
MASTER THESIS

Ondřej Ćıfka

Continuous Sentence Representations
in Neural Machine Translation

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: RNDr. Ondřej Bojar, Ph.D.
Study programme: Computer Science

Study branch: Computational Linguistics

Prague 2018

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

ii

Title: Continuous Sentence Representations in Neural Machine Translation

Author: Ondřej Ćıfka

Institute: Institute of Formal and Applied Linguistics

Supervisor: RNDr. Ondřej Bojar, Ph.D., Institute of Formal and Applied Lin-
guistics

Abstract: Recent advances in natural language processing using neural networks
have given rise to numerous methods of obtaining continuous-space vector rep-
resentations of textual data that can be exploited for various applications. One
of these methods is to use internal representations learned by neural machine
translation (NMT) models. However, the attention mechanism in modern NMT
systems removes the single point in the neural network from which the source sen-
tence representation can be extracted. In this thesis, we propose and empirically
evaluate novel ways to remove this limitation. We review existing methods of ob-
taining sentence representations and evaluating them, and present novel intrinsic
evaluation metrics. Next, we describe our modifications to attention-based NMT
architectures that allow extracting sentence representations. In the experimental
section, we analyze these representations and evaluate them using a wide range
of metrics with a focus on meaning representation. The results suggest that the
better the translation quality, the worse the performance on these tasks. We
also observe no performance gains from using multi-task training to control the
representations.

Keywords: sentence representation neural machine translation

iii

iv

Contents

Introduction 3
Related work . 3

1 Evaluating sentence representations 5
1.1 Extrinsic evaluation . 5

1.1.1 SentEval . 5
1.2 Intrinsic evaluation . 6

1.2.1 Analogy completion with offset vectors 6
1.2.2 Domain alignment . 8
1.2.3 Semantic similarity as vector similarity 10
1.2.4 Clusters of paraphrases . 10
1.2.5 Choosing a distance metric 11

2 Representations of sentence meaning 13
2.1 Symbolic representations . 13
2.2 Compositional distributional semantics 13
2.3 Deep learning methods . 15

2.3.1 Encoder architectures . 15
2.3.2 Unsupervised methods . 19
2.3.3 Supervised methods . 21

3 Neural machine translation 23
3.1 RNN encoder-decoder . 23

3.1.1 Attention . 24
3.2 Transformer . 24

4 Proposed models 27
4.1 Compound attention . 27

4.1.1 Encoder with inner attention 27
4.1.2 Attentive decoder . 28

4.2 Constant context . 29
4.3 Transformer with inner attention 30
4.4 Multi-task models . 30

5 Experiments 33
5.1 Training . 33

5.1.1 InferSent multi-task training 33
5.2 Representation evaluation . 34

5.2.1 Paraphrases . 34
5.2.2 Domain alignment . 35

5.3 Results . 36
5.3.1 Translation quality . 36
5.3.2 SentEval . 38
5.3.3 Paraphrase scores . 41
5.3.4 Domain alignment . 41
5.3.5 InferSent multi-task training 44

1

5.4 Discussion . 50
5.4.1 Correlations . 50
5.4.2 Attention interpretation 51
5.4.3 Dimension importance . 54

Conclusion 57
Future work . 57

Bibliography 59

A Attachments 67

2

Introduction
In recent years, deep learning techniques have transformed many areas of com-
puter science and artificial intelligence. One of the fields that benefit from the
advances in deep learning is machine translation (MT), where remarkable im-
provements in translation quality have been enabled by neural machine transla-
tion (NMT) models.

An important feature of deep neural networks is their ability to automatically
learn continuous representations of data. While such representations are more
nuanced than hand-crafted features and allow to capture more complex depen-
dencies present in the data, they are not directly interpretable. It is therefore
unclear whether the superior results achieved by NMT systems are due to more
abstract, meaning-oriented representations, or simply thanks to the ability to
learn a more accurate but superficial mapping.

This thesis aims to shed some light on this question by exploring the repre-
sentations learned by NMT systems. Our task is complicated by the fact that
the most widely used sentence representations are fixed-dimension vectors, while
in modern NMT systems using attention, such representations are not available.
For this reason, previous research aiming to evaluate sentence representations in
NMT has avoided these attention-based systems. In the present work, we pro-
pose novel sequence-to-sequence architectures that address this issue. Our most
important contribution is the introduction of compound attention, which modi-
fies the widely used attention mechanism to make it compatible with a fixed-size
sentence representation.

We evaluate the representations using a wide range of automatic metrics with
a focus on meaning representation. We find that most of the metrics correlate
negatively with translation quality.

We also experiment with multi-task training as a way to steer the sentence rep-
resentations toward state-of-the-art sentence embeddings, but we do not observe
a consistent improvement in the evaluation metrics as a result of this training.

The thesis is structured as follows. In Chapter 1, we present different criteria
that can be used for evaluating sentence representations and in Chapter 2, we
review existing techniques for obtaining such representations. In Chapter 3, we
give a background of the most popular NMT models and continue in Chapter 4
by describing our proposed modifications to these models. Chapter 5 details our
experiments and presents their results.

Related work
The properties of continuous sentence representations have always been of in-
terest to researchers working on neural machine translation. In the first works
on RNN sequence-to-sequence models, Cho et al. (2014b) and Sutskever et al.
(2014) provided visualizations of the phrase and sentence embedding spaces and
observed that they capture some semantic and syntactic structure.

Hill et al. (2016) perform a systematic evaluation of sentence representation in
different models, including NMT, by applying them to various sentence classifi-
cation tasks and by relating semantic similarity to closeness in the representation

3

space.
Shi et al. (2016) investigate the syntactic properties of representations learned

by NMT systems by predicting sentence- and word-level syntactic labels (e.g.
tense, part of speech) and by generating syntax trees from these representations.

Schwenk and Douze (2017) aim to learn language-independent sentence repre-
sentations using NMT systems with multiple source and target languages. They
evaluate primarily by similarity scores of the learned representations for similar
sentences (within or across languages).

All of the above work builds on non-attentive models and deliberately avoids
using attention for reasons already stated.

4

1. Evaluating sentence
representations
This chapter describes possible techniques for evaluating the quality of sentence
representations. Some of the techniques are inspired by work on evaluating word
embeddings. For a recent survey of word embedding evaluation methods, see
Bakarov (2018).

1.1 Extrinsic evaluation
When on the quest for a universal sentence representation, the most natural
evaluation criterion is the performance of our sentence embeddings on different
NLP tasks. This type of evaluation is sometimes referred to as extrinsic. (Also,
this is related to the area of transfer learning, where features pre-trained on one
task are used for a possibly related but different task.) We could therefore base
our evaluation protocol on as many tasks as possible, with complexity ranging
from e.g. sentiment classification to machine translation.

However, tasks that require complex prediction models can be expected to be
less reliable as indicators of the quality of representations. For example, we might
choose to train a neural machine translation model with our source-language sen-
tence embeddings as inputs, and evaluate its translation quality using a metric
such as BLEU. There are two issues with this approach. Firstly, besides evalu-
ating the sentence representation, our metric would also measure the ability of
our NMT model to make use of the information encoded in this representation,
which can vary greatly depending on the model architecture and the optimization
method. Consequently, we might learn more about the fitness of our particular
training setup to the given representation than about the representation itself.
Secondly, machine translation is difficult to evaluate (naturally occurring sen-
tences can have billions of correct translations, as shown by Dreyer and Marcu,
2012; Bojar et al., 2013) and all currently known automatic metrics are but poor
proxies to human judgment. This also applies to other sequence prediction and
structured prediction tasks. In contrast, simple sentence-level classification and
regression tasks are straightforward to evaluate and permit the use of linear pre-
diction models, which are easier to optimize and can be interpreted geometrically.

1.1.1 SentEval
Recently, a set of such tasks has emerged as a commonly used benchmark for
sentence embeddings (see e.g. Kiros et al., 2015; Conneau et al., 2017a). An
open-source tool implementing this benchmark has been released under the name
SentEval.1

Most of the tasks included in this benchmark are of semantic nature. A no-
table example is natural language inference (NLI), a classification task where
the goal is to predict for a pair of sentences – a premise and a hypothesis – whether

1https://github.com/facebookresearch/SentEval

5

https://github.com/facebookresearch/SentEval

the premise implies the hypothesis (entailment), denies it (contradiction), or nei-
ther (neutral). To predict a label from a pair of sentence embeddings u and v, the
embeddings are concatenated with their element-wise product u⊙v and absolute
element-wise difference |u− v|. The resulting feature vector (u, v, u⊙ v, |u− v|)
is then used as input to a logistic regression classifier. The fact that the premise
and the hypothesis are processed independently and only combined just before
the final prediction makes this task very challenging. It means that the underly-
ing model needs to be able to parse the semantics of each sentence and represent
it in a way that allows meanings to be compared using simple mathematical
operations.

Another relevant task is semantic relatedness or similarity.2 Datasets
for this task consist of pairs of sentences labeled with a real-valued similarity
score (from human raters), and the goal is to predict the score given the sentence
pair. SentEval follows the setup of Tai et al. (2015) where the features are the
element-wise product of the respective embeddings and their absolute difference,
i.e. (u ⊙ v, |u− v|). A softmax layer is used to predict a distribution of integer
scores from these features, and the expected value of this distribution is computed
to obtain the similarity score.

SentEval also includes a metric that measures the similarity between u and
v geometrically instead of relying on a prediction model. This is discussed in
Section 1.2.3.

Table 1.1 describes all SentEval classification tasks (on sentence pairs as well
as single sentences) and Table 1.2 lists the similarity tasks. See Dolan et al. (2004)
for details on the MRPC task and Hill et al. (2016) for the remaining tasks.

1.2 Intrinsic evaluation
Apart from providing a performance metric, linear prediction models also have
a straightforward geometric interpretation: they attempt to find subspaces or
‘directions’ in the representation space that correspond to certain linguistic phe-
nomena. Geometric properties like this can also be investigated more directly
using so-called intrinsic evaluation. In general, intrinsic evaluation consists in
defining properties that are deemed desirable and measuring the degree to which
these properties hold; it may not always be clear whether such properties are
helpful for downstream tasks and the metrics should therefore be checked for
correlation with extrinsic ones.

1.2.1 Analogy completion with offset vectors
One technique, commonly applied to word embeddings, is evaluation using analo-
gies (Mikolov et al., 2013d). It is based on the (purported) observation that
certain semantic and syntactic relations between words can be expressed using
simple vector arithmetics. A typical analogy question has the form ‘a is to b as c
is to d’ where d is unknown, e.g. ‘man is to woman as king is to ’, the correct

2Semantic relatedness and similarity are distinct concepts: similarity refers simply to the
degree of semantic equivalence, while relatedness is a more general term encompassing different
types of semantic relations. SentEval contains both similarity tasks (STS) and a relatedness
task (SICK-R). In the following, we use the expression ‘similarity tasks’ to refer to all of them.

6

Name Cl.
Data size

Task type and example
train test

MR 2 11k — sentiment (movies)
an idealistic love story that brings out the latent 15-
year-old romantic in everyone. (+)

CR 2 4k — product review polarity
no way to contact their customer service. (−)

SUBJ 2 10k — subjectivity
a little weak – and it isn’t that funny. (subjective)

MPQA 2 11k — opinion polarity
was hoping (+), breach of the very constitution (−)

SST2 2 68k 2k sentiment (movies)
contains very few laughs and even less surprises (−)

SST5 5 10k 2k sentiment (movies)
it’s worth taking the kids to. (4)

TREC 6 5k 500 question type
What was Einstein’s IQ? (NUM)

MRPC 2 4k 2k semantic equivalence
Lawtey is not the first faith-based program in Florida’s
prison system. / But Lawtey is the first entire prison
to take that path. (−)

SNLI 3 559k 10k natural language inference
Two doctors perform surgery on patient. / Two sur-
geons are having lunch. (contradiction)

SICK-E 3 5k 5k natural language inference
A group of people is near the ocean / A crowd of people
is near the water (entailment)

Table 1.1: SentEval classification tasks with examples. ‘Train’ includes validation
data. Tasks without a test set use 10-fold cross-validation.

Name
Data size

Method
train test

SICK-R 5k 5k regression
STSB 7k 1k regression
STS12 — 3k cosine similarity
STS13 — 2k cosine similarity
STS14 — 4k cosine similarity
STS15 — 9k cosine similarity
STS16 — 9k cosine similarity

Table 1.2: SentEval semantic similarity (STS) and relatedness (SICK-R) tasks.
‘Train’ includes validation data.

7

answer being queen. Mikolov et al. assume that the relation that underlies this
analogy corresponds to a vector offset in the embedding space, so the analogy
can be expressed as

vb − va ≈ vd − vc, (1.1)
where vw is the embedding vector of a word w. Hence, to answer the analogy
question, we can compute v∗ = vc +vb−va and find the word d∗ whose embedding
is most similar to v∗ in terms of cosine similarity:

d∗ = arg max
d

cos(vd, v∗) = arg max
d

v⊤
d v∗

∥vd∥∥v∗∥
. (1.2)

Although this idea has become very popular and was probably one of the
things that made word embeddings an attractive topic, recent research has shown
that it has a number of hidden flaws. Firstly, Levy and Goldberg (2014) point
out that for normalized vectors (as in Mikolov et al.), the method is equivalent
to seeking a word d which is close to b and c in the embedding space while also
being distant from a:

d∗ = arg max
d

(
cos(vd, vb) + cos(vd, vc)− cos(vd, va)

)
. (1.3)

In this reframing, it becomes clear that this method can be somewhat successful
in solving analogies even if they do not exactly correspond to vector offsets.

More importantly, Levy and Goldberg also mention the fact (omitted by
Mikolov et al.) that the method does not search among the 3 vectors that appear
in the analogy question; that is, the argmax in Eqs. (1.2) and (1.3) is actually
over d ̸∈ {a, b, c}. Rogers et al. (2017) demonstrate that this trick is in fact cru-
cial for achieving a decent accuracy: in the ‘honest’ version of the method which
searches over all words in the vocabulary, the retrieved word d∗ is almost always
equal to either b or c. For example, the word closest to ‘king − man + woman’
is not queen but king again. This suggests that queen is already close to king in
the embedding space (as is woman to man) and the method simply exploits this
fact.

In addition to these flaws, there are two issues with applying this technique
to sentence embeddings. Firstly, while we can reasonably assume a closed, finite
vocabulary, we can never enumerate all possible sentences (or compute distances
to them), and (1.2) is therefore infeasible. We can of course approximate the
solution on a sufficiently small sample, but the result will vary hugely depending
on its size, with performance declining as we add more data points.

The second issue is a lack of datasets for this task. Guu et al. (2017) tackle
this problem by generating an artificial sentence analogy dataset with the help
of existing sets of word analogies. The idea is to mine a text corpus for pairs of
sentences that differ in words which are part of a word analogy.

1.2.2 Domain alignment
The just described approach consists in finding the offset vector for a pair of
data points and checking whether it holds for another pair which is in some sense
analogous. A possible generalization of this technique (illustrated in Fig. 1.1) is
to learn a general linear or affine transformation of embeddings from one domain

8

A

W, b

B

L

Figure 1.1: Learning an affine mapping from domain A to domain B. W (weight
matrix) and b (bias vector) are the parameters of this mapping.

to another. By domains, we broadly mean distinct sets of sentences such that the
sentences in each set share a common characteristic and there exists a meaningful
and reasonably well-defined mapping from one set to the other. For example, we
could attempt to find a mapping from informal to formal sentences, from Twitter
posts to newspaper headlines, from negative movie reviews to positive. If we
found such a mapping, we could conclude that the two domains have a similar
structure in the embedding space – in other words, that the representation is
consistent across domains. A major obstacle is once again the lack of parallel
data that would pair sentences from the different domains.

In a bilingual context, we can consider languages to be the domains, and
search for a transformation that would translate words or sentences from a source
language to a target language. In this case, the necessary data is readily available.
Mikolov et al. (2013b) learn a ‘translation matrix’ W that maps word embeddings
from one language to another:

arg min
W

n∑
i=1
∥Wvai

− vbi
∥2. (1.4)

To translate a given word a from the source language, its embedding is multiplied
by W and the closest target-language embedding is retrieved, again using cosine
similarity as the metric. (Note that since the training objective (1.4) is based on
L2 distance, it might be more appropriate to use L2 distance also for retrieving
the translation. See Section 1.2.5 for a discussion of the relationship between L2
distance and cosine similarity.)

For entire sentences, we cannot expect to be able to accurately map the source-
and target-language embedding spaces to each other using something as simple
as an affine transformation, unless the embeddings were trained jointly with this
goal in mind (as in Schwenk and Douze, 2017). However, as hinted above, we
can use the same technique in a monolingual embedding space to find a mapping
between two domains in the same language, provided that we have the parallel
data necessary to learn the mapping.

The technique as just described is supervised because of the need for parallel
data. One could also learn the mapping in an unsupervised way (using unpaired
data from both domains) by means of adversarial training. Again, a similar
approach has been applied to word translation (Conneau et al., 2017b).

9

1.2.3 Semantic similarity as vector similarity
A natural property to demand from a sentence representation space is that em-
beddings of semantically similar sentences lie close to each other, and conversely,
embeddings of semantically dissimilar sentences lie far apart. Such a sentence rep-
resentation would permit to measure semantic similarity directly using a suitable
vector similarity metric, such as cosine similarity. A simple way of quantifying
this property on semantic similarity datasets (used for word representations since
Harris, 1954) is to compute the similarity scores for all test pairs and correlate
them with the human judgments using Pearson or Spearman correlation. This
method is adopted by the SentEval benchmark (see Section 1.1).

In the case of word embeddings, Faruqui et al. (2016) discuss several problems
with this evaluation (e.g. unclear definition, low correlation with extrinsic metrics
and lack of statistical significance) and argue against using it.

1.2.4 Clusters of paraphrases
Another way of investigating the relation between semantic and geometrical prox-
imity is by looking at paraphrases, i.e. sentences with identical or near-identical
meanings. Suppose we possess a corpus where sentences are grouped by their
meaning, so that each sentence is a paraphrase of every other sentence in the
same group. If our goal is to be able to distinguish between meanings geometri-
cally, then each group of sentences should constitute a distinct, coherent cluster
in the embedding space. To assess the extent to which this property holds, we
can either gauge it directly using a suitable clustering validation measure, or by
indirect means such as a classification task.

Internal clustering measures. Internal clustering validation measures are
used for evaluating the quality of clustering, i.e. assignment of data points to
clusters, in cases where the correct assignment is not known. Usually, these
measures combine two criteria: the compactness of the clusters and their mutual
separation. In our setting, the situation is reversed (the assignment to clusters is
fixed and the points themselves are not) but our criteria are the same. However,
we need to be careful and choose a measure that is comparable when the positions
of the data points are different; for example, it needs to be invariant to scaling.

One such commonly used metric is the Davies-Bouldin index (Davies and
Bouldin, 1979), defined as follows. For every pair of clusters, we compute the
ratio Rij of their combined scatter Si + Sj and the L2 distance of their centroids
dij:

Rij = Si + Sj

dij

. (1.5)

Here, Si is the scatter of the ith cluster, i.e. the average L2 distance of its members
to its centroid. This can be interpreted as measuring the mutual ‘entangledness’
of the two clusters. Then, we pick the maximal (i.e. worst-case) value for each
cluster, and average the results:

DB = 1
N

N∑
i=1

max
j ̸=i

Rij. (1.6)

10

Therefore, the lower the Davies-Bouldin index, the better the mutual separation
of the clusters.

Many other internal clustering validation measures exist; see Liu et al. (2010)
for a detailed study.

Paraphrase retrieval. We would like to verify whether nearest neighbors in
the sentence embedding space correspond to paraphrases. A straightforward way,
originally proposed for evaluating the extraction of synonymous words by Curran
and Moens (2002), is to retrieve the k nearest neighbors for each sentence and
calculate precision, i.e. the average fraction of paraphrases among the k neighbors.
It could also be useful to calculate recall (the fraction of retrieved paraphrases out
of all paraphrases). Note that for a particular value of k, it usually does not make
sense to report both: precision should be used when k is less than the number
of paraphrases present in the corpus for each sentence, and recall is appropriate
when k is larger.

This technique suffers from a similar problem as the analogy completion tech-
nique described in Section 1.2.1: for datasets where it is not guaranteed that
different clusters correspond to different meanings, it can happen that a highly
relevant sentence from a different cluster will be closer than a loose paraphrase
from the same cluster, but will not be actually counted as a paraphrase. A sim-
ilar effect is noted by Schwenk and Douze (2017), who use a nearest neighbor
approach to retrieve translations using multilingual sentence embeddings.

Classification into clusters. For k = 1, the paraphrase retrieval technique
can be thought of as 1-NN classification (with leave-one-out cross-validation).
The idea can be extended to other classification methods: choose a subset of
embeddings from each cluster, train a classifier on them and evaluate on the rest
of the embeddings. Especially well-suited for this purpose are classifiers like LDA
and softmax classifiers that can easily handle a large number of classes.

1.2.5 Choosing a distance metric
All evaluation methods presented in this section relied on a similarity measure or
a distance metric. Common choices are cosine similarity and L2 distance, respec-
tively. While both in principle serve the same purpose, each has its advantages
and drawbacks. For the sake of comparing these two measures, let us replace
cosine similarity with cosine distance, defined as

d(u, v) = 1− cos(u, v) = 1− u⊤v

∥u∥∥v∥
. (1.7)

Contrary to its name, cosine distance does not satisfy the formal definition of
a distance metric, violating the requirement that two vectors have zero distance
only if they are identical.3 This is because cosine distance essentially normalizes
its inputs, making all vectors with the same direction indistinguishable.

In spite of this drawback, cosine distance has become the de-facto standard for
word embeddings. This could be because it is computationally inexpensive, and

3Moreover, cosine distance violates the triangle inequality, but this not an issue when it is
only used to rank vectors by distance to a fixed point.

11

because word embeddings are often normalized, in which case the cosine distance
is proportional to the square of the L2 distance:

∥u− v∥2 = (u− v)⊤(u− v)
= u⊤u− 2u⊤v + v⊤v

= ∥u∥ − 2u⊤v + ∥v∥
= 2(1− cos(u, v)).

(1.8)

This means that for ranking normalized vectors, cosine distance and L2 distance
will give the same results.

A reason why cosine distance might work well in practice is that the norms
of embedding vectors may not strongly reflect semantics. For example, it has
been shown (Schakel and Wilson, 2015) that the norm of a word2vec embedding
(Mikolov et al., 2013a,c) is largely determined by the word’s frequency and the
diversity of contexts in which it is used. In this case, using L2 distance would
actually do harm. It is not clear whether this can be generalized to any neural
representation of words or sentences; however, Schwenk and Douze (2017) re-
port that cosine distance consistently works better even for sentence embeddings
obtained from NMT.

To conclude this discussion, different distance metrics should be further in-
vestigated, and we cannot give a clear recommendation as to which one to use
for a given application. In our experiments, we employ both metrics in parallel
wherever it seems appropriate.

12

2. Representations of sentence
meaning
This chapter focuses on different methods of obtaining representations of sen-
tences and their meaning. We begin with a brief detour into symbolic repre-
sentations in Section 2.1 and continue with methods of combining symbolic and
vector-space representations in Section 2.2. The rest of the chapter (Section 2.3)
describes architectures of neural sentence encoders and methods of using them to
learn vector-space representations.

2.1 Symbolic representations
In formal semantics, propositions are commonly represented as logical forms
(Montague, 1970), usually in the language of first-order (predicate) logic. Sim-
ple natural language expressions are represented either as symbols of this formal
language (terms, predicates, logical operators and quantifiers) or as lambda ab-
stractions. This allows to build this representation according to the principle of
compositionality, which states that the meaning of a compound expression (e.g.
a phrase) is a function of the meanings of its constituents.

In contrast to continuous vector representations of sentences, logical forms are
discrete objects of variable size (depending on the complexity of the represented
sentence). They are well suited for automatic reasoning over a knowledge base.

The process of converting a natural language sentence to a logical form is called
semantic parsing. Grammars that adhere to the principle of compositionality
(such as Combinatory Categorial Grammar, see Section 2.2) build a symbolic
representation of meaning together with the syntactic structure. However, a
description of methods used for semantic parsing is outside the scope of this
thesis.

2.2 Compositional distributional semantics
While learning vector-space sentence representations is closely linked to the recent
advances in deep learning, vector-space representations of words have a longer
history, having first been studied within the framework of distributional semantics
(Deerwester et al., 1990; Lund and Burgess, 1996; Schütze, 1998). Based on
the idea that words occurring in similar contexts have similar meanings (the
so-called distributional hypothesis; Harris, 1954), distributional approaches form
word vectors by collecting word co-occurrence statistics.

Compositional distributional semantics (CDS) refers to a set of recent efforts
to unify distributional and formal semantics by building sentence representations
from word vectors using a composition operation. CDS is motivated by the dis-
tributional hypothesis and aims to extend it from words to phrases. As such, it is
somewhat opposed to deep learning techniques, which simply optimize sentence
representations towards performance on a particular task or set of tasks. Nev-
ertheless, some neural network architectures (namely recursive neural networks;

13

see Section 2.3.1) bear similarities to CDS models.
In the simplest of CDS models (Mitchell and Lapata, 2008, 2010), the com-

position operation is realized as addition (possibly weighted), element-wise mul-
tiplication, or a combination of both.

A much more sophisticated theory of compositional distributional semantics,
the so-called categorial framework (Coecke et al., 2010; Maillard et al., 2014),
is based on the formalism of combinatory categorial grammar (CCG; Steedman,
2000). In CCG, each phrase is assigned a syntactic type that directly encodes
its ability to combine with other phrases. There is a small number of primitive
types – such as S (sentence) and NP (noun phrase) – and these are used to derive
complex types. A complex type is denoted as X/Y or X\Y , which means that
a phrase of this type can combine with an adjacent phrase of type Y and this
operation (called application) will yield a phrase of type X. The direction of the
slash determines whether Y should appear to the left (backslash) or to the right
(forward slash) of the complex type. For example, intransitive verbs in English
would have the type S\NP (‘an S missing an NP on the left’) because they can
take a noun phrase (a subject) from the left to form a sentence. Transitive verbs
could be denoted as (S/NP)\NP, requiring an object to the right and a subject
to the left:

S

NP

subject

S\NP

(S\NP)/NP

verb

NP

object

In accordance with the principle of compositionality, the operations in CGG
have an explicit semantic interpretation, allowing to associate each phrase with a
formal representation of its meaning. The idea that allows to replace this formal
representation with a distributional one is to pair each syntactic type with a
distinct tensor space in which the distributional representations live. Primitive
types such as S and NP are associated with spaces of first-order tensors (vectors)
and tensor spaces of complex types are obtained using the tensor product. For
example, the tensor space corresponding to the category of intransitive verbs
S\NP would be the tensor product space S ⊗ NP, whose elements are matrices
(second-order tensors). These higher-order tensors are then treated as linear
maps that can be applied to other tensors by means of the tensor contraction
operation (a generalization of matrix multiplication). For instance, a vector u ∈
NP (representing a noun phrase) can be multiplied by a matrix A ∈ S ⊗ NP
(representing an intransitive verb or a verb phrase), yielding a sentence vector
Au ∈ S. For more details on the different operations in CCG and how they are
realized in this framework, see Maillard et al. (2014).

We have given a very condensed account of how meanings of phrases are rep-
resented in the categorial framework and how they are combined to form the
representations of complex phrases. We still owe an explanation of how to obtain

14

the tensor representations of words. The framework, however, is rather abstract
and doesn’t give a concrete recipe. One option is to compute the vector repre-
sentations of primitive types first (in the standard distributional way, from word
co-occurrence counts) and then use linear regression to learn the representations
of complex types. There is an obvious issue with this method: because the cat-
egory of sentences S is necessarily a primitive type in CCG, we would need to
be able to compute representations of entire sentences before we could find the
representations of categories such as verbs. There have been attempts to remedy
this problem (Grefenstette et al., 2011; Kartsaklis et al., 2012), but to our knowl-
edge, no complete and practically useful implementation of the framework exists
at the time of this writing.

2.3 Deep learning methods
In this section, we will give an account of different approaches to learning sentence
representations, based on supervised or unsupervised deep learning methods.

2.3.1 Encoder architectures
All deep neural networks compute many intermediate numerical representations
of the input. Our focus here is on representations that (1) have a fixed size and
(2) completely separate the input layer from the output layer, and thus capture
all information relevant for producing the output. In networks where such a
representation exists, the ‘subnet’ that computes it is referred to as the encoder.

In neural networks, words are commonly represented as real-valued vectors
called word embeddings. We can either learn these vectors as parameters of the
network or use embeddings obtained using algorithms such as word2vec (Mikolov
et al., 2013a) or GloVe (Pennington et al., 2014) or by means of distributional
semantics (see Section 2.2). The job of the encoder is to combine the sequence
of word embeddings for a given sentence into one vector.1

As in compositional distributional semantics, the simplest way to combine
word embeddings is using a simple mathematical operation such as addition or
averaging. In deep averaging networks (Iyyer et al., 2015), averaging of word
embeddings is followed by one or more feed-forward layers. Such approaches are
generally inadequate for meaning representation since they ignore the syntactic
structure of sentences. Despite this defect, they have been shown to outperform
more complex models in some out-of-domain scenarios (Wieting et al., 2015).

Recurrent neural networks

The most commonly used encoder architectures for text and sequential data in
general are recurrent neural networks (RNNs). An RNN consumes the input

1To reduce the vocabulary size and to deal with rare words, sentences are often presented to
the network as sequences of subword units (Sennrich et al., 2016b) or even individual characters.
The encoder architectures described in this section are largely oblivious to the choice of input
units, and we will therefore assume that we are working with words. However, encoders that
make use of external linguistic knowledge such as syntax are usually more naturally applied to
words than to subword units.

15

sequence (i.e. the sequence of word embeddings) from left to right, updating its
hidden state in each step. In general, an RNN cell receives the input xt at time
t and its previous hidden state ht−1 and uses them to compute the next hidden
state ht. Formally,

ht = f(xt, ht−1), (2.1)

where f is a function whose parameters are learned from data and shared across
all time steps. The last encoder state hT (produced after consuming all T input
words) can then be considered a representation of the sentence. More sophisti-
cated ways of computing a sentence representation from the RNN states will be
discussed later.

Different types of RNN cells – i.e. different implementations of the function f
from Eq. (2.1) – have been proposed, the most popular one being long short-term
memory (LSTM; Hochreiter and Schmidhuber, 1997; Gers et al., 2000, 2002),
designed to capture long-range dependencies and to have stable gradients for
training by back-propagation. One of the most general variants of LSTMs (Gers
et al., 2002) is composed of a so-called memory cell ct and three gates: the input
gate, forget gate and output gate, whose activations are denoted by it, ft and ot,
respectively. The value of the hidden state ht is computed as follows (formulas
adapted from Graves et al., 2013):

it = σ(Wi[xt, ht−1, ct−1] + bi), (2.2)
ft = σ(Wf [xt, ht−1, ct−1] + bf), (2.3)
ct = ft ⊙ ct−1 + it ⊙ tanh(Wc[xt, ht−1] + bc), (2.4)
ot = σ(Wo[xt, ht−1, ct] + bo), (2.5)
ht = ot ⊙ tanh(ct). (2.6)

The hidden state of an LSTM, in the sense of Eq. (2.1), is therefore not just the
vector ht, but the tuple (ht, ct).

The LSTM cell was greatly simplified by Cho et al. (2014b), resulting in the
gated recurrent unit (GRU). The hidden state and the memory cell are merged
into one vector ht and there are only two gates: the update gate and the reset
gate, denoted by zt and rt, respectively. The GRU cell operates as follows:

rt = σ(Wr[xt, ht−1]), (2.7)
zt = σ(Wz[xt, ht−1]), (2.8)
h̃t = tanh(Wh̃[xt, rt ⊙ ht−1]), (2.9)
ht = zt ⊙ ht−1 + (1− zt)⊙ h̃t. (2.10)

Both gates essentially allow to drop information from the previous hidden state
and replace it with new information.

Many other variations on LSTM exist. Józefowicz et al. (2015) empirically
evaluated more than ten thousand different RNN architectures and found one
that outperforms LSTM and GRU on some but not all tasks.

RNNs can also be used to process the input from right to left. In bidirectional
recurrent neural networks (BRNN or BiRNN; Schuster and Paliwal, 1997), a left-
to-right (forward) and a right-to-left (backward) RNN are used to encode the

16

input independently:
−→
ht = −→f (xt,

−−→
ht−1), (2.11)

←−
ht =←−f (xt,

←−−
ht+1). (2.12)

A representation of the sentence can then be obtained by concatenating the final
hidden states in both directions: [−→hT ,

←−
h1]. For some purposes, it is useful to

concatenate the forward and backward hidden state at each time step and treat
them as one RNN state: ht = [−→ht ,

←−
ht].

Deep recurrent neural networks (Graves et al., 2013; Zhou et al., 2016) make
use of multiple RNNs stacked on top of each other, with the hidden states of each
layer becoming the inputs to the next layer. This enables the encoder to build
increasingly abstract representations.

As mentioned above, the usual way to obtain a vector-space sentence represen-
tation using an RNN is to use the last encoder state hT . Another option is to
combine all encoder states by taking the average or maximum over time (some-
times called pooling; Collobert and Weston, 2008; Schwenk and Douze, 2017).

Inner attention

Instead of a simple average, we can compute one or more weighted averages of
the inputs using an inner attention2 mechanism (Liu et al., 2016; Li et al., 2016b;
Lin et al., 2017). This allows the encoder to explicitly decide which parts of the
sentence are important for constructing the sentence embedding. The mechanism
is usually applied on top of the states of a bidirectional RNN, but in theory, it
could also be applied to word embeddings.

A concrete implementation of inner attention will be described in detail in
Section 4.1.1.

Recursive neural networks

Recurrent neural networks can be considered a special case of recursive neural
networks, where the computation graph has a general tree structure. Such models
are more linguistically adequate since instead of building the sentence represen-
tation in a linear fashion, they compose it from units with more well-defined
meanings. Moreover, they enable long-range dependencies to be captured by a
much smaller number of compositions.

The tree structure can be based on syntax, i.e. a dependency or constituency
tree obtained using a parser (Socher et al., 2011, 2013), or learned by the model
in a supervised way (Socher et al., 2010) or an unsupervised way (Yogatama
et al., 2016). The structure could also be completely independent of the sentence
(except for its length), e.g. a balanced binary tree with word embeddings as leaves.
More generally, the encoder may have the structure of any directed acyclic graph
(DAG), such as in grConv (gated recursive convolutional network; Cho et al.,
2014a) or AdaSent (Zhao et al., 2015).

2In the literature, this and similar approaches have been termed inner attention, self-
attention and single-time attention. We find the term self-attention too heavily overloaded
and even misleading, and single-time attention somewhat cumbersome.

17

… very good movie ...
(a , A) (b , B) (c , C)

f(Ba, Ab)=

Ba= Ab=

‐ vector

‐ matrix
...

…

Figure 2.1: The recursive matrix-vector model (image from Socher et al., 2012,
edited). The vector representation p of the phrase very good is computed as
f(Ba, Ab) where (a, A) is the vector-matrix representation of very, (b, B) is the
representation of good, and f is a learned non-linear function. The matrix rep-
resentation P of the phrase (not shown in the figure) is computed as fM(A, B)
where fM is a learned linear function.

In the most basic variants of recursive neural networks, the same operation
is applied at every tree node, as in Socher et al. (2010) or more recently in Tai
et al. (2015). Hermann and Blunsom (2013), whose approach is rooted in the
formalism of combinatory categorial grammar (CCG; see Section 2.2), introduce
distinct weight matrices for different combinatory rules or even different CCG
categories.

An even more fine-grained approach is taken by Socher et al. (2012), who use
a different weight matrix for every word and, by composition, every phrase. Each
word or phrase is therefore represented by a vector (which can be thought of as
representing the actual meaning of the phrase) and a matrix (determining how
it combines with other phrases). The composition operation is always binary.
When forming a compound phrase, the matrix associated with each constituent
is ‘applied’ to the other constituent’s vector representation, and the results are
combined to form the vector representation of the phrase; similarly, the matrix
representation of the phrase is computed by combining the constituents’ matrices.
See Fig. 2.1 for details.

Convolutional neural networks

Convolutional neural networks (CNN) use convolution with a set of learned filters
to compute intermediate representations. For text, the convolutions are usually
computed along the time dimension, which corresponds to taking the dot prod-
uct of a filter with each n-gram (n-tuple of adjacent word embeddings). Multiple
convolutional layers can be applied consecutively, interleaved with pooling oper-
ations (e.g. max pooling) which serve to reduce the representation to a fraction
of the original size.

The most common way to obtain a fixed size representation from a CNN is
to take the maximum over time (Collobert et al., 2011). Most other methods
described above (recurrent or recursive neural networks, inner attention) can in
principle be used as well.

Notable examples of using convolutional networks to learn sentence represen-
tations are Kalchbrenner et al. (2014); Semeniuta et al. (2017); Conneau et al.

18

(a) PV-DM. The task is to predict the next word
given the preceding words.

(b) PV-DBOW. The task is to predict
words randomly sampled from the sen-
tence.

Figure 2.2: Paragraph Vector models (images from Le and Mikolov, 2014). In
the case of sentences, the ‘paragraph matrix’ D contains sentence embeddings as
rows. W is the word embedding matrix.

(2017a). The aforementioned grConv and AdaSent can be seen as hybrids be-
tween recursive and convolutional networks.

2.3.2 Unsupervised methods
We now turn to methods for training neural networks for meaning representation,
mostly employing the encoders described in the previous section. By unsupervised
methods, we mean approaches that make use of unstructured text data without
additional labeling. These methods can be further divided into two categories:
those that work on isolated sentences alone and those that need to access some
context (usually adjacent sentences) during training.

Paragraph Vector (Doc2Vec)

We start with a model by Le and Mikolov (2014) which is atypical in that it does
not have an encoder, and instead learns sentence embeddings as parameters, i.e.
as rows of a sentence embedding matrix D. Despite the name Paragraph Vector
(or Doc2Vec3), it is applicable to texts of any length, ranging from phrases to
entire documents.

Similarly to word embedding algorithms like CBOW and Skip-Gram (Mikolov
et al., 2013a), this technique learns representations that are good at predicting
the distribution of words in a context. Specifically, the PV-DM model (where
DM stands for distributed memory) is trained on the task of predicting the next
word in a sentence given the context of a fixed number of preceding words and the
sentence embedding. In a variant of the model called PV-DBOW (distributed bag
of words), the task is to guess words randomly sampled from the sentence, using
only the sentence embedding as input. Both models are depicted in Fig. 2.2.

An important difference from word embedding algorithms is that in order to
use the model, we need to be able to compute representations of sentences unseen
in the training data. This is done by forming a new sentence embedding matrix D

3The popular name Doc2Vec refers to a concrete implementation: https://github.com/
RaRe-Technologies/gensim/blob/master/gensim/models/doc2vec.py

19

https://github.com/RaRe-Technologies/gensim/blob/master/gensim/models/doc2vec.py
https://github.com/RaRe-Technologies/gensim/blob/master/gensim/models/doc2vec.py

for these unseen sentences and optimizing it using gradient descent while holding
the rest of the parameters fixed.

Autoencoders

A popular class of models used for the unsupervised learning of representations,
not only for text but also for other modalities like images and audio, are au-
toencoders. Their encoder is followed by a decoder, which is trained jointly with
the encoder to reconstruct the input from the internal representation. The usual
choice of decoder architecture for text is an RNN. (See Section 3.1 for an expla-
nation of RNN decoders.)

Usually, learning to blindly copy the input will not result in useful features
being captured. It is therefore common practice to deliberately constrain the
representation in some way. One possibility is to make the dimension of the
representation less than that of the input, resulting in a so-called undercomplete
autoencoder. Note that this is always the case with sentences, since their length
is potentially unlimited.

Another option is to regularize the model by adding a penalty term to the
loss function. This term can, for example, encourage the sentence embedding
vectors to follow an imposed prior distribution. This is the case with variational
autoencoders (VAE; Kingma and Welling, 2013). In VAEs, the representation
vector is treated as a latent variable z with a prior distribution p(z) (usually a
standard Gaussian). The decoder models the conditional distribution p(x|z) and
the encoder models the so-called variational posterior q(z|x). We would like to
maximize the marginal log-likelihood log p(x), but this is intractable. Instead, we
train the model by maximizing a variational lower bound4 on the log-likelihood:

Eq(z|x)[log p(x|z)]−KL(q(z|x) || p(z)) ≤ log p(x), (2.13)

i.e. our loss function becomes:

LVAE = −Eq(z|x)[log p(x|z)] + KL(q(z|x) || p(z)). (2.14)

The first term is the expected negative log-probability of reconstructing the input
x given a latent vector z sampled from the posterior distribution. During training,
this expectation is estimated by encoding the input x to obtain the parameters
of the posterior q(z|x), drawing a sample z from the posterior and conditioning
the decoder on this sample to compute log p(x|z). The second term is the KL
divergence from the prior p(x) to the posterior p(x|z). This term effectively acts
as a regularizer, pushing the posterior closer to the prior.

Variational autoencoders suffer from serious issues when applied to text, es-
pecially when used with a recurrent decoder. In particular, the KL term may
lead the encoder to make the posterior distribution almost identical to the prior,
resulting in little or no information being encoded in the latent variable. This is
because a recurrent decoder is autoregressive, predicting the next word given all
the previous words in the sentence. The decoder can therefore achieve a relatively
low reconstruction error just by knowing the beginning of the sentence; this allows
the posterior distribution to become very ‘uncertain’, and thereby push the KL

4Also known as the evidence lower bound or ELBO.

20

Figure 2.3: The Skip-Thought model (image from Kiros et al., 2015). Two RNN
decoders are involved: one for reconstructing the previous sentence (shown in
red), one for reconstructing the following sentence (shown in green).

divergence term close to zero. In other words, the encoder tends to sacrifice too
much reconstruction accuracy for the sake of minimizing the KL term. Bowman
et al. (2016) propose tricks to overcome this issue, but these do not seem to be
sufficient for a decent reconstruction performance (Ćıfka et al., 2018).

Other regularization techniques can be used. For example, Ćıfka et al. (2018)
investigate the effect of adding fixed-variance noise to the representation, normal-
izing the representation to a unit sphere, and recurrent dropout, and show that
these techniques have a similar effect as the KL term in VAEs while allowing for
more control over this effect and making the model easier to train. However, the
focus of that work is on the generative properties of the models rather than on
the representations themselves.

A different way to make the job of an autoencoder harder is to corrupt the
input in some way and train the model to reconstruct the original, uncorrupted
data. Autoencoders trained using this method are called denoising autoencoders.
Common ways of corrupting text include randomly dropping or masking words
(Hill et al., 2016) or permuting them (Lample et al., 2017).

Skip-Thought

Another model inspired by word embedding algorithms is Skip-Thought (Kiros
et al., 2015). Like the Skip-Gram model, which is trained to predict words from
the context, Skip-Thought is trained to generate the sentences adjacent to a
given sentence. An RNN encoder is used to encode the input sentence and the
obtained representation is given as input to two different RNN decoders: one for
predicting the previous sentence and one for predicting the following sentence.
As with autoencoders, the model is not expected to be able to reconstruct the
sentences perfectly, but rather to encode features that help reconstructing them.
The architecture of the model is shown in Fig. 2.3.

2.3.3 Supervised methods
By supervised methods, we mean methods that make use of auxiliary supervised
tasks. They are supervised in the sense that they need labeled or structured data,
not in the sense that we prescribe what the embeddings should look like.

Classification and regression

There are many NLP tasks that could be used for learning sentence representa-
tions. One of the first successful attempts is due to Tai et al. (2015), who train a

21

recursive neural network (a dependency tree LSTM) for sentiment classification,
and evaluate the learned representations on semantic relatedness.

Kiela et al. (2017) learn ‘visually grounded’ sentence representations on the
COCO image captioning dataset (Lin et al., 2014), which contains multiple cap-
tions for each image. The grounding is ensured by training on two tasks: (a) map-
ping caption representations to image representations from ResNet (He et al.,
2015) and (b) predicting other captions for the same image. The model is trained
either on one task only or jointly on both.

The InferSent model (Conneau et al., 2017a) is trained on the natural lan-
guage inference (NLI) task, which is a three-way classification task on pairs of
sentences. The setup is similar to that of the SNLI evaluation in the SentE-
val benchmark (as described Section 1.1.1): the sentence embeddings u, v, their
element-wise product u ⊙ v and their absolute element-wise difference |u − v|
are concatenated and fed into a classifier. For details on the NLI task, see Sec-
tion 1.1.1.

In principle, any sentence-level classification or regression task (e.g. from the
SentEval benchmark) could be used to learn sentence embeddings. However, their
quality will depend on the nature and difficulty of the task.

Sequence prediction

Another family of models that can be used for learning sentence embeddings
are sequence-to-sequence models. In Section 2.3.2, we saw some examples of
sequence-to-sequence models applied to learning sentence representations in an
unsupervised way. An obvious choice of supervised task for this purpose is ma-
chine translation. Previous research in this direction has been discussed in Re-
lated work above.

Note that some sequence-to-sequence models are not suitable for this purpose
since they do not include a global fixed-size sentence representation. Specifically,
this is the case with current attention-based models, which are the most common
choice for machine translation. This problem is central to this thesis and we will
tackle it in the following chapters.

22

3. Neural machine translation
In this chapter, we give a background of the predominant models used in neu-
ral machine translation (NMT), to the extent needed to explain our proposed
modifications to these models.

3.1 RNN encoder-decoder
The basis of most current NMT systems is the RNN encoder-decoder architecture
(Cho et al., 2014b; Sutskever et al., 2014), which combines an RNN encoder
(usually bidirectional; see Section 2.3.1) with an RNN decoder. Like most other
neural architectures for modelling sequential data, the RNN decoder operates by
predicting the next symbol in a sequence given the previous symbols and context
(which, in this case, is the entire input sentence, encoded as the embedding v).
The next-word distribution at position t is computed from the hidden state st of
the RNN at time t (i.e. after having consumed the t− 1 preceding words) using
a softmax layer:

p(yt = w|v, y1, . . . , yt−1) = softmax(Wst)w

= softmax
(
Wg([yt−1, v], st−1)

)
w

,
(3.1)

where W is the output projection matrix, the function g is implemented by the
RNN cell, and the softmax function is defined as

softmax(x)i = exi∑
j exj

. (3.2)

The decoder is conditioned on the sentence embedding v via its initial state.
Optionally, the sentence embedding can also be given as input to the RNN cell
at every time step (i.e. the function g may or may not depend on v). The zeroth
target word y0 (needed to compute the first state s1) is set to the special symbol
⟨bos⟩ (beginning of sequence); likewise, the special symbol yT ′+1 = ⟨eos⟩ is used
to signal the end of the sentence.

The encoder and the decoder are trained jointly to maximize the probability
of the target sequence given the source sequence:

max p(y|x) = max
T ′+1∏
t=1

p(yt|x1, . . . , xT , y1, . . . , yt−1)

= max
T ′+1∑
t=1

log p(yt|x1, . . . , xT , y1, . . . , yt−1).
(3.3)

Once the model is trained, we apply it to a new source sequence x and we search
for the sequence y for which the probability in Eq. (3.3) is the highest. Since
the exact solution cannot be found efficiently, we have to use either greedy search
(taking the argmax of the softmax distribution at time t and feeding it as input
to the RNN cell at time t + 1) or beam search (keeping a list of k best hypotheses
and extending them one symbol at a time).

23

3.1.1 Attention
A component crucial for the success of NMT models is the attention mechanism
(Bahdanau et al., 2014), which allows the decoder to dynamically shift focus
between different input positions and not rely on the encoder to pack the whole
sentence into a fixed-dimension vector. For our purposes, this also means that no
compact representation of the whole sentence remains available in the network.

The attention mechanism computes a set of weights (αti)T ′,T
t=1,i=1 which can be

interpreted as a soft alignment between the source and the target sentence. At
time t, the weights (αti)T

i=1 are computed by

αti = softmax
(
a(st−1, h1), . . . , a(st−1, hT)

)
i
, (3.4)

where a is an alignment model, realized as a feed-forward network jointly trained
with the rest of the system. The weights αt1, . . . , αtT are used for combining the
encoder states h1, . . . , hT into a context vector ct, which is used to update the
decoder state:

ct =
T∑

i=1
αtihi, (3.5)

st = g([yt−1, ct], st−1). (3.6)

Other choices for the alignment model a are possible: Luong et al. (2015)
propose to use a simple dot product s⊤

t−1hT or, more generally, a learned bilinear
form s⊤

t−1WahT . Luong et al. also introduce local attention which predicts a
position pt in the source sentence; the context vector ct is then computed as a
weighted average of the states near position pt.

3.2 Transformer
The Transformer (Vaswani et al., 2017) is a recent model based entirely on feed-
forward layers and attention. It consists of an encoder and a decoder, each formed
by stacking N = 6 identical layers. Each layer is composed of one or two multi-
head attention sub-layers and a feed-forward sub-layer. The input and output of
each sub-layer is a sequence of vectors of dimension dmodel.

The Transformer attention is defined as operating on three sets of vectors:
queries, keys and values. Each set of vectors is packed into one matrix, denoted Q,
K or V , respectively. For each query in Q, the attention mechanism computes a
probability distribution over the keys in K and uses this distribution for weighting
the corresponding values from V . The concrete version of attention used in the
Transformer is scaled dot-product attention, computed as (using the notation from
Vaswani et al.)

Attention(Q, K, V) = softmax
(

QKT

√
dk

)
V, (3.7)

where dk is the dimensionality of the keys.
This attention mechanism serves two different purposes in the Transformer:

24

1. Each encoder and decoder layer contains an attention sub-layer at its input.
Q, K and V are computed from the output of the previous layer. This
application of attention is termed self-attention.
To keep the decoder autoregressive, masking is employed in the decoder self-
attention to prevent each position from attending to the following positions.

2. Each decoder layer contains an additional attention sub-layer that operates
on the output of the encoder. Here, Q comes from the decoder self-attention
sub-layer and K and V are computed from the output layer of the encoder.

Instead of setting Q, K and V directly to the output of the respective sub-
layer, the Transformer computes the queries, keys and values using different linear
projections with matrices W Q, W K and W V , respectively. In each layer, this is
done h times in parallel, each time with different matrices; this is called multi-head
attention:

headi = Attention(QW Q
i , KW K

i , V W V
i),

MultiHead(Q, K, V) = [head1, . . . , headh]W O.
(3.8)

The matrix W O projects the concatenated outputs of all attention heads back to
dmodel dimensions.

We omit some important details (positional encoding, residual connections)
because the Transformer architecture is marginal to our work. For these details,
we refer the reader to Vaswani et al.

25

26

4. Proposed models
In this section, we propose new model architectures for sequence-to-sequence
learning which are designed to provide continuous vector-space representations
of sentences.

Table 4.1 summarizes all the examined configurations of RNN-based models.
The architectures differ in (a) which encoder states are considered in subsequent
processing (column 1), (b) how they are combined (column 2), and (c) how they
are used in the decoder (column 6). Column 3 indicates whether a sentence-level
representation is available in the model. The first three rows (attn, final and
final-ctx) correspond roughly to the standard sequence-to-sequence models,
Bahdanau et al. (2014), Sutskever et al. (2014) and Cho et al. (2014b), respec-
tively. The last row (attn-attn) is our main proposed architecture, compound
attention, described here in Section 4.1.

In addition to RNN-based models, we modify the Transformer model (Vaswani
et al., 2017) in a similar way, see Section 4.3.

4.1 Compound attention
Our compound attention model incorporates attention in both the encoder and
the decoder. Its architecture is depicted in Fig. 4.1.

4.1.1 Encoder with inner attention
First, we process the input sequence x1, x2, . . . , xT using a bi-directional recurrent
network with GRU cells:

−→
hi = −−−→GRU(xt,

−−→
hi−1), (4.1)

←−
hi =←−−−GRU(xt,

←−−
hi+1), (4.2)

hi = [−→hi ,
←−
hi]. (4.3)

We denote by u the combined number of units in the two RNNs, i.e. the dimen-
sionality of hi.

Next, our goal is to combine the states of the encoder H = (h1, h2, . . . , hT)
into a vector of fixed dimensionality that represents the entire sentence. For this
purpose, we employ inner attention (Liu et al., 2016; Li et al., 2016b) to compute
several weighted averages of the encoder states (Lin et al., 2017). The main
motivation for incorporating these multiple ‘views’ of the state sequence is that it
removes the need for the RNN cell to accumulate the representation of the whole
sentence as it processes the input, and therefore it should have more capacity for
modelling local dependencies.

Specifically, we fix a number r, the number of attention heads, and compute an
r × T matrix A of attention weights αji, representing the importance of position
i in the input for the jth attention head. We then use this matrix to compute r
weighted sums of the encoder states, which become the rows of a new matrix M :

M = AH. (4.4)

27

1 2 3 4 5 6
attn∗ all — ✗ ✓ ✗ —
final† final — ✓ ✗ ✗ init

final-ctx‡ final — ✓ ✗ ✗ init+ctx
∗pool all pooling ✓ ✗ ✗ init

∗pool-ctx all pooling ✓ ✗ ✗ init+ctx
attn-ctx all inner att. ✓ ✗ ✗ init+ctx

attn-attn♥ all inner att. ✓ ✗ ✓ input for att.
∗Bahdanau et al. †Sutskever et al. ‡Cho et al. ♥compound attention

Table 4.1: Different RNN-based sequence-to-sequence architectures and their
properties. Legend:

1 encoder states used
2 states combined using. . .

– pooling = mean (avgpool) or
maximum (maxpool)

3 sentence embedding available
4 decoder attends to encoder states
5 decoder attends to parts of

sentence embedding

6 sentence embedding used in. . .
– init = initial decoder state
– ctx = context vector, i.e. input

for the decoder cell
– input for att. = input for

decoder attention

A vector representation of the source sentence (the ‘sentence embedding’) can be
obtained by flattening the matrix M . In our experiments, we project the encoder
states h1, h2, . . . , hT down to a given dimensionality before applying Eq. (4.4), so
that we can control the size of the representation.

Following Lin et al. (2017), we compute the attention matrix A by feeding the
encoder states to a two-layer feed-forward network:

A = softmax(U tanh(WH⊤)), (4.5)

where W and U are weight matrices of dimensions d×u and r×d, respectively (d
is the number of hidden units); the softmax function is applied along the second
dimension, i.e. across the encoder states.

4.1.2 Attentive decoder
In vanilla sequence-to-sequence models with a fixed-size sentence representation
(final and final-ctx), the decoder is conditioned on this representation via the
initial RNN state or via the input of the RNN cell. We propose to instead leverage
the structured sentence embedding by applying attention to its components. This
is no different from the classical attention mechanism as described in Section 3.1.1,
except that it acts on this fixed-size representation instead of the sequence of
encoder states.

In the tth decoding step, the attention mechanism computes a distribution
{βtj}r

j=1 over the r components of the structured representation. This is then
used to weight these components to obtain the context vector ct, which in turn
is used to update the decoder state. Again, we can write this in matrix form as

C = BM, (4.6)

28

s1 s2 s3 sT ′

+

c3

−→
h1

←−
h1

−→
h2

←−
h2

−→
h3

←−
h3

−→
hT

←−
hT

+

α21 α22 α23 α2T. . .

M2M1 M3M4

β31 β32 β33 β34

=M>

= H

decoder
encoder

x1 x2 x3 xT. . .

Figure 4.1: An illustration of compound attention with 4 attention heads. The
figure shows the computations that result in the decoder state s3 (in addition,
each state st depends on the previous target token yt−1, which is not reflected
here to keep the figure uncluttered). Note that the matrix M is the same for
all positions in the output sentence and it can thus serve as the source sentence
representation.

where B = (βtj)T ′,r
t=1,j=1 is the attention matrix and C = (ci, c2, . . . , cT ′) are the

context vectors.
Note that by combining Eqs. (4.4) and (4.6), we get

C = (BA)H. (4.7)

Hence, the composition of the encoder and decoder attentions (the ‘compound
attention’) defines an implicit alignment between the source and the target se-
quence. From this viewpoint, our model can be regarded as a restriction of the
widely used attn model.

The decoder uses a conditional GRU cell (cGRUatt; Sennrich et al., 2017),
which consists of two consecutively applied GRU blocks. The first block processes
the previous target token yt−1, while the second block receives the context vector
ct and predicts the next target token yt.

4.2 Constant context
Compared to the final model, the compound attention architecture described
in the previous section undoubtedly benefits from the fact that the decoder is
presented with information from the encoder (i.e. the context vectors ct) in every
decoding step. To investigate this effect, we include baseline models where we
replace all context vectors ct with the entire sentence embedding (indicated by
the suffix ‘-ctx’ in Table 4.1). Specifically, we provide either the flattened matrix
M (for models with inner attention; attn-ctx), the final state of the encoder

29

source
sentence

NMT
encoder

InferSent
encoder

v

W, b

vInferSent

LMSE

NMT
decoder

target
sentence

LMT

Figure 4.2: Multi-task training where the auxiliary task is to predict InferSent
embeddings using linear regression. The InferSent encoder is pre-trained and is
not updated during the multi-task training.

(final-ctx), or the result of mean- or max-pooling (∗pool-ctx) as a constant
input to the decoder cell.

4.3 Transformer with inner attention
Like the attn model, the Transformer (trf) does not provide a fixed-dimension
sentence representation. In order to introduce this representation into the model,
we modify it by adding (multi-head) inner attention after the last encoder layer.
The matrix M above then serves as the query matrix Q for the decoder attention.

Our variation on the Transformer model corresponds to the attn-attn row
in Table 4.1 and we refer to it as trf-attn-attn.

4.4 Multi-task models
The models described so far are trained for translation only. To encourage the
models to perform better on our evaluation tasks (see Section 1.1), we could
directly train them on these tasks in a multi-task setting (in addition to transla-
tion). If we had labels for these tasks in our training parallel corpus, this could be
done in a straightforward way by adding a term for each task to our loss function:

L = LMT + αMRLMR + αCRLCR + αSUBJLSUBJ + . . . (4.8)

Note that this would work only for tasks that take single sentences, and not
sentence pairs (like the NLI task), as input. However, we don’t possess the labels
and it might not even be possible to assign them since our MT data is out-
of-domain for most of the tasks (e.g. assessing review polarity or question type
makes little sense for most sentences in a general machine translation corpus).

What we have is the training data for each task. We could therefore alternate
the different datasets and objectives (MT and other tasks) during training. This
still comes with technical difficulties, especially for tasks like NLI where each
training example consists of two sentences. For this reason, we do not pursue this
method here.

Another option is to ‘ask for help’ from a sentence embedding model which is
known to achieve good results in the evaluations. One such model, trained on the

30

NLI task, is InferSent (Conneau et al., 2017a). We use the pre-trained InferSent
model1 to encode the source side of our parallel corpus. Then, when training our
MT model, we project our MT embeddings to the InferSent embedding space
and compute a MSE (mean squared error) objective, which we add to our loss
function:

L = LMT + αLMSE = LMT + α∥Wv + b− vInferSent∥2. (4.9)

Here, α is a hyperparameter, W is a learned weight matrix and b is a learned bias
vector. The setup illustrated in Fig. 4.2.

1https://github.com/facebookresearch/InferSent

31

https://github.com/facebookresearch/InferSent

32

5. Experiments

5.1 Training
We trained English-to-German and English-to-Czech NMT models using Neural
Monkey1 (Helcl and Libovický, 2017a). In the following, we use the code of the
target language, i.e. de or cs, to distinguish these models. We chose English as
the source language mainly because most current sentence embedding models, as
well as datasets and tools for evaluating them, are only available for English.

The de models were trained on the Multi30K multilingual image caption
dataset (Elliott et al., 2016), extended by Helcl and Libovický (2017b), who ac-
quired additional parallel data using back-translation (Sennrich et al., 2016a) and
perplexity-based selection (Yasuda et al., 2008). This extended dataset contains
410k sentence pairs, with an average sentence length of 12± 4 tokens in English.
We train each model for 20 epochs with a batch size of 32. We truecased the
training data as well as all data we evaluate on. For German, we employed Neu-
ral Monkey’s reversible pre-processing scheme, which expands contractions and
performs morphological segmentation of determiners. We used a vocabulary of
at most 30k tokens for each language (no subword units).

The cs models were trained on CzEng 1.7 (Bojar et al., 2016).2 We used
byte-pair encoding (BPE) with a vocabulary of 30k sub-word units, shared for
both languages (the original vocabulary size for English is 1.9M). For English, the
average sentence length is 15 ± 19 BPE tokens. We performed 1 training epoch
with a batch size of 128 on the entire training section (57M sentence pairs).

All models were optimized using Adam (Kingma and Ba, 2014) with a learning
rate of 10−4. We employed L2 regularization with a weight of 10−8 and gradient
norm clipping with a threshold of 1.0. The maximum input length was set to
30 tokens and the maximum output length to 35 tokens; longer sentences were
truncated.

The datasets for both de and cs models come with their respective develop-
ment and test sets of sentence pairs, which we use for the evaluation of translation
quality. (We use 1k randomly selected sentence pairs from CzEng 1.7 dtest as a
development set. For evaluation, we use the entire etest.)

5.1.1 InferSent multi-task training
For a subset of the models, we implemented the multi-task training method de-
scribed in Section 4.4 to ‘ground’ the sentence representations in the InferSent
embeddings. For these models, we doubled the gradient clipping threshold to 2.0.
The rest of the hyperparameters are kept unchanged.

Adding another term to the loss function could alter the learning dynamics
or otherwise regularize the model. To check whether the performance differences
caused by using this method are entirely due to such effects or whether training
with InferSent targets is genuinely helpful, we include variants of these models
where we randomly shuffle the target embeddings in the entire training set. In

1https://github.com/ufal/neuralmonkey
2http://ufal.mff.cuni.cz/czeng/czeng17

33

https://github.com/ufal/neuralmonkey
http://ufal.mff.cuni.cz/czeng/czeng17

doing so, we weaken the model by making it learn a random, useless function
instead of letting it fully focus on translation. We hypothesize that this (ridicu-
lous) form of regularization might still make the representations perform better
at some other tasks.

5.2 Representation evaluation
We evaluate our learned representations with classification and similarity tasks
from SentEval (Section 1.1.1), by examining clusters of paraphrase representa-
tions, and using the supervised domain alignment technique from Section 1.2.2.
The rest of this section details the last two techniques.

5.2.1 Paraphrases
We evaluate the representation of paraphrases using the method described in
Section 1.2.4. We use two data sources for this purpose: COCO and HyTER
Networks.

COCO (Common Objects in Context; Lin et al., 2014) is an object recog-
nition and image captioning dataset, containing 5 captions for each image. We
extracted the captions from its validation set to form a set of 5× 5k = 25k sen-
tences grouped by the source image. The average sentence length is 11 tokens
and the vocabulary size is 9k token types.

It should be noted that while we treat captions belonging to one image as
being synonymous, this is often far from the truth. As can be seen from Fig. 5.1,
the images are sometimes fairly complex and some of the captions may pay more
attention to certain details, while other captions may be too vague or even in-
correct. There is also the issue that we mentioned in Section 1.2.4, namely that
captions of different images may be synonymous (e.g. when the images depict the
same thing), but we treat them as completely unrelated.

HyTER Networks (Dreyer and Marcu, 2014) are large finite-state networks
representing a subset of all possible English translations of 102 Arabic and 102
Chinese sentences. The networks were built by a number of human annota-
tors based on reference sentences in Arabic, Chinese and English. Each network
contains up to hundreds of thousands of possible translations of a given source
sentence. We randomly generated 500 translations for each source sentence, ob-
taining a corpus of 102k sentences grouped into 204 clusters of 500. The average
length of the sentences is 28 tokens and the vocabulary size is 11k token types.
Since the sentences in each cluster are accurate translations of one source sen-
tence, they can be safely considered semantically equivalent. Moreover, sentences
in different clusters are guaranteed to have different meanings.

For every model, we encode each dataset to obtain a set of sentence embed-
dings with cluster labels. We then compute the metrics described in Section 1.2.4:
cluster classification accuracy, paraphrase retrieval accuracy, and Davies-Bouldin
(DB) index.

To compute cluster classification accuracy, we remove 1 point (in the case of
COCO) or half of the points (in the case of HyTER) from each cluster, and fit

3http://cocodataset.org/#explore?id=43411
http://cocodataset.org/#explore?id=366199

34

http://cocodataset.org/#explore?id=43411
http://cocodataset.org/#explore?id=366199

• A person laughing on the telephone near a lot
of treats

• A woman talking on her cell phone in an old
building near a table displaying baked goods.

• A happy girl stands in front of a table covered
with deserts.

• A woman standing in front of a table of baked
goods.

• A bunch of different food siting out at a store.

• A cat hides underneath the cover of blankets.
• Small cat under the blankets on a bed.
• A very cute cat hiding under a blanket.
• That looks like it may be hiding under some-

thing.
• I am not sure what this image is.

Figure 5.1: Examples of images3 with captions from the COCO dataset. The
images were picked to showcase captions that are incomplete or unspecific.

an LDA classifier on the rest. We then compute the accuracy of the classifier on
the removed points.

For paraphrase retrieval, we follow the approach described in Section 1.2.4
with k = 1, i.e. we consider only the single nearest neighbor. We try L2 and
cosine distance for finding the nearest neighbor and report accuracy (precision)
for both options.

We compute the DB index according to Eq. (1.6). As already mentioned,
a lower value indicates better cluster separation. Since all of our other metrics
behave conversely (higher values are better), we report the inverse of the DB
index (DB−1) to maintain this property.

5.2.2 Domain alignment
We also evaluate the sentence embeddings using the supervised domain adapta-
tion technique outlined in Section 1.2.2. Due to the lack of quality parallel data
for this experiment, we use a rather simple dataset consisting of news article head-
lines and summaries from a sentence compression corpus (Filippova and Altun,
2013). The full dataset4 contains data from about 200k news articles. For each
article, the headline and the first sentence were acquired. Next, an extractive
summary (a compression) of the first sentence was generated by identifying the
words in the sentence that match content words in the headline, then pruning
the parse tree of the sentence while preserving these content words. As a result,
the summaries are very similar to the headlines, often differing only in the main
verb and punctuation. See Fig. 5.2 for examples.

We use only the compression-headline pairs from this dataset, namely 18k
pairs for training plus 2k pairs as a held-out set, and 20k pairs for testing. We

4https://github.com/google-research-datasets/sentence-compression

35

https://github.com/google-research-datasets/sentence-compression

headline Bank of America opens outreach center in Henderson, US
compression Bank of America has opened an outreach center in Henderson, US.
full sentence Bank of America has opened an outreach center in Henderson, US, to

serve its mortgage customers.
headline Al Qaeda essentially defeated in Iraq:

compression Al Qaeda is essentially defeated in Iraq.
full sentence CIA chief Michael Hayden, in an interview published Friday, said Al

Qaeda is essentially defeated in Iraq, Saudi Arabia and on the defensive
elsewhere, including the Afghanistan-Pakistan border.

headline Apple to open first Hong Kong store this quarter
compression Apple Inc. will open its first Hong Kong store this quarter.
full sentence Apple Inc. said it will open its first Hong Kong retail store this quarter

and is targeting another Shanghai store opening by the end of the year.

Figure 5.2: A sample from the sentence compression dataset. In our experiments,
we only use the compressions and the headlines.

chose not to use the full sentences because these tend to be very long, especially
when they include quotations.

Our domain alignment experiment consists in trying to learn an affine trans-
formation that maps embeddings of compressions to embeddings of headlines (see
Fig. 5.3a). We fit a linear regression on the embeddings using Adam (Kingma
and Ba, 2014), stopping when the loss on the held-out set no longer improves.
At test time, we transform the embedding of each sentence compression using
the learned mapping and retrieve the closest embedding (using L2 or cosine dis-
tance) from the mixed pool of 20k compressions and 20k headlines. Because the
retrieved embedding may happen to be the same as the original (untransformed)
embedding (see Fig. 5.3b), we optionally exclude this original embedding. In this
way, we obtain two sets of accuracies, which we refer to as ‘incl.’ and ‘excl.’.

Note that the excl. and incl. variants are analogous to the original (Mikolov
et al., 2013d) and ‘honest’ (Rogers et al., 2017) version of the word analogy
evaluation, respectively (see Section 1.2.1), and we are therefore more interested
in the latter.

5.3 Results

5.3.1 Translation quality

We estimate translation quality of the various models using single-reference case-
sensitive BLEU (Papineni et al., 2002) on translations decoded using greedy
search.

Tables 5.1 and 5.2 provide the results on the two datasets. The cs dataset is
much larger and the training takes much longer. We were thus able to experiment
with only a small subset of the possible model configurations.

The columns ‘Size’ and ‘Heads’ specify the total size of sentence representation
and the number of heads of encoder inner attention.

36

A

W, b

B

L

(a) Learning an affine mapping from domain A to
domain B. W (weight matrix) and b (bias vector)
are the parameters of this mapping. (A reproduc-
tion of Fig. 1.1 for convenience.)

A

B

u v
v∗

(b) An example where the predic-
tion v∗ lies closer to the original
embedding u than to the target v.

Figure 5.3: Supervised domain alignment. In our experiments, domains A and B
correspond to sentence compressions and headlines, respectively.

Model BLEU
Name Size Heads dev test
de-attn — — 37.6 36.2
de-trf — — 38.2 36.1
de-attn-attn 2400 12 36.2 34.8
de-attn-attn 1200 12 35.6 34.3
de-attn-attn 600 8 35.4 33.7
de-attn-attn 600 12 35.3 33.4
de-attn-attn 1200 6 35.0 33.2
de-attn-attn 600 6 35.1 33.2
de-trf-attn-attn 600 3 32.3 30.1
de-attn-attn 600 3 31.4 29.4
de-attn-ctx 1200 12 30.6 29.2
de-attn-ctx 600 12 29.8 29.1
de-attn-ctx 600 8 29.8 28.9
de-attn-ctx 600 6 29.5 28.8
de-trf-attn-attn 2400 12 30.6 28.5
de-maxpool-ctx 600 — 27.8 28.1
de-final-ctx 600 — 28.1 26.9
de-attn-ctx 600 3 27.8 26.9
de-avgpool-ctx 600 — 27.1 26.5
de-attn-attn 600 1 27.2 26.0
de-trf-attn-attn 600 6 26.5 25.8
de-trf-attn-attn 1200 12 26.6 25.3
de-final 600 — 23.9 23.8

Table 5.1: Translation quality of de models.

37

Model BLEU Human judgment (%)
Name Size Heads dev test > others ≥ others
cs-attn — — 22.8 22.2 50.9 93.8
cs-attn-attn 1000 8 19.1 18.4 42.5 88.6
cs-attn-attn 4000 4 18.4 17.9 — —
cs-attn-attn 1000 4 17.5 17.1 — —
cs-attn-ctx 1000 4 16.6 16.1 31.7 77.9
cs-final-ctx 1000 — 16.1 15.5 — —
cs-attn-attn 1000 1 15.3 14.8 27.3 71.7
cs-final 1000 — 11.2 10.8 — —
cs-avgpool 1000 — 11.1 10.6 — —
cs-maxpool 1000 — 5.4 5.4 2.7 13.1

Table 5.2: Translation quality of cs models. The human judgment results show
how often a model was judged better (>) or at least as good (≥) as all other
models on a particular sentence pair.

In both cases, the best performing model is attn (Bahdanau et al.), followed
by Transformer (de only) and our attn-attn (compound attention). It is worth
noting that attn-attn presents a significant improvement over attn-ctx (+3.7
BLEU on average). The non-attentive final (Sutskever et al.) is the worst,
except cs-maxpool.

For 5 selected cs models, we also performed manual evaluation on 200 sentence
pairs using WMT-style pairwise ranking (as used in WMT 2011). The results,
shown in Table 5.2, confirm the automatic evaluation results.

We also checked the relation between BLEU and the number of heads and
representation size. While there are many exceptions, the general tendency is
that the larger the representation or the more heads, the higher the BLEU score.
The Pearson correlation between BLEU and the number of heads is 0.87 for cs
and 0.31 for de.

5.3.2 SentEval
Due to the large number of SentEval tasks, we present the results abridged in
two different ways: (1) by reducing the number of tasks reported and (2) by only
showing our best performing setups and comparing them to other approaches.
The full results can be found in Appendix A.

For these and all following tasks, we computed the out-of-vocabulary (OOV)
rate and the perplexity of a 4-gram language model (LM) trained on the English
side of the respective parallel corpus (CzEng 1.7 or extended Multi30K) and eval-
uated on all available data for the given task. The OOV rate and perplexity are
shown in the respective results tables to aid in explaining the observed differences
(in particular, between cs and de models).

Table 5.3 shows all of our models evaluated on a subset of the tasks. As the
baseline for the classification tasks, we assign the most frequent class to all test
examples. (For MR, CR, SUBJ, and MPQA, where there is no distinct test set,
the most frequent class is established on the whole collection. For the other tasks,

38

Model Class. accuracy (%) Avg.
sim.Name Size Heads SNLI SICK-E Avg.+

Most frequent baseline 56.7 34.3 48.19 —
InferSent 4096 — (83.7) 86.4 81.7 .70
GloVe-BOW 300 — 66.0 78.2 75.8 .59
cs-final-ctx 1000 — 70.2 82.1 74.4 .60
cs-attn-attn 1000 1 69.3 80.8 73.4 .54
cs-final 1000 — 69.2 81.1 73.2 .60
cs-maxpool 1000 — 68.5 81.7 73.0 .60
cs-avgpool 1000 — 67.8 79.7 72.4 .50
cs-attn-ctx 1000 4 66.0 79.5 72.2 .45
cs-attn-attn 4000 4 65.2 78.0 71.2 .39
cs-attn-attn 1000 4 64.6 78.0 70.8 .39
cs-attn-attn 1000 8 63.2 76.6 70.0 .36
de-maxpool-ctx 600 — 68.0 78.8 67.1 .50
de-attn-ctx 1200 12 65.0 77.4 66.7 .52
de-attn-ctx 600 8 64.0 75.7 65.8 .51
de-avgpool-ctx 600 — 65.2 77.5 65.6 .48
de-attn-ctx 600 12 61.9 76.0 65.5 .50
de-final 600 — 64.7 77.0 65.3 .47
de-attn-ctx 600 3 63.3 76.0 65.3 .50
de-attn-attn 600 1 63.8 76.9 64.8 .50
de-attn-attn 600 3 61.5 74.7 64.5 .47
de-final-ctx 600 — 62.6 76.2 64.5 .48
de-attn-attn 1200 6 59.6 72.3 64.3 .41
de-trf-attn-attn 600 3 61.4 72.5 63.9 .49
de-attn-attn 1200 12 58.2 72.5 63.4 .43
de-attn-attn 2400 12 59.8 73.9 63.2 .41
de-trf-attn-attn 2400 12 59.0 71.2 63.0 .46
de-attn-attn 600 6 57.5 70.9 62.6 .40
de-attn-attn 600 8 55.6 68.6 62.1 .39
de-trf-attn-attn 600 6 59.5 71.0 61.9 .45
de-attn-attn 600 12 55.2 70.5 61.5 .40
de-trf-attn-attn 1200 12 58.2 68.8 61.1 .46
de-attn-ctx 600 6 62.9 68.7 61.0 .43
LM perplexity (cs) 190.6 299.4 1150.2 1224.2
% OOV (cs) 0.3 0.2 2.3 2.6
LM perplexity (de) 38.8 65.0 3578.2 2010.6
% OOV (de) 1.5 1.7 17.8 16.2

Table 5.3: Abridged results of the SentEval benchmark. Full results in Ap-
pendix A. ‘Avg.+’ is the average of all 10 classification tasks (see Table A.1),
‘Avg. sim.’ averages all 7 similarity tasks (see Table A.2). Note that InferSent
was trained on the NLI task using a superset of the SNLI dataset.

39

Model Class. accuracy (%)
Name Size H. MR CR SUBJ MPQA SST2 SST5 TREC

Most frequent baseline 50.0 63.8 50.0 68.8 49.9 23.1 18.8
InferSent 4096 — 81.5 86.7 92.7 90.6 85.0 45.8 88.2
Hill et al. en→fr† 2400 — 64.7 70.1 84.9 81.5 — — 82.8
SkipThought-LN† — — 79.4 83.1 93.7 89.3 82.9 — 88.4
GloVe-BOW 300 — 77.0 78.2 91.1 87.9 81.0 44.4 82.0
cs-final-ctx 1000 — 68.7 77.4 88.5 85.5 73.0 38.2 88.6
cs-attn-attn 1000 1 68.2 76.0 86.9 84.9 72.0 35.7 89.0

Model Class. accuracy (%) Correl. (P./S.)
Name Size H. MRPC SICK-E SNLI Avg. SICK-R STSB

Most frequent baseline 66.5 56.7 34.3 48.19 — —
InferSent 4096 — 76.6 86.4 (83.7) 81.7 .88/.83 .76/.75
Hill et al. en→fr† 2400 — 96.1 — — — — —
SkipThought-LN† — — — 79.5 — — .85/ — —
GloVe-BOW 300 — 72.3 78.2 66.0 75.8 .80/.72 .64/.62
cs-final-ctx 1000 — 71.8 82.1 70.2 74.4 .82/.76 .74/.74
cs-attn-attn 1000 1 70.7 80.8 69.3 73.4 .81/.76 .73/.73

Model Correlation (Pearson/Spearman)
Model Size H. STS12 STS13 STS14 STS15 STS16 Avg.
InferSent 4096 — .59/.60 .59/.59 .70/.67 .71/.72 .71/.73 .70
SkipThought-LN† — — — — .44/.45 — — —
GloVe-BOW 300 — .52/.53 .50/.51 .55/.56 .56/.59 .51/.58 .59
cs-final-ctx 1000 — .51/.53 .44/.44 .52/.50 .62/.61 .57/.58 .60
cs-attn-attn 1000 1 .46/.49 .32/.33 .45/.44 .53/.52 .47/.48 .54

Table 5.4: A comparison of state-of-the-art SentEval results with our best models
and the Glove-BOW baseline. ‘H.’ is short for ‘Heads’. Reprinted results are
marked with †, others are our measurements.

40

the class is learned from the training set.)
The de models are generally worse, most likely due to the higher OOV rate

and the overall simplicity of the training sentences. On cs, we see a clear pattern
that more heads hurt the performance. The de set has more variations to consider
but the results are less conclusive.

For the similarity results, it is worth noting that cs-attn-attn performs very
well with 1 attention head but fails miserably with more heads. Otherwise, the
relation to the number of heads is less clear.

Table 5.4 compares our strongest models with the state of the art on all
tasks. Besides InferSent, we include SkipThought as evaluated by Conneau et al.
(2017a), and the NMT-based embeddings by Hill et al. (2016) trained on the
English-French WMT15 dataset (this is the best result reported by Hill et al. for
NMT). As a baseline, we include bag-of-words embeddings obtained by averaging
GloVe word vectors (GloVe-BOW).

We see that the supervised InferSent clearly outperforms all other models in
all tasks except for MRPC and TREC. Results by Hill et al. are always lower
than our best setups, except MRPC and TREC again. On classification tasks, our
models are outperformed even by GloVe-BOW, except for the NLI tasks (SICK-E
and SNLI) where cs-final-ctx is better.

5.3.3 Paraphrase scores
Table 5.5 provides our measurements based on sentence paraphrases. We found
that for paraphrase retrieval, cosine similarity worked better than L2 distance in
most cases. For this reason, we only give the cosine-based results here. Again,
the full results can be found in Appendix A.

This evaluation seems less stable and discerning than the previous two, but
we can again confirm the victory of InferSent followed by our non-attentive cs
models. cs and de models are no longer clearly separated. This might be because
of the aforementioned issues with using the COCO dataset as a paraphrase corpus
(Section 5.2.1).

The HyTER tasks, especially the paraphrase retrieval (NN) task, are clearly
easy to solve. This is probably due to the relatively low number of clusters
(204). Since most of the sentences in each cluster probably share at least some
words which are unique to that cluster (e.g. named entities), it might be possible
to separate the clusters simply based on vocabulary. This would explain the
almost-perfect accuracy achieved by most models including GloVe-BOW.

5.3.4 Domain alignment
Domain alignment results on the compression-headline dataset are shown in Ta-
ble 5.6. First of all, in the incl. column, L2 distance tends to give higher scores
than cosine similarity. We can probably relate this to the fact that the loss func-
tion for learning the alignment is also L2-based. In the following, we will therefore
only consider the L2-based values in each column.

The highest accuracy in each row is always in the excl. column – this is
by definition because the task is made easier by eliminating one of the wrong
answers. However, the differences between incl. and excl. are surprisingly large,

41

Model HyTER COCO
Name Size Heads Cls. NN DB−1 Cls. NN DB−1

InferSent 4096 — 99.99 100.00 0.579 31.58 26.21 0.367
GloVe-BOW 300 — 99.94 100.00 0.654 34.28 19.72 0.352
cs-final-ctx 1000 — 99.92 100.00 0.406 23.20 16.07 0.346
cs-maxpool 1000 — 99.86 100.00 0.447 21.76 16.34 0.348
de-attn-ctx 600 8 98.11 99.90 0.348 21.64 17.32 0.349
cs-final 1000 — 99.91 100.00 0.439 22.40 14.63 0.340
de-attn-ctx 1200 12 98.88 99.91 0.347 20.06 16.68 0.348
de-maxpool-ctx 600 — 98.42 99.90 0.343 21.54 15.62 0.341
de-attn-ctx 600 3 97.81 99.87 0.328 19.74 16.43 0.343
de-attn-ctx 600 12 97.79 99.89 0.360 20.22 16.10 0.344
de-attn-ctx 600 6 98.11 99.86 0.358 20.44 15.57 0.342
de-attn-attn 600 1 97.70 99.73 0.352 19.74 16.26 0.340
de-avgpool-ctx 600 — 97.72 99.60 0.312 20.04 14.27 0.337
cs-attn-attn 1000 1 99.88 99.91 0.347 21.54 11.50 0.331
de-attn-attn 600 3 97.42 99.75 0.314 17.36 14.35 0.333
de-final 600 — 97.01 99.30 0.305 19.88 12.40 0.328
de-final-ctx 600 — 96.65 99.70 0.323 17.22 12.84 0.333
de-trf-attn-attn 600 3 95.79 99.64 0.315 15.76 14.04 0.340
cs-avgpool 1000 — 99.80 99.99 0.387 17.90 8.61 0.311
de-attn-attn 1200 12 97.15 99.65 0.283 12.18 11.97 0.330
de-attn-attn 1200 6 98.05 99.80 0.289 11.90 10.69 0.327
de-attn-attn 2400 12 98.69 99.77 0.287 10.26 10.94 0.326
cs-attn-ctx 1000 4 99.75 99.74 0.287 14.60 7.54 0.318
de-attn-attn 600 6 96.03 99.71 0.287 12.22 10.59 0.323
de-trf-attn-attn 2400 12 95.82 99.03 0.307 5.66 14.53 0.339
de-attn-attn 600 8 95.32 99.73 0.275 10.22 10.58 0.325
de-attn-attn 600 12 95.16 99.64 0.278 9.62 10.47 0.323
de-trf-attn-attn 600 6 90.24 98.44 0.313 9.06 13.64 0.332
de-trf-attn-attn 1200 12 90.71 98.22 0.301 7.06 13.70 0.333
cs-attn-attn 4000 4 99.54 98.98 0.252 11.52 5.51 0.303
cs-attn-attn 1000 4 99.26 98.93 0.253 10.84 5.20 0.299
cs-attn-attn 1000 8 99.41 98.09 0.243 10.24 4.64 0.287
LM perplexity / % OOV (cs) 668.5 / 1.2 238.5 / 0.1
LM perplexity / % OOV (de) 3354.8 / 19.3 86.3 / 1.9

Table 5.5: Paraphrase evaluation on HyTER and COCO – ‘Cls.’ is the cluster
classification accuracy, ‘NN’ is the nearest-neighbor paraphrase retrieval accuracy
and DB−1 is the inverse Davies-Bouldin index. ‘NN’ columns are based on co-
sine similarity; L2-based accuracies are included in the full results in Table A.3.
Ordered according to the average performance (see full results).

42

Model % Accuracy (L2/cos)
Name Size Heads incl. excl.
cs-avgpool 1000 — 69.1/66.7 85.7/87.8
cs-attn-attn 1000 8 67.5/68.4 71.9/73.7
cs-attn-attn 1000 4 60.0/63.0 74.2/78.0
cs-attn-attn 1000 1 60.0/57.3 90.7/92.6
de-final 600 — 56.1/64.7 57.4/66.2
cs-attn-attn 4000 4 53.8/60.2 72.2/79.4
de-maxpool-ctx 600 — 51.5/27.3 61.3/69.9
cs-attn-ctx 1000 4 51.5/56.0 82.5/86.5
cs-final 1000 — 51.2/51.0 94.4/95.4
de-final-ctx 600 — 45.1/37.5 53.2/70.3
cs-maxpool 1000 — 43.5/22.5 91.9/94.3
de-avgpool-ctx 600 — 38.9/29.8 58.6/68.2
InferSent 4096 — 36.3/33.7 97.4/97.2
de-attn-attn 2400 12 36.3/32.1 42.0/61.9
de-attn-attn 1200 12 34.2/27.9 47.6/66.7
de-attn-attn 600 12 33.4/25.6 40.2/61.2
de-attn-ctx 1200 12 32.3/29.7 62.8/74.7
de-attn-attn 600 6 32.1/28.1 40.7/61.5
de-attn-ctx 600 6 32.0/29.6 60.0/72.5
de-attn-attn 600 3 32.0/30.4 55.3/70.0
cs-final-ctx 1000 — 31.9/34.6 95.4/96.2
de-attn-attn 600 1 31.5/30.0 64.4/71.9
de-attn-attn 1200 6 31.0/29.6 41.0/62.3
de-attn-ctx 600 12 30.4/26.4 60.2/72.6
de-attn-attn 600 8 30.3/27.6 37.8/63.0
de-attn-ctx 600 3 30.1/30.6 61.6/72.7
de-attn-ctx 600 8 24.4/24.7 62.7/74.3
de-trf-attn-attn 600 3 23.7/32.6 49.0/55.7
de-trf-attn-attn 2400 12 21.6/26.0 37.8/40.7
de-trf-attn-attn 600 6 20.1/25.8 40.6/44.8
de-trf-attn-attn 1200 12 19.8/27.3 38.1/42.7
GloVe-BOW 300 — 10.5/15.7 87.5/88.7
LM perplexity / % OOV (cs) 1501.3 / 1.8
LM perplexity / % OOV (de) 6439.4 / 28.5

Table 5.6: Domain alignment results. Ordered by incl. (L2).

43

namely 24.8 ± 18.0 on average. This means that in 24.8 % of the cases, the
predicted embedding was closest to the source embedding – compare this to the
38.2 % cases (= average of the incl. column) where the prediction was closest to
the target. This suggests that the source and target embeddings are already close
to each other (which is not that surprising given the fact that the headlines and
the compressions are mutually similar).

For some of the models, the incl. results are reasonably high (50–60 %), which
means that it was possible to align the domains fairly accurately. Interestingly,
most cs models outperformed InferSent significantly, unlike in all other evalua-
tions. We will also see later that the correlation of incl. with other metrics is
generally negative. We explain this by the fact that the mapping which we try to
learn preserves the meaning of the sentence and transforms its surface structure
in a rather deterministic (and subtle) way. Sentence embeddings that tend to
capture more of this surface structure are then more suitable for learning the
mapping, scoring higher in this evaluation. Models with strong focus on meaning
(or models like GloVe-BOW which have limited access to the surface structure)
will map both sentences from each pair close to each other (which will lead to a
high excl. score), but the mapping from one domain to the other might be less
predictable (and the incl. score therefore lower).

Another clear pattern is that in models of the same type and representation
size, the incl. score is often constant for different numbers of attention heads, but
the excl. score decreases as the number of heads increases. E.g. for de-attn-
attn with 600 dimensions, the excl. scores are 64.4, 55.3, 40.7, 37.8 and 40.2
for 1, 3, 6, 8 and 12 heads, respectively, while the incl. score remains between
30.3 and 33.4. This means that increasing the number of attention heads doesn’t
necessarily help learn a better mapping, but it does push the sentences in each
pair far apart in the embedding space.

The generally poor performance of de models can again be attributed to the
discrepancy between the training data and the (news domain) test data, testified
by a high perplexity and OOV rate.

5.3.5 InferSent multi-task training
Figs. 5.4 and 5.5 show results on selected evaluation tasks for multi-task variants
of de and cs models, respectively. For each base (MT-only) model, we show
its multi-task variant with and without shuffled regression targets (as described
in Section 5.1.1) and a variant where the regression task weight α is set to 0.
This last variant is included because it differs slightly from the base model due
to different initialization and perhaps the different gradient clipping threshold.
On the other hand, all multi-task variants, including the one with α = 0, are
initialized and trained identically.

For de models (Fig. 5.4), the most consistent result is that multi-task training
always harms the translation quality (BLEU), but it does not seem to matter
whether or not the targets are shuffled. In three out of four setups, multi-task
training yielded a slight improvement in SNLI and average SentEval accuracy.
For SNLI, however, the same or higher improvement was achieved by the models
with shuffled targets.

By looking at the regression losses plotted in Fig. 5.6, we can tell that the

44

25 30 35

de-attn-attn (size 600, 1 head)

25 30 35

de-attn-attn (size 600, 8 heads)

25 30 35

de-attn-attn (size 600, 12 heads)

25 30 35

de-attn-attn (size 1200, 12 heads)

(a) BLEU

62 64

de-attn-attn (size 600, 1 head)

62 64

de-attn-attn (size 600, 8 heads)

62 64

de-attn-attn (size 600, 12 heads)

62 64

de-attn-attn (size 1200, 12 heads)

(b) Average SentEval accuracy
(InferSent: 81.7)

55 60

de-attn-attn (size 600, 1 head)

55 60

de-attn-attn (size 600, 8 heads)

55 60

de-attn-attn (size 600, 12 heads)

55 60

de-attn-attn (size 1200, 12 heads)

(c) SNLI
(InferSent: 83.7)

0.40 0.45 0.50

de-attn-attn (size 600, 1 head)

0.40 0.45 0.50

de-attn-attn (size 600, 8 heads)

0.40 0.45 0.50

de-attn-attn (size 600, 12 heads)

0.40 0.45 0.50

de-attn-attn (size 1200, 12 heads)

(d) Average SentEval similarity score
(InferSent: 0.70)

Figure 5.4: Results of selected de models and their multi-task variants. Each line
shows the following variants of one base model (α is the weight of the regression
task):

– α = 100 – α = 100, shuffled targets
– α = 0 – no multi-task (MT only)

45

5 10 15

cs-attn-attn (size 1000, 1 head)

5 10 15

cs-attn-attn (size 1000, 4 heads)

5 10 15

cs-attn-attn (size 1000, 8 heads)

5 10 15

cs-attn-attn (size 4000, 4 heads)

5 10 15

cs-maxpool (size 1000)

(a) BLEU

70 71 72 73

cs-attn-attn (size 1000, 1 head)

70 71 72 73

cs-attn-attn (size 1000, 4 heads)

70 71 72 73

cs-attn-attn (size 1000, 8 heads)

70 71 72 73

cs-attn-attn (size 4000, 4 heads)

70 71 72 73

cs-maxpool (size 1000)

(b) Average SentEval accuracy

64 66 68 70

cs-attn-attn (size 1000, 1 head)

64 66 68 70

cs-attn-attn (size 1000, 4 heads)

64 66 68 70

cs-attn-attn (size 1000, 8 heads)

64 66 68 70

cs-attn-attn (size 4000, 4 heads)

64 66 68 70

cs-maxpool (size 1000)

(c) SNLI

0.4 0.5 0.6

cs-attn-attn (size 1000, 1 head)

0.4 0.5 0.6

cs-attn-attn (size 1000, 4 heads)

0.4 0.5 0.6

cs-attn-attn (size 1000, 8 heads)

0.4 0.5 0.6

cs-attn-attn (size 4000, 4 heads)

0.4 0.5 0.6

cs-maxpool (size 1000)

(d) Average SentEval similarity score

Figure 5.5: Results of selected cs models and their multi-task variants. Each line
shows the following variants of one base model (α is the weight of the regression
task):

– α = 100 – α = 100, shuffled targets
– α = 0 – no multi-task (MT only)

The only model with the variant is the one with 8 attention heads.

46

0.0 0.2 0.4 0.6 0.8
Step ×107

0

1

2

3

4

L M
S

E

×10−5

α = 10

α = 100

α = 10,
shuffled

α = 100,
shuffled

Figure 5.6: Representation regression loss LMSE (smoothed) in multi-task vari-
ants of the de-attn-attn model (size 600, 8 heads) with and without shuffled
regression targets.

model is in fact able to make some sense of the ‘real’ InferSent embeddings,
reaching LMSE < 1, as opposed to the ‘fake’ (shuffled) ones, where LMSE > 3.

For cs models (Fig. 5.5), there is a very slight but consistent improvement on
the similarity tasks and an equally slight decrease in BLEU.

We trained only one cs model with shuffled targets and it yielded a compar-
atively dramatic improvement on all the selected tasks (along with a substan-
tial drop in BLEU). The regression loss and BLEU of this model are plotted in
Fig. 5.7. Interestingly, the model was apparently more successful in minimizing
the regression loss (approx. 10−5, compared to 4 · 10−5 in the de model) at the
cost of a reduced translation quality.

Fig. 5.8 shows the relative improvements on all tasks. For the cs models, the
differences are small but mostly positive. For the de models, the most important
thing to notice is that the pattern is very irregular, but similar between models
with and without shuffled targets.

In sum, we do not have enough evidence to conclude that joint regression
training with InferSent targets is useful. Quite the contrary – it seems that the
few observed improvements are, for the most part, caused by ‘blind’ regularization
which is a side effect of the multi-task training.

47

0.2

0.4

0.6

0.8

1.0

L M
S

E

×10−5

0 2 4 6
Step ×107

0

5

10

15

B
L

E
U

α = 0

α = 100

α = 100,
shuffled

Figure 5.7: Representation regression loss LMSE and BLEU (both smoothed) in
multi-task variants of the cs-attn-attn model (size 1000, 8 heads) with and
without shuffled regression targets. BLEU was computed on the validation set.
We do not show LMSE for α = 0 because the loss is ignored during training.

48

cs
-a

t
t
n
-a

t
t
n

1
0
0
0
,

1
h
ea

d

cs
-a

t
t
n
-a

t
t
n

1
0
0
0
,

4
h
ea

d
s

cs
-a

t
t
n
-a

t
t
n

1
0
0
0
,

8
h
ea

d
s

cs
-a

t
t
n
-a

t
t
n

4
0
0
0
,

4
h
ea

d
s

cs
-m

a
x
p
o
o
l

1
0
0
0

cs

BLEU-test

MR

CR

SUBJ

MPQA

SST2

SST5

TREC

MRPC

SICK-E

SNLI

AvgAcc

SICK-R

STSB

STS12

STS13

STS14

STS15

STS16

AvgSim

HyTER Cls.

HyTER NN (cos)

HyTER DB−1

COCO Cls.

COCO NN (cos)

COCO DB−1

CH incl. (L2)

CH incl. (cos)
CH excl. (L2)

CH excl. (cos)

d
e-

a
t
t
n
-a

t
t
n

1
2
0
0
,

2
h
ea

d
s

d
e-

a
t
t
n
-a

t
t
n

6
0
0
,

2
h
ea

d
s

d
e-

a
t
t
n
-a

t
t
n

6
0
0
,

1
h
ea

d

d
e-

a
t
t
n
-a

t
t
n

6
0
0
,

8
h
ea

d
s

de

d
e-

a
t
t
n
-a

t
t
n

1
2
0
0
,

2
h
ea

d
s

d
e-

a
t
t
n
-a

t
t
n

6
0
0
,

2
h
ea

d
s

d
e-

a
t
t
n
-a

t
t
n

6
0
0
,

1
h
ea

d

d
e-

a
t
t
n
-a

t
t
n

6
0
0
,

8
h
ea

d
s

de shuffled

−0.4

−0.2

0.0

0.2

0.4

Figure 5.8: Relative differences in the performance of multi-task models with
α = 100 vs. α = 0. Positive differences (cases where the multi-task training
improved the result) are shown in shades of green.

49

B
L

E
U

-t
es

t
M

R
C

R
S

U
B

J
M

P
Q

A
S

S
T

2
S

S
T

5
T

R
E

C
M

R
P

C
S

IC
K

-E
S

N
L

I
A

v
g
A

cc
S

IC
K

-R
S

T
S

B
S

T
S

1
2

S
T

S
1
3

S
T

S
1
4

S
T

S
1
5

S
T

S
1
6

A
v
g
S

im
H

y
T

E
R

C
ls

.
H

y
T

E
R

N
N

(c
o
s)

H
y
T

E
R

D
B
−

1

C
O

C
O

C
ls

.
C

O
C

O
N

N
(c

o
s)

C
O

C
O

D
B
−

1

C
H

in
cl

.
(L

2
)

C
H

in
cl

.
(c

o
s)

C
H

ex
cl

.
(L

2
)

C
H

ex
cl

.
(c

o
s)

BLEU-test
MR
CR

SUBJ
MPQA

SST2
SST5

TREC
MRPC

SICK-E
SNLI

AvgAcc
SICK-R

STSB
STS12
STS13
STS14
STS15
STS16

AvgSim
HyTER Cls.

HyTER NN (cos)
HyTER DB−1

COCO Cls.
COCO NN (cos)

COCO DB−1

CH incl. (L2)

CH incl. (cos)
CH excl. (L2)

CH excl. (cos) −1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 5.9: Pearson correlations between results on different tasks. Upper tri-
angle: de models, lower triangle: cs models. Positive correlations are shown in
shades of green. Results of similarity tasks are Pearson correlations (Spearman
correlations are omitted). AvgAcc and AvgSim stand for average SentEval ac-
curacy and similarity score, respectively. CH stands for compression-headline
alignment.

5.4 Discussion

5.4.1 Correlations
To assess the relations between the various metrics, we plotted a heatmap of their
Pearson correlations in Fig. 5.9. As one example, Fig. 5.10 details BLEU scores
vs. average SentEval accuracy in cs models.

A good sign is that on the cs dataset, most metrics of representation are
positively correlated (the pairwise Pearson correlation is 0.61± 0.57 on average),
the outliers being TREC (−0.16 ± 0.16 correlation with the other metrics on
average) and the ‘incl.’ variants of domain alignment (−0.62± 0.18 on average).

On the other hand, most representation metrics correlate with BLEU nega-
tively (−0.51± 0.39) on cs. The pattern is less pronounced but still clear also on
the de dataset.

A detailed understanding of what the learned representations contain is diffi-

50

5.0 7.5 10.0 12.5 15.0 17.5
BLEU-test

70

71

72

73

74

A
v
gA

cc avgpool
1000

attn-attn
1000, 1 head

attn-attn
1000, 4 heads

attn-attn
1000, 8 heads

attn-attn
4000, 4 heads

attn-ctx
1000, 4 heads

maxpool
1000

final-ctx
1000

final
1000

Figure 5.10: BLEU vs. average SentEval accuracy for cs models.

cult. We can only speculate that once the NMT model has sufficient capability
to follow the source sentence superficially, it will use it and spend its capacity
on closely matching the target sentences rather than on deriving a more abstract
representation. We assume that this can be a direct consequence of NMT being
trained for cross entropy: putting the exact word forms in exact positions as the
target sentence requires. Performing well in single-reference BLEU is not an indi-
cation that the system understands the meaning but rather that it can maximize
the chance of producing the n-grams required by the reference.

5.4.2 Attention interpretation
To interpret the compound attention mechanism, we visualized the induced align-
ments between source and target sentences while separating the individual atten-
tion heads – see Fig. 5.11 for an example and Appendix A for more examples. We
noticed that each head tends focus on one segment of the sentence. While one
would hope that the segments correspond to some meaningful units (e.g. syntac-
tic functions like subject, predicate or object), we failed to find any such relation
for attn-attn and for cs models in general. Instead, the heads divide the source
sentence more or less equidistantly, regardless of its length. For example, note
how in Fig. 5.11b, the word osteoporosis, consisting of 5 tokens, was split between
7 attention heads because the sentence is short, while in the longer sentence in
Fig. 5.11a, most heads span 3 tokens. Moreover, the order of the heads’ po-
sitions in the input sentence seems to be the same for almost all sentences, as
documented by the plot in Fig. 5.11c.

We observed a different situation in de-attn-ctx models, where the distri-
bution of attention weights for each head was much flatter and we were often
able to identify a head focusing on the main verb, as in Fig. 5.12. This might be

51

Given
the

available
clinical

and
k

ine
tic

data
,

no
dose

adjustment
is

necessary
(

see
section

5.2
)
.

Vzhledem
k
dostup
ným
klin
ickým
a
k
ine
tickým
údaj m
není
nutné
uprav
ovat
dávku
(
viz
bod
5.2
)
.
</s>

(a)

What
is
o

ste
opo

ro
sis

?

Co
je
o
ste
o
por
óza
?
</s>

(b)

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

0.0 0.5 1.0
0.0

0.1

0.2

0.0 0.5 1.0

(c)

Figure 5.11: Compound attention in the cs-attn-attn model with 8 attention
heads and embedding size of 1000. Best viewed in color. (a) & (b) Induced
alignments between source sentences and outputs. Each color represents a differ-
ent head. The stroke width indicates the alignment weight, with weights ≤ 0.01
pruned out. (c) Inner attention weight by relative position in the source sentence,
averaged over the dev set (sentences with less than 8 tokens excluded). Each plot
corresponds to one attention head.

52

0.0
0.1
0.2
0.3

0.0
0.1
0.2
0.3

0.0
0.1
0.2
0.3

0.0 0.5 1.0
0.0
0.1
0.2
0.3

0.0 0.5 1.0

(a)

60 52 41 73
0.0

0.2

0.4

0.6
VERB

60 52 41 73
0.00

0.02

0.04

AUX

(b)

0 1 2 3 4 5 6 7

a
group

of
people

standing
in

front
of
a

hut
in
a

parking
lot

.

0 1 2 3 4 5 6 7

an
Asian

girl
in
a

green
hat
and

apron
is

serving
drinks

on
a

tray
.

(c)

Figure 5.12: Inner attention in the de-attn-ctx model with 8 attention heads
and embedding size of 600. Best viewed in color. (a) Attention weight by relative
position in the source sentence, averaged over the dev set (sentences with less
than 8 tokens excluded). Each plot corresponds to one attention head. (b) Total
attention weight allotted to verbs (VERB) and auxiliary verbs (AUX) by each
head (averaged over the dev set). (c) Attention weights for each head for concrete
input sentences.

53

because the sentences from the Multi30K dataset are simpler compared to CzEng
and the position of the main verb is more predictable. However, by looking at the
alignments in Fig. 5.12, we can confirm that the ‘verb’ head (number 3, shown
in blue) picks the verb even if it is in an unusual position. The other heads seem
to be more position-oriented, but also not entirely.

These observations can help explain why multi-headed models score lower in
most representation evaluations: if attention heads are assigned based on position,
then semantically close sentences that differ in word order will have very different
representations element-wise. For example, consider the following sentences and
assume a model with 3 attention heads which splits the sentences in the following
way (as delimited by the brackets):

(a) [good food]1 [but]2 [horrible service]3

(b) [horrible service]1 [but]2 [good food]3
Although the strings (a) and (b) have similar meanings, they will inevitably lie
far apart in the embedding space of this model. This is because in both cases,
e.g. the first component of the embedding will be an average of the two leftmost
encoder states, but the inputs to these states will be good food in (a) and horrible
service in (b). In contrast, a model with only 1 attention head will always take
a weighted average of the whole sentence, and therefore there is at least some
chance that the embeddings of (a) and (b) will lie in each other’s proximity.

5.4.3 Dimension importance
We also attempted to interpret individual dimensions of the sentence embeddings
based on the representation erasure technique of Li et al. (2016a). This method
computes the importance of dimension d of an internal representation as the
relative difference in performance caused by erasing dimension d:

I(d) = 1
|X |

∑
(x,y)∈X

S(x, y)− S(x, y,¬d)
S(x, y) , (5.1)

where S(x, y) is the log-likelihood of the model computed on an example x for
which the correct label is y, and S(x, y,¬d) is the same quantity when dimension
d of the internal representation is erased (set to zero). The importances are then
visualized in a plot.

We apply a similar method to the SentEval classification tasks. Our approach
differs from that of Li et al. in two regards. Firstly, while Li et al. work with
pre-trained networks, we re-run all evaluations from scratch after erasing a given
dimension, which requires re-training the classifiers. This might allow the classi-
fiers to compensate for the missing dimension.

Secondly, the SentEval benchmark does not report the per-example loss neces-
sary for evaluating Eq. (5.1). For this reason, we instead compute the importance
of dimension d as the actual or relative difference in overall accuracy when the
dimension is erased:

Ia(d) = Acc− Acc¬d, (5.2)

Ir(d) = Ia(d)
Acc . (5.3)

54

CR MPQA
MR MRPC

SIC
KEntailm

ent

SNLI
SST2

SST5
SUBJ

TREC

cs-attn-attn
1000, 1 head

cs-attn-attn
1000, 4 heads

cs-attn-attn
1000, 8 heads

cs-attn-ctx
1000, 4 heads

cs-final-ctx
1000

cs-final
1000 −0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

Figure 5.13: Dimension importances (averaged over all dimensions) in different
models when evaluated on SentEval classification tasks. Positive importances are
shown in shades of green.

Due to the high number of dimensions, we needed to adjust the hyperpa-
rameters of the SentEval classifiers to reduce computation time. Specifically,
we use the speed-optimized configuration suggested by the authors5 while set-
ting some options to even more radical values: optim=’rmsprop’ (RMSProp
optimizer instead of Adam), kfold=2 (2-fold cross-validation), batch size=256,
epoch size=2 and tenacity=3.

Examples of the visualizations are included in Appendix A. The results for
different models and tasks are summarized in Fig. 5.13 where we computed the
actual (non-normalized) differences and averaged them over all dimensions to
obtain a single number for each model and task. In general, we find the results
hard to interpret. One thing to notice is that for some model/task combinations,
most dimensions have a large negative importance, which means that erasing
these dimensions improved the performance on that task. This result is yet to be
explained, but we suspect that it might be related to the reduced training time of
the classifiers. On the other hand, the classifiers are always initialized identically,
so we can eliminate random initialization as the culprit.

To obtain reliable results, the experiments should be run repeatedly with
different random initializations and the results averaged. Also, the training time
of the classifiers should perhaps be extended. However, both options are very
computationally expensive. Another option would be to use the representation
erasure technique to evaluate the importance of attention heads rather than single
dimensions, which would require a much lower number of runs.

5https://github.com/facebookresearch/SentEval#senteval-parameters

55

https://github.com/facebookresearch/SentEval#senteval-parameters

56

Conclusion
We explored and extensively evaluated continuous sentence representations in
NMT systems. In order to apply our methods to the widely used attentive models,
we devised a variation on these models that again provides a single meeting point
with a continuous representation of the source sentence.

While our proposed ‘compound attention’ leads to translation quality not
much worse than the fully attentive model, it generally does not perform well
in meaning representation. Quite on the contrary, we found that the higher the
BLEU score, the worse the performance in meaning representation evaluations.

We believe that this observation is important for representation learning where
bilingual MT now seems less likely to provide useful data, but perhaps more so
for MT itself, where the struggle towards a high single-reference BLEU score (or
even worse, cross entropy) leads to systems that refuse to consider the meaning
of the sentence.

Future work
We benchmarked our models against InferSent, which uses GloVe word vectors.
The effect of pre-trained word embeddings should be looked into; it is entirely
possible that our sentence representations would benefit from them substantially.
For models based on sub-word units, an option such as BPEmb (Heinzerling and
Strube, 2017) could be used.

The new compound attention architecture should also be tested on multi-
lingual NMT (as in Schwenk and Douze, 2017). The sentence representations
could then function as a form of interlingua in machine translation. It is also ex-
pected that this would make the representations more robust and improve their
performance on other tasks.

There are also several possible improvements and extensions to the evaluation
protocol. For tasks where the evaluation is based on nearest neighbor search (i.e.
paraphrase retrieval and domain alignment), it should be investigated how the
number and the character of ‘competing’ sentences affects the results. In the
case of HyTER, which appears to be a very easy dataset to evaluate on, more
informative results could be obtained by running the evaluation many times on a
very small sample of points from each cluster. Our domain alignment evaluation
method also calls for a better dataset, ideally one where the mapping between the
domains needs to capture a specific change in meaning. As for the representation
erasure technique, its reliability should be further investigated.

57

58

Bibliography
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-

lation by jointly learning to align and translate. CoRR, abs/1409.0473, 2014.

Amir Bakarov. A survey of word embeddings evaluation methods. CoRR,
abs/1801.09536, 2018.

Ondrej Bojar, Matous Machácek, Ales Tamchyna, and Daniel Zeman. Scratching
the surface of possible translations. In TSD, 2013.

Ondřej Bojar, Ondřej Dušek, Tom Kocmi, Jindřich Libovický, Michal Novák,
Martin Popel, Roman Sudarikov, and Dušan Varǐs. CzEng 1.6: Enlarged
Czech-English Parallel Corpus with Processing Tools Dockered. In Petr So-
jka, Aleš Horák, Ivan Kopeček, and Karel Pala, editors, Text, Speech, and
Dialogue: 19th International Conference, TSD 2016, number 9924 in Lecture
Notes in Computer Science, pages 231–238, Cham / Heidelberg / New York
/ Dordrecht / London, 2016. Masaryk University, Springer International Pub-
lishing. ISBN 978-3-319-45509-9.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Józefowicz,
and Samy Bengio. Generating sentences from a continuous space. In CoNLL,
2016.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio.
On the properties of neural machine translation: Encoder-decoder approaches.
In SSST@EMNLP, 2014a.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using RNN Encoder-Decoder for statistical machine translation. In
EMNLP, 2014b.

Ondřej Ćıfka, Aliaksei Severyn, Enrique Alfonseca, and Katja Filippova. Eval all,
trust a few, do wrong to none: Comparing sentence generation models. CoRR,
abs/1804.07972, 2018.

Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. Mathematical foun-
dations for a compositional distributional model of meaning. CoRR,
abs/1003.4394, 2010.

Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: deep neural networks with multitask learning. In ICML, 2008.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel P. Kuksa. Natural language processing (almost) from
scratch. Journal of Machine Learning Research, 12:2493–2537, 2011.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Löıc Barrault, and Antoine Bor-
des. Supervised learning of universal sentence representations from natural
language inference data. In EMNLP, 2017a.

59

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic De-
noyer, and Hervé Jégou. Word translation without parallel data. CoRR,
abs/1710.04087, 2017b.

James R. Curran and Marc Moens. Improvements in automatic thesaurus ex-
traction. 2002.

David L. Davies and Donald W. Bouldin. A cluster separation measure. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-1:224–227,
1979.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas,
and Richard A. Harshman. Indexing by latent semantic analysis. JASIS, 41:
391–407, 1990.

William B. Dolan, Chris Quirk, and Chris Brockett. Unsupervised construction
of large paraphrase corpora: Exploiting massively parallel news sources. In
COLING, 2004.

Markus Dreyer and Daniel Marcu. HyTER: Meaning-equivalent semantics for
translation evaluation. In HLT-NAACL, 2012.

Markus Dreyer and Daniel Marcu. HyTER networks of selected OpenMT08/09
sentences. Linguistic Data Consortium, Philadelphia, 2014. LDC2014T09.

Desmond Elliott, Stella Frank, Khalil Sima’an, and Lucia Specia. Multi30K:
Multilingual English-German image descriptions. CoRR, abs/1605.00459, 2016.

Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi, and Chris Dyer. Problems
with evaluation of word embeddings using word similarity tasks. In RepE-
val@ACL, 2016.

Katja Filippova and Yasemin Altun. Overcoming the lack of parallel data in
sentence compression. In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pages 1481–1491, 2013.

Felix A. Gers, Jürgen Schmidhuber, and Fred A. Cummins. Learning to forget:
Continual prediction with LSTM. Neural computation, 12 10:2451–71, 2000.

Felix A. Gers, Nicol N. Schraudolph, and Jürgen Schmidhuber. Learning precise
timing with lstm recurrent networks. Journal of Machine Learning Research,
3:115–143, 2002.

Alex Graves, Abdel rahman Mohamed, and Geoffrey E. Hinton. Speech recogni-
tion with deep recurrent neural networks. 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, pages 6645–6649, 2013.

Edward Grefenstette, Mehrnoosh Sadrzadeh, Stephen Clark, Bob Coecke, and
Stephen Pulman. Concrete sentence spaces for compositional distributional
models of meaning. In Proceedings of the Ninth International Conference on
Computational Semantics, pages 125–134. Association for Computational Lin-
guistics, 2011.

60

Kelvin Guu, Tatsunori B Hashimoto, Yonatan Oren, and Percy Liang. Generating
sentences by editing prototypes. CoRR, abs/1709.08878, 2017.

Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE international conference on computer vision, pages
1026–1034, 2015.

Benjamin Heinzerling and Michael Strube. Bpemb: Tokenization-free pre-trained
subword embeddings in 275 languages. CoRR, abs/1710.02187, 2017.

Jindřich Helcl and Jindřich Libovický. Neural Monkey: An open-source tool for
sequence learning. The Prague Bulletin of Mathematical Linguistics, 107(1):
5–17, 2017a.

Jindřich Helcl and Jindřich Libovický. CUNI system for the WMT17 multimodal
traslation task. 2017b.

Karl Moritz Hermann and Phil Blunsom. The role of syntax in vector space
models of compositional semantics. In ACL, 2013.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. Learning distributed represen-
tations of sentences from unlabelled data. In HLT-NAACL, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9 8:1735–80, 1997.

Mohit Iyyer, Varun Manjunatha, Jordan L. Boyd-Graber, and Hal Daumé. Deep
unordered composition rivals syntactic methods for text classification. In ACL,
2015.

Rafal Józefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical explo-
ration of recurrent network architectures. In ICML, 2015.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional
neural network for modelling sentences. In ACL, 2014.

Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, and Stephen Pulman. A unified sen-
tence space for categorical distributional- compositional semantics: Theory
and experiments. In Proceedings of 24th International Conference on Compu-
tational Linguistics (COLING): Posters, 2012.

Douwe Kiela, Alexis Conneau, Allan Jabri, and Maximilian Nickel. Learning
visually grounded sentence representations. CoRR, abs/1707.06320, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR,
abs/1312.6114, 2013.

61

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Antonio Tor-
ralba, Raquel Urtasun, and Sanja Fidler. Skip-thought vectors. In Proceedings
of the 28th International Conference on Neural Information Processing Sys-
tems - Volume 2, NIPS’15, pages 3294–3302, Cambridge, MA, USA, 2015.
MIT Press.

Guillaume Lample, Ludovic Denoyer, and Marc’Aurelio Ranzato. Unsupervised
machine translation using monolingual corpora only. CoRR, abs/1711.00043,
2017.

Quoc V. Le and Tomas Mikolov. Distributed representations of sentences and
documents. In ICML, 2014.

Omer Levy and Yoav Goldberg. Linguistic regularities in sparse and explicit word
representations. In CoNLL, 2014.

Jiwei Li, Will Monroe, and Daniel Jurafsky. Understanding neural networks
through representation erasure. CoRR, abs/1612.08220, 2016a.

Peng Li, Wei Li, Zhengyan He, Xuguang Wang, Ying Cao, Jie Zhou, and Wei Xu.
Dataset and neural recurrent sequence labeling model for open-domain factoid
question answering. CoRR, abs/1607.06275, 2016b.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B.
Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: common objects in context. CoRR,
abs/1405.0312, 2014.

Zhouhan Lin, Minwei Feng, Ćıcero Nogueira dos Santos, Mo Yu, Bing Xiang,
Bowen Zhou, and Yoshua Bengio. A structured self-attentive sentence embed-
ding. CoRR, abs/1703.03130, 2017.

Yanchi Liu, Zhongmou Li, Hui Xiong, Xuedong Gao, and Junjie Wu. Under-
standing of internal clustering validation measures. 2010 IEEE International
Conference on Data Mining, pages 911–916, 2010.

Yang Liu, Chengjie Sun, Lei Lin, and Xiaolong Wang. Learning natural lan-
guage inference using bidirectional LSTM model and inner-attention. CoRR,
abs/1605.09090, 2016.

Kevin Lund and Curt Burgess. Producing high-dimensional semantic spaces from
lexical co-occurrence. Behavior research methods, instruments, & computers,
28(2):203–208, 1996.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches
to attention-based neural machine translation. In EMNLP, 2015.

Jean Maillard, Stephen Clark, and Edward Grefenstette. A type-driven tensor-
based semantics for ccg. In Proceedings of the EACL 2014 Workshop on Type
Theory and Natural Language Semantics (TTNLS), 2014.

62

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. CoRR, abs/1301.3781,
2013a.

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. Exploiting similarities among
languages for machine translation. CoRR, abs/1309.4168, 2013b.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality.
In NIPS, 2013c.

Tomas Mikolov, Wen tau Yih, and Geoffrey Zweig. Linguistic regularities in
continuous space word representations. In HLT-NAACL, 2013d.

Jeff Mitchell and Mirella Lapata. Vector-based models of semantic composition.
In ACL, 2008.

Jeff Mitchell and Mirella Lapata. Composition in distributional models of seman-
tics. Cognitive science, 34 8:1388–429, 2010.

Richard Montague. English as a formal language. Linguaggi nella Società e nella
Tecnica, 1970.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a
method for automatic evaluation of machine translation. In ACL 2002, Pro-
ceedings of the 40th Annual Meeting of the Association for Computational Lin-
guistics, pages 311–318, Philadelphia, Pennsylvania, 2002.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, 2014.

Anna Rogers, Aleksandr Drozd, and Bofang Li. The (too many) problems of ana-
logical reasoning with word vectors. In Proceedings of the 6th Joint Conference
on Lexical and Computational Semantics (*SEM 2017), pages 135–148, 2017.

Adriaan M. J. Schakel and Benjamin J. Wilson. Measuring word significance
using distributed representations of words. CoRR, abs/1508.02297, 2015.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing, 45(11):2673–2681, 1997.

Hinrich Schütze. Automatic word sense discrimination. Computational Linguis-
tics, 24:97–123, 1998.

Holger Schwenk and Matthijs Douze. Learning joint multilingual sentence repre-
sentations with neural machine translation. In Rep4NLP@ACL, 2017.

Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. A hybrid convolu-
tional variational autoencoder for text generation. In EMNLP, 2017.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine
translation models with monolingual data. CoRR, abs/1511.06709, 2016a.

63

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation
of rare words with subword units. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages
1715–1725, Berlin, Germany, August 2016b. Association for Computational
Linguistics.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexandra Birch, Barry Had-
dow, Julian Hitschler, Marcin Junczys-Dowmunt, Samuel Läubli, Antonio Va-
lerio Miceli Barone, Jozef Mokry, and Maria Nadejde. Nematus: a toolkit for
neural machine translation. In EACL, 2017.

Xing Shi, Inkit Padhi, and Kevin Knight. Does string-based neural MT learn
source syntax? In EMNLP, 2016.

Richard Socher, Christopher D. Manning, and Andrew Y. Ng. Learning contin-
uous phrase representations and syntactic parsing with recursive neural net-
works. 2010.

Richard Socher, Eric H. Huang, Jeffrey Pennington, Andrew Y. Ng, and Christo-
pher D. Manning. Dynamic pooling and unfolding recursive autoencoders for
paraphrase detection. In NIPS, 2011.

Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng.
Semantic compositionality through recursive matrix-vector spaces. In EMNLP-
CoNLL, 2012.

Richard Socher, A. V. Perelygin, Jean Wu, Jason Chuang, Christopher D. Man-
ning, Andrew Ng, and Christopher Potts. Recursive deep models for semantic
compositionality over a sentiment treebank. 2013.

Mark Steedman. The Syntactic Process. MIT Press, Cambridge, MA, USA, 2000.
ISBN 0-262-19420-1.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning
with neural networks. In NIPS, 2014.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved seman-
tic representations from tree-structured long short-term memory networks. In
ACL, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In NIPS, 2017.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. Towards uni-
versal paraphrastic sentence embeddings. CoRR, abs/1511.08198, 2015.

Keiji Yasuda, Ruiqiang Zhang, Hirofumi Yamamoto, and Eiichiro Sumita.
Method of selecting training data to build a compact and efficient translation
model. In IJCNLP, 2008.

64

Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, and Wang Ling.
Learning to compose words into sentences with reinforcement learning. CoRR,
abs/1611.09100, 2016.

Han Zhao, Zhengdong Lu, and Pascal Poupart. Self-adaptive hierarchical sentence
model. In IJCAI, 2015.

Jie Zhou, Ying Cao, Xuguang Wang, Peng Li, and Wei Xu. Deep recurrent
models with fast-forward connections for neural machine translation. TACL,
4:371–383, 2016.

65

66

A. Attachments
Below, we give the full results of different evaluations:

• Table A.1 – SentEval classification tasks

• Table A.2 – SentEval similarity tasks

• Table A.3 – paraphrase-based evaluation

Figs. A.1 and A.2 show some additional examples of alignments from the com-
pound attention models. Finally, we give examples of sentence embedding visu-
alizations using the representation erasure technique in Fig. A.3.

67

M
odel

%
A

ccuracy
N

am
e

Size
H

eads
M

R
C

R
SU

BJ
M

PQ
A

SST
2

SST
5

T
R

EC
M

R
PC

SIC
K

-E
SN

LI
Avg.

M
ost

frequent
baseline

50.0
63.8

50.0
68.8

49.9
23.1

18.8
66.5

56.7
34.3

48.19
H

illet
al.

en→
fr †

2400
—

64.7
70.1

84.9
81.5

—
—

82.8
96.1

—
—

—
InferSent †

4096
—

81.1
86.3

92.4
90.2

84.6
—

88.2
76.2

86.3
(84.5)

—
InferSent

4096
—

81.5
86.7

92.7
90.6

85.0
45.8

88.2
76.6

86.4
83.7

81.7
G

loVe-BO
W

300
—

77.0
78.2

91.1
87.9

81.0
44.4

82.0
72.3

78.2
66.0

75.8
cs-final-ctx

1000
—

68.7
77.4

88.5
85.5

73.0
38.2

88.6
71.8

82.1
70.2

74.4
cs-attn-attn

1000
1

68.2
76.0

86.9
84.9

72.0
35.7

89.0
70.7

80.8
69.3

73.4
cs-final

1000
—

67.9
75.7

87.6
84.7

72.5
36.2

86.0
71.4

81.1
69.2

73.2
cs-m

axpool
1000

—
67.4

75.2
86.9

84.3
70.3

37.5
85.8

72.1
81.7

68.5
73.0

cs-avgpool
1000

—
66.5

74.1
86.5

85.0
71.9

36.7
85.4

70.0
79.7

67.8
72.4

cs-attn-ctx
1000

4
66.5

74.8
85.7

84.7
70.1

36.1
88.2

70.4
79.5

66.0
72.2

cs-attn-attn
4000

4
64.9

72.7
84.3

85.1
70.1

33.5
88.8

69.7
78.0

65.2
71.2

cs-attn-attn
1000

4
64.0

72.6
84.6

84.2
67.9

33.2
89.0

70.1
78.0

64.6
70.8

cs-attn-attn
1000

8
62.9

71.7
83.6

84.2
67.0

34.2
86.2

69.8
76.6

63.2
70.0

de-m
axpool-ctx

600
—

60.0
69.2

77.0
73.1

61.4
32.4

80.2
70.7

78.8
68.0

67.1
de-attn-ctx

1200
12

61.1
70.0

77.3
71.7

63.5
32.4

78.4
69.8

77.4
65.0

66.7
de-attn-ctx

600
8

60.5
68.5

77.0
72.1

62.0
31.1

77.0
70.1

75.7
64.0

65.8
de-avgpool-ctx

600
—

59.5
67.5

75.6
72.5

64.1
29.3

74.6
70.8

77.5
65.2

65.6
de-attn-ctx

600
12

59.7
68.4

77.0
71.2

61.2
30.9

78.0
71.1

76.0
61.9

65.5
de-final

600
—

59.9
65.9

76.2
72.7

61.5
31.4

73.0
70.7

77.0
64.7

65.3
de-attn-ctx

600
3

60.3
67.0

75.4
72.7

60.6
30.4

77.0
69.9

76.0
63.3

65.3
de-attn-attn

600
1

60.0
66.5

72.8
72.2

61.7
29.5

74.2
70.5

76.9
63.8

64.8
de-attn-attn

600
3

60.7
67.5

74.1
71.8

60.6
30.1

75.0
69.5

74.7
61.5

64.5
de-final-ctx

600
—

58.9
66.2

73.1
71.9

61.0
29.2

75.8
70.3

76.2
62.6

64.5
de-attn-attn

1200
6

58.7
65.9

75.4
72.3

61.0
29.7

78.4
70.1

72.3
59.6

64.3
de-trf-attn-attn

600
3

58.8
64.9

76.2
71.7

60.3
30.4

72.0
71.2

72.5
61.4

63.9
de-attn-attn

1200
12

58.6
66.9

74.1
70.7

60.8
29.5

75.8
67.1

72.5
58.2

63.4
de-attn-attn

2400
12

57.4
66.0

74.0
70.9

58.5
27.7

76.0
67.7

73.9
59.8

63.2
de-trf-attn-attn

2400
12

56.9
65.3

74.4
71.2

61.2
30.5

74.0
66.1

71.2
59.0

63.0
de-attn-attn

600
6

57.4
64.8

72.4
71.8

59.5
27.2

76.0
68.6

70.9
57.5

62.6
de-attn-attn

600
8

57.5
64.5

71.7
71.8

58.8
28.1

77.4
67.0

68.6
55.6

62.1
de-trf-attn-attn

600
6

57.8
64.6

72.0
70.8

59.3
29.2

65.6
69.1

71.0
59.5

61.9
de-attn-attn

600
12

56.0
65.6

73.1
70.5

57.6
28.6

74.0
64.1

70.5
55.2

61.5
de-trf-attn-attn

1200
12

56.6
64.9

71.4
71.0

56.7
29.6

66.2
67.9

68.8
58.2

61.1
de-attn-ctx

600
6

58.4
63.9

72.9
70.6

57.4
29.6

58.6
66.5

68.7
62.9

61.0
LM

perplexity
(cs)

1362.5
736.4

1059.0
3213.3

2099.1
1340.8

338.2
863.0

299.4
190.6

1150.2
%

O
O

V
(cs)

4.2
2.5

3.6
0.9

3.4
4.2

0.6
3.5

0.2
0.3

2.3
LM

perplexity
(de)

3776.8
2639.3

3137.7
8740.0

5003.3
3519.2

3790.8
5070.7

65.0
38.8

3578.2
%

O
O

V
(de)

22.8
13.1

21.0
27.9

24.4
23.3

16.7
25.6

1.7
1.5

17.8

Table
A

.1:
SentEvalclassification

accuracies.
R

eprinted
results

are
m

arked
w

ith
†,others

are
our

m
easurem

ents.
Perplexity

and
O

O
V

rate
as

in
Table

5.3.

68

M
od

el
C

or
re

la
tio

n
(P

ea
rs

on
/S

pe
ar

m
an

)
M

od
el

Si
ze

H
ea

ds
SI

C
K

-R
ST

SB
ST

S1
2

ST
S1

3
ST

S1
4

ST
S1

5
ST

S1
6

Av
g.

In
fe

rS
en

t†
40

96
—

.8
8/

–
—

—
—

.7
0/

.6
7

—
—

—
In

fe
rS

en
t

40
96

—
.8

8/
.8

3
.7

6/
.7

5
.5

9/
.6

0
.5

9/
.5

9
.7

0/
.6

7
.7

1/
.7

2
.7

1/
.7

3
.7

0
cs

-m
ax

po
ol

10
00

—
.8

1/
.7

5
.7

2/
.7

1
.5

2/
.5

3
.4

7/
.4

7
.5

4/
.5

3
.6

1/
.6

1
.5

8/
.5

8
.6

0
cs

-f
in

al
10

00
—

.8
0/

.7
4

.7
4/

.7
5

.5
4/

.5
6

.4
2/

.4
3

.5
5/

.5
3

.6
0/

.5
9

.5
5/

.5
6

.6
0

cs
-f

in
al

-c
tx

10
00

—
.8

2/
.7

6
.7

4/
.7

4
.5

1/
.5

3
.4

4/
.4

4
.5

2/
.5

0
.6

2/
.6

1
.5

7/
.5

8
.6

0
G

lo
Ve

-B
O

W
30

0
—

.8
0/

.7
2

.6
4/

.6
2

.5
2/

.5
3

.5
0/

.5
1

.5
5/

.5
6

.5
6/

.5
9

.5
1/

.5
8

.5
9

cs
-a

tt
n-

at
tn

10
00

1
.8

1/
.7

6
.7

3/
.7

3
.4

6/
.4

9
.3

2/
.3

3
.4

5/
.4

4
.5

3/
.5

2
.4

7/
.4

8
.5

4
de

-a
tt

n-
ct

x
12

00
12

.7
6/

.7
0

.5
2/

.5
1

.4
6/

.4
9

.3
1/

.3
1

.5
0/

.5
0

.5
8/

.5
7

.5
1/

.5
2

.5
2

de
-a

tt
n-

ct
x

60
0

8
.7

5/
.6

8
.5

2/
.5

0
.4

7/
.4

9
.3

0/
.3

1
.5

2/
.5

2
.5

6/
.5

6
.4

8/
.4

9
.5

1
de

-a
tt

n-
at

tn
60

0
1

.7
4/

.6
7

.5
6/

.5
5

.4
6/

.4
8

.3
0/

.3
1

.4
8/

.4
8

.5
3/

.5
3

.4
6/

.4
7

.5
0

de
-a

tt
n-

ct
x

60
0

3
.7

2/
.6

5
.5

3/
.5

2
.4

5/
.4

8
.3

4/
.3

5
.4

8/
.4

8
.5

5/
.5

4
.4

6/
.4

6
.5

0
de

-a
tt

n-
ct

x
60

0
12

.7
5/

.6
8

.5
1/

.4
9

.4
6/

.4
7

.2
8/

.2
9

.5
1/

.5
0

.5
4/

.5
4

.4
8/

.4
8

.5
0

cs
-a

vg
po

ol
10

00
—

.7
8/

.7
2

.7
0/

.7
0

.4
7/

.4
9

.2
9/

.3
0

.3
8/

.3
9

.4
4/

.4
4

.4
1/

.4
3

.5
0

de
-m

ax
po

ol
-c

tx
60

0
—

.7
7/

.7
1

.6
1/

.6
0

.4
6/

.4
8

.2
6/

.2
8

.4
6/

.4
6

.5
1/

.5
2

.4
0/

.4
2

.5
0

de
-t

rf
-a

tt
n-

at
tn

60
0

3
.7

0/
.6

3
.5

3/
.5

2
.4

7/
.4

8
.3

1/
.3

1
.4

7/
.4

7
.5

2/
.5

1
.4

7/
.4

7
.4

9
de

-a
vg

po
ol

-c
tx

60
0

—
.7

6/
.6

9
.5

9/
.5

8
.4

4/
.4

6
.2

5/
.2

7
.4

5/
.4

5
.5

0/
.4

9
.4

1/
.4

2
.4

8
de

-f
in

al
-c

tx
60

0
—

.7
3/

.6
6

.5
7/

.5
5

.4
4/

.4
7

.2
5/

.2
7

.4
3/

.4
3

.5
2/

.5
1

.4
4/

.4
4

.4
8

de
-f

in
al

60
0

—
.7

3/
.6

6
.6

2/
.6

0
.4

1/
.4

4
.2

2/
.2

4
.4

3/
.4

3
.4

7/
.4

7
.4

4/
.4

4
.4

7
de

-a
tt

n-
at

tn
60

0
3

.6
7/

.6
2

.5
0/

.4
9

.4
4/

.4
7

.2
7/

.2
8

.4
3/

.4
4

.5
0/

.4
9

.4
5/

.4
5

.4
7

de
-t

rf
-a

tt
n-

at
tn

24
00

12
.6

6/
.5

9
.5

0/
.4

9
.4

2/
.4

2
.2

8/
.2

8
.4

6/
.4

5
.5

1/
.5

1
.4

4/
.4

5
.4

6
de

-t
rf

-a
tt

n-
at

tn
12

00
12

.6
1/

.5
8

.5
1/

.5
0

.4
4/

.4
6

.2
6/

.2
8

.4
3/

.4
3

.5
0/

.5
0

.4
7/

.4
7

.4
6

de
-t

rf
-a

tt
n-

at
tn

60
0

6
.6

6/
.5

9
.5

1/
.4

9
.4

4/
.4

5
.2

7/
.2

8
.4

3/
.4

3
.5

0/
.5

1
.3

9/
.4

1
.4

5
cs

-a
tt

n-
ct

x
10

00
4

.7
4/

.7
0

.6
4/

.6
4

.3
5/

.3
8

.2
6/

.2
7

.3
1/

.3
1

.4
4/

.4
4

.3
9/

.4
0

.4
5

de
-a

tt
n-

at
tn

12
00

12
.6

3/
.5

8
.4

0/
.3

9
.4

0/
.4

3
.2

8/
.2

9
.4

0/
.4

1
.5

0/
.4

9
.4

2/
.4

1
.4

3
de

-a
tt

n-
ct

x
60

0
6

.6
0/

.5
7

.4
7/

.4
7

.3
7/

.3
8

.2
3/

.2
6

.4
2/

.4
3

.4
7/

.4
8

.4
2/

.4
4

.4
3

de
-a

tt
n-

at
tn

24
00

12
.5

8/
.5

9
.4

0/
.3

9
.4

1/
.4

4
.2

2/
.2

5
.3

9/
.3

9
.4

7/
.4

7
.3

9/
.3

8
.4

1
de

-a
tt

n-
at

tn
12

00
6

.6
6/

.6
0

.3
9/

.3
9

.3
9/

.4
2

.2
1/

.2
3

.3
7/

.3
7

.4
6/

.4
5

.4
0/

.3
9

.4
1

de
-a

tt
n-

at
tn

60
0

12
.5

9/
.5

5
.4

0/
.3

9
.3

9/
.4

3
.2

4/
.2

5
.3

7/
.3

7
.4

6/
.4

6
.3

9/
.3

8
.4

0
de

-a
tt

n-
at

tn
60

0
6

.6
1/

.5
6

.3
9/

.3
8

.4
0/

.4
3

.2
2/

.2
3

.3
6/

.3
6

.4
5/

.4
5

.3
8/

.3
7

.4
0

de
-a

tt
n-

at
tn

60
0

8
.5

7/
.5

2
.3

7/
.3

6
.3

8/
.4

1
.2

4/
.2

5
.3

5/
.3

6
.4

6/
.4

4
.3

8/
.3

6
.3

9
cs

-a
tt

n-
at

tn
10

00
4

.7
0/

.6
6

.5
7/

.5
6

.2
9/

.3
2

.2
2/

.2
1

.2
5/

.2
5

.3
5/

.3
5

.3
4/

.3
4

.3
9

cs
-a

tt
n-

at
tn

40
00

4
.7

2/
.6

7
.5

7/
.5

6
.2

9/
.3

2
.2

2/
.2

2
.2

4/
.2

4
.3

6/
.3

5
.3

2/
.3

2
.3

9
cs

-a
tt

n-
at

tn
10

00
8

.7
0/

.6
5

.5
4/

.5
2

.2
8/

.3
1

.2
0/

.2
0

.2
2/

.2
2

.3
1/

.3
2

.3
2/

.3
3

.3
6

LM
pe

rp
le

xi
ty

(c
s)

29
9.

4
13

38
.8

69
7.

2
27

83
.9

17
16

.8
99

5.
6

73
7.

8
12

24
.2

%
O

O
V

(c
s)

0.
2

3.
6

2.
9

2.
6

3.
3

2.
5

3.
0

2.
6

LM
pe

rp
le

xi
ty

(d
e)

65
.0

13
01

.4
16

21
.0

50
41

.8
23

64
.6

10
96

.7
25

83
.5

20
10

.6
%

O
O

V
(d

e)
1.

7
19

.6
18

.5
23

.5
19

.9
13

.3
17

.2
16

.2

Ta
bl

e
A

.2
:

Si
m

ila
rit

y
sc

or
es

(P
ea

rs
on

/S
pe

ar
m

an
).

‘A
vg

.’
av

er
ag

es
bo

th
co

rr
el

at
io

n
co

effi
ci

en
ts

fo
r

al
lt

as
ks

.
Pe

rp
le

xi
ty

an
d

O
O

V
ra

te
as

in
Ta

bl
e

5.
3.

69

M
odel

H
yT

ER
C

O
C

O
Avg.

N
am

e
Size

H
eads

C
ls.

N
N

(L
2 /cos)

D
B

−
1

C
ls.

N
N

(L
2 /cos)D

B
−

1

InferSent
4096

—
99.99

100.00/100.00
0.579

31.58
25.28/26.21

0.367
48.0

G
loVe-BO

W
300

—
99.94

100.00/100.00
0.654

34.28
20.29/19.72

0.352
46.9

cs-final-ctx
1000

—
99.92

100.00/100.00
0.406

23.20
15.74/16.07

0.346
44.5

cs-m
axpool

1000
—

99.86
100.00/100.00

0.447
21.76

15.01/16.34
0.348

44.2
de-attn-ctx

600
8

98.11
99.86/

99.90
0.348

21.64
15.40/17.32

0.349
44.1

cs-final
1000

—
99.91

100.00/100.00
0.439

22.40
14.31/14.63

0.340
44.0

de-attn-ctx
1200

12
98.88

99.85/
99.91

0.347
20.06

14.92/16.68
0.348

43.9
de-m

axpool-ctx
600

—
98.42

99.89/
99.90

0.343
21.54

14.65/15.62
0.341

43.8
de-attn-ctx

600
3

97.81
99.77/

99.87
0.328

19.74
15.28/16.43

0.343
43.7

de-attn-ctx
600

12
97.79

99.84/
99.89

0.360
20.22

14.54/16.10
0.344

43.6
de-attn-ctx

600
6

98.11
99.79/

99.86
0.358

20.44
14.48/15.57

0.342
43.6

de-attn-attn
600

1
97.70

99.71/
99.73

0.352
19.74

14.95/16.26
0.340

43.6
de-avgpool-ctx

600
—

97.72
99.59/

99.60
0.312

20.04
13.49/14.27

0.337
43.2

cs-attn-attn
1000

1
99.88

99.91/
99.91

0.347
21.54

11.15/11.50
0.331

43.1
de-attn-attn

600
3

97.42
99.64/

99.75
0.314

17.36
13.35/14.35

0.333
42.8

de-final
600

—
97.01

99.14/
99.30

0.305
19.88

11.41/12.40
0.328

42.5
de-final-ctx

600
—

96.65
99.66/

99.70
0.323

17.22
12.06/12.84

0.333
42.3

de-trf-attn-attn
600

3
95.79

99.61/
99.64

0.315
15.76

13.20/14.04
0.340

42.3
cs-avgpool

1000
—

99.80
99.99/

99.99
0.387

17.90
8.36/

8.61
0.311

41.9
de-attn-attn

1200
12

97.15
99.47/

99.65
0.283

12.18
11.09/11.97

0.330
41.5

de-attn-attn
1200

6
98.05

99.74/
99.80

0.289
11.90

9.84/10.69
0.327

41.3
de-attn-attn

2400
12

98.69
99.65/

99.77
0.287

10.26
9.96/10.94

0.326
41.2

cs-attn-ctx
1000

4
99.75

99.72/
99.74

0.287
14.60

7.52/
7.54

0.318
41.2

de-attn-attn
600

6
96.03

99.62/
99.71

0.287
12.22

9.92/10.59
0.323

41.1
de-trf-attn-attn

2400
12

95.82
99.05/

99.03
0.307

5.66
13.85/14.53

0.339
41.1

de-attn-attn
600

8
95.32

99.59/
99.73

0.275
10.22

9.56/10.58
0.325

40.7
de-attn-attn

600
12

95.16
99.52/

99.64
0.278

9.62
9.59/10.47

0.323
40.6

de-trf-attn-attn
600

6
90.24

98.39/
98.44

0.313
9.06

12.98/13.64
0.332

40.4
de-trf-attn-attn

1200
12

90.71
98.21/

98.22
0.301

7.06
13.10/13.70

0.333
40.2

cs-attn-attn
4000

4
99.54

98.89/
98.98

0.252
11.52

5.54/
5.51

0.303
40.1

cs-attn-attn
1000

4
99.26

98.90/
98.93

0.253
10.84

5.16/
5.20

0.299
39.9

cs-attn-attn
1000

8
99.41

98.17/
98.09

0.243
10.24

4.51/
4.64

0.287
39.4

LM
perplexity

/
%

O
O

V
(cs)

668.5
/

1.2
238.5

/
0.1

LM
perplexity

/
%

O
O

V
(de)

3354.8
/

19.3
86.3

/
1.9

Table
A

.3:
Paraphrase

evaluation
on

H
yT

ER
and

C
O

C
O

–
‘C

ls.’
is

the
cluster

classification
accuracy,

‘N
N

’
is

the
nearest-neighbor

paraphrase
retrievalaccuracy

and
D

B
−

1
is

the
inverse

D
avies-Bouldin

index.
‘Avg.’

is
sim

ply
the

average
ofeach

row
.

Perplexity
and

O
O

V
rate

as
in

Table
5.3.

70

OK
,

now
tell
me
my

child
hood
dog

,
B

ust
er

,
was

never
put

down
,

and
we

're
gonna

be
re
un
ited
this

weekend
.

Dob e

,

ekni

mi

,

e

m j

pes

,

m j

pes

,

nikdy

nebyl

,

a

tenhle

víkend

budeme

na

víkend

.

</s>

(a) Size 1000, 4 heads.

OK
,

now
tell
me
my

child
hood
dog

,
B

ust
er

,
was

never
put

down
,

and
we

're
gonna

be
re
un
ited
this

weekend
.

Te

mi

ekni

,

e

m j

táta

B

ust

er

nikdy

ne

skon il

a

tenhle

víkend

budeme

spolu

.

</s>

(b) Size 4000, 4 heads.

OK
,

now
tell
me
my

child
hood
dog

,
B

ust
er

,
was

never
put

down
,

and
we

're
gonna

be
re
un
ited
this

weekend
.

Dob e
,
te
mi
ekni

,
e

m j
pes
z
d tství
,
B
ust
er
,
nikdy
nebyl
nikdy
ne
pos
k
nutý
a
znovu
se
na
víkend
od
su
zu
jeme
.
</s>

(c) Size 1000, 8 heads.

Figure A.1: Example alignments from cs-attn-attn models.

two

dogs

play

with

an

orange

toy

in

tall

grass

.

zwei
Hunde
spielen
in
hohem
Gras
mit
ein
em

orangefarbenen
Spielzeug
.
</s>

(a) Size 600, 3 heads.

two

dogs

play

with

an

orange

toy

in

tall

grass

.

zwei
Hunde
spielen
in
dem
hohen
Gras
mit
ein
em

orangefarbenen
Spielzeug
.
</s>

(b) Size 1200, 6 heads.

two

dogs

play

with

an

orange

toy

in

tall

grass

.

zwei
Hunde
spielen
mit
ein
em

orangefarbenen
Spielzeug
in
dem
hohen
Gras
.
</s>

(c) Size 600, 8 heads.

Figure A.2: Example alignments from de-attn-attn models.

71

0 200 400 600 800 1000

−0.01

0.00

0 200 400 600 800 1000

0.00

0.05

0.10

0 200 400 600 800 1000

−0.02

0.00

0 200 400 600 800 1000

0.00

0.02

Figure A.3: Sentence embeddings from the cs-attn-ctx (4 attention heads, size
1000) visualized using representation erasure on CR, SNLI, SST2 and MRPC
from SentEval (top to bottom). Each vertical bar shows the relative importance
of one dimension of the embedding.

72

	Introduction
	Related work

	Evaluating sentence representations
	Extrinsic evaluation
	SentEval

	Intrinsic evaluation
	Analogy completion with offset vectors
	Domain alignment
	Semantic similarity as vector similarity
	Clusters of paraphrases
	Choosing a distance metric

	Representations of sentence meaning
	Symbolic representations
	Compositional distributional semantics
	Deep learning methods
	Encoder architectures
	Unsupervised methods
	Supervised methods

	Neural machine translation
	RNN encoder-decoder
	Attention

	Transformer

	Proposed models
	Compound attention
	Encoder with inner attention
	Attentive decoder

	Constant context
	Transformer with inner attention
	Multi-task models

	Experiments
	Training
	InferSent multi-task training

	Representation evaluation
	Paraphrases
	Domain alignment

	Results
	Translation quality
	SentEval
	Paraphrase scores
	Domain alignment
	InferSent multi-task training

	Discussion
	Correlations
	Attention interpretation
	Dimension importance

	Conclusion
	Future work

	Bibliography
	Attachments

