
The first one explains the image acquisition process. The second one imple-
ments the calibration of the camera. The third one serves the other COSPAL
project modules as a communication interface.

6.4.1 Image Acquisition

According to the two different criterions (the acquired image is transformed
to the top view, the robot arm is present at the scene), four different variants
can be found. The overview of all possible variants is presented in the chart
below:

with robot arm without robot arm
top view image scene image
normal view real image real scene image

Each variant has its specific purpose to be used for.

Image method. This variant either serves for presentation purposes or is
used by other COSPAL project modules. For example, the detection
of successful grip of a puzzle piece.

Real image method. The only reason for having this variant is a quick
preview function. It can be used for various setup purposes.
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Scene image method. This is the most important variant because it is
used by other COSPAL project modules. For example, the image is
processed by the image segmentation and the object detection method.

Real scene image method. This variant is used by the calibration method
because the transformation is not available during the calibration pro-
cess. Furthermore, the robot arm does not cover the working area.

6.4.2 Camera Calibration

Scene

Transformed Image

Camera Image

O (Transformed Image 
Coordinate System)

O (Robot Coordinate 
System)

u = H
-1 (u

´)

X

u

u´

Homography
u´ = H(X)

X
=

u
+

sh
ift

Figure 6.3: Homography and transformations between coordinate systems.

The camera calibration is a very important operation. A camera placed
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in a general location can be used. The result of this operation is a certain
transformation matrix. Such a matrix enables various transformations, e.g.,
a top view image can be created.

The camera calibration process is based on the homography (see Sec-
tion 5.4.1). Two things had to be worked out. First, a top view was required.
Second, a transformation from the image to the robot coordinate system was
needed. The determination of the homography would solve both cases. The
solution can be seen in Figure 6.3. There is a scene and an image acquired
by a camera. Providing that the homography is known, the top view can
be obtained. Furthermore, the coordinate system of the transformed image
is determined. The robot coordinate system differs only in the position of
the origin. Thus, a point in the transformed image coordinate system can be
easily transformed to the robot coordinate system.

As mentioned earlier, the homography is needed. According to the (5.4)
in Section 5.4.1, this can be computed from the point correspondences. The
homography is mapping P2 → P2, and thus d = 2 and m = 4. Four
correspondences are required to determine the homography uniquely.

(a) The empty working
area.

(b) The fourth calibration
point.

(c) The difference between
previous images.

Figure 6.4: Camera calibration example.

The calibration method used by the MATLAB module is quite simple.
Before the operation can be realized, an empty working area is required.
Then the first image is acquired (the “real scene image” variant is used during
the calibration process – see Section 6.4.1). A little white object (a little
metal plate covered with white paper) is gripped by the electromagnet. The
electromagnet is moved step by step into the four different positions in the
working area (the corners of a rectangle). At each corner, the object is
released, a new image is acquired and the object is gripped again. Then the
image is compared to the first one (the empty working area) and the difference
defines a point. The coordinates of the point in the image coordinate system
are found. At this moment, four points in the robot coordinate system and
four points in the image coordinate system are available. Therefore, the
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transformation matrix can be calculated. The camera is calibrated now, see
Figure 6.4.

6.4.3 Perform a Special Action

This is the most important method of the MATLAB module interface. It
is used by other modules. It has to carry out an action in the given envi-
ronment. As mentioned earlier, it does not matter whether it is an artificial
environment in the simulator or it is a real in the demonstrator. The same
interface is implemented by both the simulator and the demonstrator. These
modules can be freely interchanged. The information concerning the action
success is returned when it is performed. Three main and one auxiliary ac-
tions can be distinguished. The reason for implementing the auxiliary action
is in demonstrator properties. The simulator does not need to perform this
action. Here is the list of all action:

Absolute move. The electromagnet is positioned into a certain location.
The coordinates are in the image coordinate system and are later con-
verted to the robot coordinate system.

Grip. This action is responsible for a puzzle piece gripping. Moreover, the
presence of an image feedback is worth mentioning. Two images are
acquired during the action – the first before the grip and the second
after the grip. The images are used in the late processing phase to
detect a successful object grip. See Figure 6.5 for more details.

Release. The electromagnet releases a puzzle piece.

Alignment. This is the auxiliary action (it is not present in the 2D COSPAL
simulator). All the simulator pieces are the same (just circles). The
demonstrator puzzle contains the pieces of various shapes. A piece
needs to be aligned so that it can be inserted into a hole.

41



(a) The scene without electromag-
net.

(b) The scene before the grip.

(c) The scene during the grip. (d) The scene after the grip.

Figure 6.5: Images acquired for the grip test purposes.

Summary
The MATLAB module for the COSPAL project was described in this chapter.
This module is based on the original MATLAB-A465 interface which was ex-
tended so that the module could be incorporated into the other COSPAL
project modules. The object-oriented design is discussed in Section 6.1.
The following three sections dealt with each particular object of the object-
oriented design. The camera object was described in Section 6.2, the robot
object in Section 6.3 and the control object in Section 6.4.

As soon as the works on this module finished, the COSPAL project related
tasks could be solved. The main part of the diploma work was done by
accomplishing this module. Finally, next two tasks can be marked as done.
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This concerns the “Image acquisition module” and the “Interface to shape
sorter puzzle” tasks.
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Chapter 7

Conclusion

This chapter summarizes the results of the diploma project. First, the
diploma project’s tasks are checked whether they have been accomplished.
Then, the utilisation of the project’s outcomes is discussed.

7.1 Tasks Accomplishment
In Chapter 2, the diploma project was decomposed into four subtasks. Each
task covers different part of the work. All four tasks are investigated here.

Extension of the robot control system. The robot control system was
modified. The upgrades affected both the TROL library and the MATLAB-
A465 interface. All the modifications resulted in the ability of the
MATLAB module for the COSPAL project to operate the electromag-
net through the GPIO interface. The upgrades also had a positive side-
effect. The usability of the robot in other projects has been increased.
By simple modification of the current software, the full control of the
GPIO port can be achieved.

Image acquisition module. This module is included in the MATLAB mod-
ule for the COSPAL project. In the demonstrator environment, the im-
ages are acquired with a camera. Besides the unaltered images, some
transformed images are required. This module takes care of this. The
advantage of the applied approach is in the camera position indepen-
dent acquisition of the images.

Interface to shape sorter puzzle. The demonstrator of the COSPAL project
capable of playing shape sorter puzzle game was created. The demon-
strator consists of simplified 2D version of the puzzle, the robotic arm
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equipped with the electromagnet and the camera that takes the images
of the working area. The demonstrator control was implemented in
the MATLAB module for the COSPAL project. Besides all this, the
module is responsible for the system calibration.

Software methodology, documentation, testing. Chapter 5 and Chap-
ter 6 are concerned with the design and the implementation of the
demonstrator and the MATLAB module. The software and its docu-
mentation is available on an enclosed disc.

According to the above-mentioned, the author hereby declares all the
goals of his diploma thesis to be accomplished.

7.2 Demonstrator Utilisation
The demonstrator started to be used for solving the tasks related to the
COSPAL project. This was within the scope of the diploma project of Mr.
Radim Krupička. His work was concerned with a certain module capable
of object alignment, object tracing, object recognition and grip detection.
Both the demonstrator and the 2D simulator can be used by that module.
For more details, see the diploma thesis of Mr. Krupička [5].

The next important thing worse mentioning was the COSPAL project
review meeting. It took place on the ground of the Center for Machine
Perception, Faculty of Electrical Engineering, Czech Technical University
in Prague (CTU) in September 2006. Within the frame of the meeting, the
capability of the demonstrator was showed off. Some methods related to the
COSPAL project were presented, such as manipulation abilities of the robot
and learning abilities of the COSPAL system. This was all demonstrated on
the shape sorter puzzle. The COSPAL project was successfully defended and
can further continue.

In the end, the further COSPAL project development will be presented.
The students at the CTU solve COSPAL project related tasks. They use
resources developed during the works on this diploma project. They also
modify and extend the work. One of the modifications can be seen in Fig-
ure 7.1.
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Figure 7.1: COSPAL project related task - cognitive robot puts the cubes
together.
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Appendix A

Contents of the Enclosed CD

A.1 Overview of the Contents of the Enclosed
CD

The enclosed CD contains:

• System guide and code documentation.

• PDF file containing this diploma thesis.

• Project source codes and compiled binaries.

The contents of the individual directories:

gm_module – The main control module of the application is here.

graph_segmentation – This directory contains the segmentation algo-
rithm written in “C” language.

hw_ctu – The contents of this folder present both the robot control and
the image acquisition modules.

rl – The source codes of the reinforcement learning modules are stored here.

robot – This directory contains the source codes, documentation and com-
piled DLL libraries of both the TROL Robot Control Library and MAT-
LAB Interface for CRS A465 Robot.

SEDUMI, stptool and yalmip – These folders incorporate external li-
braries required for the work.
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A.2 List of the Created and Modified Files
The integral component of this diploma project are the files containing the
source codes. The works on this project required the creation of the new
files as well as the modification of the current ones. The enclosed CD con-
tains some functional modules of the COSPAL project. A group of people
has been engaged in the COSPAL project development, and thus the CD
contains the works of many authors. All files referring to this diploma thesis
contain author’s mark PJ. The following list contains both newly created
and modified items. Only the most important files are listed:

• /hw_ctu/@hw_ctu_camera All files in this directory.

• /hw_ctu/@hw_ctu_control All files in this directory.

• /hw_ctu/@hw_ctu_robot All files in this directory.

• /hw_ctu/control_init.m

• /robot/Matlab/Source/TRAPL.C

• /robot/Matlab/Source/TSERVER.C

• /robot/troldev/SOURCE/SEND.C

• /robot/troldev/SOURCE/PCP/PCPTROL.C
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