
Faculty of Mathematics and Physics

Charles University, Prague

MASTER THESIS

Radovan Šesták

Suffix Array for Large Alphabet

Department of Software Engineering

Supervisor: Mgr. Jan Lánský

Computer Science

2007

Let the bridge stand long and proud. Thanks be to those who funded it,
provided knowledge for design and helped with implementation.

I declare that I have worked out this thesis on my own, using only the re-
sources stated. I agree that the thesis may be publicly available.

Prague, April 20, 2007 Radovan Šesták

Contents

1 Introduction 5

2 Definitions and notation 6
2.1 Alphabet, rotation, suffix, index array, suffix array 6
2.2 Complexity . 8
2.3 Words and Syllables . 10

3 BWT 12
3.1 BWT – coding . 12

3.1.1 Sort rotations . 12
3.1.2 Take last characters of rotations 13

3.2 Reverse BWT - decoding . 13
3.2.1 Find first characters of rotations 13
3.2.2 Build list of predecessor characters 13
3.2.3 Form output . 16

4 BWT (Coding) Algorithms 17
4.1 Karp-Miller-Rosenberg’s (KMR) algorithm 17
4.2 Manber-Myears’ (MM) algorithm 18
4.3 Sadakane’s algorithm . 18
4.4 Larsson’s algorithm . 19

4.4.1 Description . 19
4.4.2 Memory requirements 20
4.4.3 Time complexity . 21

4.5 Seward’s algorithm . 22
4.5.1 Description . 22
4.5.2 Memory requirements 24
4.5.3 Time complexity . 24

4.6 Our Seward based 1-level bucket algorithm 25
4.7 Itoh’s algorithm . 25
4.8 Kao’s modification of Itoh’s algorithm 25

2

CONTENTS 3

4.9 Kärkkäinen and Sanders’ algorithm 26
4.9.1 Description . 26
4.9.2 Memory requirements 29
4.9.3 Time complexity . 30

5 Reverse BWT for suffixes 31

6 Improving performance of BWT 36
6.1 Testing Environment . 36
6.2 Corpus Summary . 37
6.3 Notation in Results . 37
6.4 Comparing rotations vs. comparing suffixes 38
6.5 Choosing q-sort . 42
6.6 Reverse of Input String . 43
6.7 Changing the block size . 45
6.8 Influence of Alphabet . 48
6.9 Choosing Algorithm . 51

7 Conclusion 58

A Contents of Compact Disk 59

Title: Suffix Array for Large Alphabet
Author: Radovan Šesták
Department: Department of Software Engineering
Supervisor: Mgr. Jan Lánský, zizelevak@gmail.com
Abstract: Burrows-Wheeler Transform (BWT) [3] is used as the major part
in block compression which has good balance of speed and compression ratio.
Suffix arrays are used in the coding phase of BWT and we focus on creating
them for alphabet larger than 28 symbols. The motivation for this work has
been software project XBW [4] – an application for compression of large XML
files. The role of BWT is to reorder input before applying other algorithms.
We describe and implement three families of algorithms for encoding. First
is inspired by the work of Sadakane [10] and further improved by Larsson
[8]. Second family includes algorithm by Seward [11] and algorithm by Itoh
further improved by Kao [5]. Finally we present algorithm by Kärkkäinen
and Sanders [6] for constructing suffix arrays in linear time.

As our main result we show that for textual data using syllables or words
as alphabet improves both run time and compression ratio of block compres-
sion.
Keywords: suffix arrays, BWT, data compression, text compression

Název práce: Suffixové pole pro velkou abecedu
Autor: Radovan Šesták
Katedra: Katedra softwarového inženýrství
Vedoucí práce: Mgr. Jan Lánský, zizelevak@gmail.com
Abstrakt: Burrows-Wheelerova Transformace (BWT) [3] je používána jako
hlavní část blokové komprese, která má dobrý kompresní poměr a přijatelný
čas běhu. Suffixová pole jsou používána v kódovací fázi BWT a my se
soustředíme na jejich tvorbu pro abecedu větší než 28 symbolů. Motivací pro
tuhle práci byl softwarový projekt XBW [4] – aplikace pro kompresi velkých
XML souborů. Úkolem BWT je přeuspořádat vstup před použitím jiných al-
goritmů. Popisujeme a implementujeme tři skupiny algoritmů pro kódování.
První je inspirována prací Sadakana [10] a dále vylepšená Larssonem [8].
Druhá skupina obsahuje algoritmus od Sewarda [11] a algoritmus od Itoha
vylepšený Kaoem [5]. Závěrem prezentujeme algoritmus od Kärkkäinena a
Sanderse [6] pro konstrukci suffixových polí v lineárním čase.

Jako hlavní výsledek ukážeme, že pro textová data použití slabik nebo
slov jako abecedy zlepšuje čas běhu i kompresní poměr.
Klíčová slova: suffixová pole, BWT, datová komprese, komprese textu

Chapter 1

Introduction

Burrows-Wheeler transform [3] (BWT) produces reversible permutation of
input string. In the resulting string predecessors of common suffixes are
clustered together and therefore long sequences of repeated characters occur.
In order to obtain transformed string one has to sort lexicographically all
rotations of the string. Very closely related to BWT is suffix sorting. If we
perform the BWT on a string terminated by special character (smaller than
all characters in the string), we obtain the same sorted order of strings as
when creating suffix array. Hence we can use suffix sorting instead of BWT if
we allow slight modification of string. General string comparison algorithms
have time complexity O(n2log n) where n is the length of the string. However
several algorithms that run in O(n log n) time are known and this is the case
of Sadakane [10] type algorithms. Also algorithm working in linear time O(n),
due to Kärkkäinen and Senders [6], is known and we have implemented it as
well. We also present algorithms with worse guaranteed running time which
perform better on non repetitive inputs. The reverse – obtaining original
string from transformed string can be done in linear time. The running time
of BWT is critical for the speed of the block compression since it is the most
time demanding part. The tradeoff between compression ratio and running
time is determined by size of block transformed at once. The block size
n determines the time complexity, which is usually superlinear, as well as
memory complexity which is usually in range 5n to 11n.

In next sections we define the terms used and present algorithms for
BWT that serve as starting points for our optimization. First we present
modifications that enable use of large alphabet and later optimizations to
improve running time.

5

Chapter 2

Definitions and notation

2.1 Alphabet, rotation, suffix, index array, suf-

fix array

Definition 2.1.1. Let a set Σ be an alphabet. Then we call its elements
characters or symbols and by |Σ| we denote size of the alphabet.

In most compression programs that use block compression, the size of
alphabet is 28. By large alphabet we mean alphabet larger than 28. When
we use words or syllables as alphabet, then for textual files of few megabytes
the size of alphabet is usually around 216.

Definition 2.1.2. An ordered set of characters we call string. By

X ≡ x0x1...xn−1, ∀i ∈ {0, .., n − 1}, xi ∈ Σ

we denote string of length n over alphabet Σ.

We use a lot of notation taken from linguistics. We believe that they are
intuitive and straightforward.

Definition 2.1.3. I-th rotation of a string X = x0x1...xn−1 is a string

Ri = xixi+1..xn−1x0..xi−1 .

A very closely related term is suffix.

Definition 2.1.4. I-th suffix of string X = x0x1...xn−1 is string

Si = xixi+1..xn−1 .

6

CHAPTER 2. DEFINITIONS AND NOTATION 7

Character after xi in string is xi+i. For rotation the character following xn

is x0. If we want to use the same notation and to work easily with numbers
in range 0..n − 1 we note

|i| = i mod n .

We also use array notation that is slightly unorthodox.

Definition 2.1.5.

[i..j] ≡

{
{i, i + 1, .., j − 1, j} i ≤ j

{i, .., n − 1, 0, .., j} i > j

[i..j) ≡

{
{i, i + 1, .., j − 1} i ≤ j

{i, .., n − 1, 0, .., j − 1} i > j

and for strings or arrays
X[i] ≡ xi

X[i..j] ≡

{
xi, xi+1, .., xj−1, xj i ≤ j

xi, .., xn−1, x0, .., xj i > j

X[i..j) ≡

{
xi, xi+1, .., xj−1 i ≤ j

xi, .., xn−1, x0, .., xj−1 i > j

When comparing rotations or suffixes we use lexicographic order.

Definition 2.1.6. Rotation Ri is smaller than Rj iff

Ri < Rj ⇐⇒ ∃k ∈ [0..n) : ∀l ∈ [0..k) x|i+l| = x|j+l| & x|i+k| < x|j+k|

and similarly for suffixes

Si < Sj ⇐⇒ ∃k ∈ [0..n) : ∀l ∈ [0..k) xi+l = xj+l & i+k < xj+| ∨ i + l = n) .

We can choose any fixed order of characters and hence we use natural
numbers for identifying the characters and comparing their order. We want
to find lexicographical order of all rotations (suffixes) of string X that we
will store in index array I. Index array can be either rotation array or suffix
array.

Definition 2.1.7. Rotation array denoted by RA of a string X is an array
holding starting positions of rotations in sorted order. Formally

RA is rotation array ⇐⇒ (∀i, j ∈ {0..n − 1}, i < j → RRA[i] ≤ RRA[j]) .

Analogically for suffix array :

SA is suffix array ⇐⇒ (∀i, j ∈ {0..n − 1}, i < j → SSA[i] ≤ SSA[j]) .

CHAPTER 2. DEFINITIONS AND NOTATION 8

Note that two different rotations can be equal, but suffixes can not.
We use special symbol $ as terminal symbol of string and ◦ to denote

concatenation of strings.

Definition 2.1.8. The terminal symbol $ is not from the alphabet and is
smaller than all characters

$ /∈ Σ, ∀x ∈ Σ : $ < x .

Then
X$ ≡ X ◦ $

denotes a string terminated with special character.

Definition 2.1.9. The result of BWT on string X is X̃. If we do not specify
the string on which we perform the transformation we note the result by B.

B ≡ b0..bn−1 where bi = x|I[i]−1|

X̃ ≡ B

Burrows and Wheeler used rotations, so in the previous definition RA
instead of I was used. Later as we will show, SA can be used instead of RA.
Hence we use I to denote index array, to imply that we can use both. For
rotations i− th character in transformed string B is the last character of i-th
rotation.

In some algorithms we do not compare whole rotations at once. We use
k-th order and increase k throughout the algorithm.

Definition 2.1.10. We note k-order of strings by <k:

Ri <k Rj ⇐⇒ ∃l ∈ [0..k), Ri[0..l) = Rj[0..l) & Ri[l] < Rj[l]

Ri =k Rj ⇐⇒ Ri[0...k) = Xj[0..k)

2.2 Complexity

We mention memory and time complexity of algorithms after describing the
algorithm.

We expect representation of alphabet as whole numbers in standard data
types. In specific unsigned types of size 1 byte for |Σ| ≤ 28, 2 bytes for
28 < |Σ| ≤ 216 and 4 bytes for 216 < |Σ| ≤ 232 and note this by bytesize(|Σ|).

CHAPTER 2. DEFINITIONS AND NOTATION 9

Definition 2.2.1. For positive value k we define bytesize(k) as:

bytesize(k) ≡
{

2i 28i < k ≤ 28(i+1)

for types we use this notes:

bytesize(k) ≡





1 k ≤ 28

2 28 < k ≤ 216

4 216 < k ≤ 232

We could have used ⌈log28 |Σ| · n⌉ as number of required bytes, but such
implementation would lack clarity and suffer from lower performance due to
non-standard pointer arithmetic.

For performance of direct comparison algorithms (Seward, Itoh) a critical
factor is average match length AML. Match length ML is noted by some
authors also as longest common prefix lcp.

Definition 2.2.2. Match length of strings

ML(Ri, Rj) = max{k; Ri[0..k) = Rj[0..k)}

We are interested in match length of neighboring rotations/suffixes. Hence
we define

Definition 2.2.3. Average match length

AML =
1

n − 1

n−2∑

i=0

ML(RI[i], RI[i+1])

Instead of rotations, suffixes can be used as in original definition by
Sadakane. We will use both depending on whether we are constructing rota-
tion array RA or suffix array SA.

For algorithms that multiply the order in each run (Sadakane, Kärkkäi-
nen&Sanders) time complexity depends on maximal match length.

Definition 2.2.4. Maximal match length

MML = maxi∈[0..n−2]{ML(RI[i], R[i+1])}

which is equivalent to MML = maxi,j∈[0..n){ML(Ri, Rj)}.

CHAPTER 2. DEFINITIONS AND NOTATION 10

2.3 Words and Syllables

In Section 6.8 we discuss how change of alphabet can significantly improve
performance of BWT. The most common is interpretation of one byte as
symbol and then alphabet consists of all such symbols. In program XBW we
also use alphabet of syllables and words inspired by Lánský [7]. Words and
syllables as we will define them should correspond to common uses of these
terms. We consider word to be a single unit of language with meaning and
syllable to be a single unit of speach. Now we present formal definitions.

Definition 2.3.1. Letters ΣL ⊂ Σ are a subset of alphabet. Nonletters are
the remaining characters ΣN ≡ Σ \ ΣL. Let ΣD ⊂ ΣN be set of digits, then
ΣS ≡ ΣN \ ΣD is a set of special characters.

For forming words and syllables we distinguish types of letters.

Definition 2.3.2. Let ΣLs ⊂ ΣL be a set of small letters then ΣLc ≡ ΣL\ΣLs

is a set of capital letters.
Let ΣLv ⊂ ΣL be a set of vowels then ΣLc ≡ ΣL\ΣLv is a set of consonants.

In some languages letter can act as either vowel or consonat depending
on context. For simplicity and because the effect on compression is small, we
fix for each letter if it is vowel or consonant.

Now we can define words.

Definition 2.3.3. Let Σ be a finite nonempty set of symbols and α ≡
α1, . . . , αn, αi ∈ Σ. Then we distinguish following types of words:

special αi ∈ ΣS ∀i ∈ [1..n]

numeric αi ∈ ΣD for ∀i ∈ [1..n]

small αi ∈ ΣLs for ∀i ∈ [1..n]

capital αi ∈ ΣLc for ∀i ∈ [1..n]

mixed α1 ∈ ΣLc & αi ∈ ΣLs ∀i ∈ [2..n]

For practical purposes when we parse input into words we also limit max-
imum length of words. We note special and numeric words by words from
non-letters and the rest by words from letters.

Definition 2.3.4. Syllable is part of word. More precisely: let α be a word
from letters. Then σi, i ∈ [1..k] are syllables if each and every syllable
contains exactly one vowel and α = σ1 ◦ · · · ◦σk. If word α contains no vowel
then the whole word is syllable.

CHAPTER 2. DEFINITIONS AND NOTATION 11

This definition is ambiguous, because we can get different sets of syllables
which fulfill the conditions in definition. In fact in application XBW we use
three types of partitioning into syllables. They assign different number of
consonants from each side to vowels which form the core of syllable.

Also we have not specified yet which characters belong to which group.
For english we consider letters to be characters a..z and A..Z. For other lan-
guages the sets of letters are different. Distinction of vowels and consonants
also largely depends on language used.

Chapter 3

BWT

In this section we show how BWT (coding) [3] and the reverse BWT (decod-
ing) [3, 12] work. We show it using two examples: string X = abraca and
string X = banana.

3.1 BWT – coding

The result of BWT is string X̃ where X̃[i] = X[|I[i]−1|] and index of original
string in array I which we denote by index and for which I[index] = 0. So
we need to sort rotations and take last characters of the rotations. See Figure
3.1 for all rotations.

R0 abraca
R1 bracaa
R2 racaab
R3 acaabr
R4 caabra
R5 aabrac

R0 banana
R1 ananab
R2 nanaba
R3 anaban
R4 nabana
R5 abanan

Figure 3.1: Rotations of abraca and banana.

3.1.1 Sort rotations

First we sort all rotations and get rotation array (index array). For our
example index is 1 for abraca and 3 for banana. We will need index of
original string for decoding. See Figure 3.2 for sorted rotations.

12

CHAPTER 3. BWT 13

RI[0] aabrac
RI[1] abraca
RI[2] acaabr
RI[3] bracaa
RI[4] caabra
RI[5] racaab

RI[0] abanan
RI[1] anaban
RI[2] ananab
RI[3] banana

RI[4] nabana

RI[5] nanaba

Figure 3.2: Sorted rotations of abraca and banana.

3.1.2 Take last characters of rotations

Now we take the last characters of the rotations to get X̃abraca = caraab

X̃banana = nnbaaa. These are the last columns of the matrix holding all rota-
tions Figure 3.2. The output of the transformation is pair (X̃, index). For
our example (caraab, 1) and (nnbaaa, 3) respectively.

3.2 Reverse BWT - decoding

We use output of previous algorithm as input. Hence our input is string X̃ =
caraab and index = 1 which we want to decode into abraca. For another
example X = banana the transformed string X̃ = nnnbaaa and index = 3.

We know that last character of X is X̃[index]. In the following paragraphs
we show how we can output X from right to left. Although the decoding is
longer and a bit tricky to explain, fast algorithm for decoding due to Seward
[12] is short and simple. See Algorithm 1.

3.2.1 Find first characters of rotations

Let F be the first column of the matrix M . We can obtain it by sorting the
string X̃. Observe that any column of M is permutation of X and therefore
also of X̃. The rows of M are sorted, and F is the first column of M , hence
the characters in F are also sorted. In our example Fabraca = aaabcr and
Fbanana = aaabnn respectively. See Figure 3.3.

3.2.2 Build list of predecessor characters

To explain this step we use the matrix M . However only arrays X̃ and F
along with value index are available to the algorithm.

Let M ′ be matrix formed from M by shifting each row one character to
the right M ′[i, j] = M [i, |j − 1|]. See Figure 3.4.

CHAPTER 3. BWT 14

Algorithm 1 Reverse BWT (decoding)
{C[0..Σ − 1] array for frequences of characters intialised to 0}

{first phase – find first characters of rotations}
for i = 0 to n − 1 do

C[X̃[i]] ⇐ C[X̃[i]] + 1
end for
for i = 0 to |Σ| do

j ⇐ C[i]
C[i] ⇐ sum
sum ⇐ sum + j

end for

{second phase – build predecessor list}
for i = 0 to n − 1 do

T [i] ⇐ C[X̃[i]]
C[X̃[i]] ⇐ C[X̃[i]] + 1

end for

{third phase – form output}
for i = n − 1 downto 0 do

X[i] ⇐ X̃[index]
index ⇐ T [index]

end for

CHAPTER 3. BWT 15

row
0
1
2
3
4
5

Mabraca

aabrac
abraca
acaabr
bracaa
caabra
racaab

Mbanana

abanan
anaban
ananab
banana
nabana
nanaba

Figure 3.3: Matrix of sorted rotations with first column F highlighted.

row
0
1
2
3
4
5

Mabraca M ′
abraca

aabrac caabra
abraca aabrac
acaabr racaab
bracaa abraca
caabra acaabr
racaab bracaa

Mbanana M ′
banana

abanan nabana
anaban nanaba
ananab banana
banana abanan
nabana anaban
nanaba ananab

Figure 3.4: Matrix M of rotations and matrix M ′ of shifted rotations.

Each row of M ′ is a rotation of X, and for each row of M there is cor-
responding row in M ′. The rows of M ′ are sorted lexicographically starting
with their second character. If we take rows of M ′ starting with any fixed
character c they are sorted lexicographically relative to one another – they
are sorted lexicographically starting with second character and they have the
same first character which does not affect the order. So strings in M ′ that
begin with c appear in the same order as strings that begin with c in M .

Consider strings starting with character a from our example. The rows
aabrac, abraca, acaabr are rows 0,1,2 in Mabraca and correspond to rows
1,3,4 in M ′

abraca.
F is first column of M and last column of M ′. X̃ is first column of M ′and

last column of M . Using F and X̃ we calculate vector T that indicates the
correspondence between the rows of the two matrices, in the sence that for
each j ∈ [0..n), row j of M ′ corresponds to row T [j] of M .

If X̃[j] is the k-th instance of c in X̃, then T [j] = i where F [i] is the
k-th instance of c in F . Note that T represents a one-to-one correspondence
between elements of F and elements of X̃, and F [T [j]] = X̃[j].

In our examples Tabraca = (4, 0, 5, 1, 2, 3) and Tbanana = (4, 5, 3, 0, 1, 2).

CHAPTER 3. BWT 16

row
0
1
2
3
4
5

Mabraca M ′
abraca

aabrac cabrac
abraca aabrac

acaabr racaab
bracaa abraca

caabra acaabr

racaab bracaa

Mbanana M ′
banana

abanan nabana
anaban nanaba
ananab banana
banana abanan

nabana anaban

nanaba ananab

Figure 3.5: Rows starting with a in M and corresponding rows in M ′.

3.2.3 Form output

Now, for each i ∈ [0..n) the characters X̃[i] and F [i] are the last and first
characters of the row i of M . Since each row is a rotation of X, the character
X̃[i] cyclically precedes the character F [i] in X. From the construction of
T , we have F [T [j]] = X̃[j]. Substituting i = T [j], we have X̃[T [j]] cyclically
precedes X̃[j] in X. (X̃[T [j]] precedes F [T [j]] and F [T [j]] = X̃[j])

The index index is defined such that the row index of M is X. Thus, the
last character of X is X̃[index]. We use the vector T to give the predecessors
of each character. The original string is hence X[n−1−i] = X̃[T i[index]] i ∈
[0..n), where T 0[x] = x, T i+1[x] = T [T i[x]]. This yields X, the original input
to the BWT coder.

Chapter 4

BWT (Coding) Algorithms

In this section we briefly describe several algorithms for BWT. Most of them
were designed for constructing suffix arrays, but we formulate them as algo-
rithms for BWT - so instead of suffixes we work with rotations and as result of
the algorithm we consider index array I. First we start with algorithms that
use so-called doubling technique and progress as the main idea is developed
into fast algorithm. Then we continue with algorithms using the so-called
copying of pointers as a method for minimising amount or rotations sorted
using comparison based sort (qsort). After that we present algorithm for
linear time suffix array construction that is not suitable for sorting rotations;
it needs $ terminated input string.

4.1 Karp-Miller-Rosenberg’s (KMR) algorithm

In first iteration KMR algorithm [10] sorts and splits all rotations according
to their first character using radix sort. Two rotations are in the same group
iff they start with the same character. We assign rotation Ri number V [i]. All
rotations in the same group have been assigned the same number v = V [i] and
we represent this groups by this number v. Different groups are represented
by different value. Since rotations in any given group start with the same
character we can compare them starting with second character - to do this we
use values assigned to rotations in the first iterations. If we compare Ri with
Rj that are from the same group, using V [|i+1|] and V [|j+1|] as keys, we get
groups sorted by the first two characters. If we repeat this approach again
using V [|i + 2|] as key for Ri, we get groups sorted by first four characters
since the keys now can distinguish rotations by first two characters. In each
step we double the number of characters by which the rotations are sorted. If
groups are split and ordered in alphabetical order, all rotations can be sorted

17

CHAPTER 4. BWT (CODING) ALGORITHMS 18

in lexicographical order.
The key idea is the so-called doubling technique. All rotations in the

same group have the same first k characters X[i..i + k) after log2k iteration.
Since the numbers V [|i + k|] are already calculated in the last iteration, we
can split the groups according to characters X[|i + k|..|i + 2k|) in the next
iteration. Consequently, all rotations can be sorted in lexicographic order
within log n iterations.

4.2 Manber-Myears’ (MM) algorithm

MM algorithm [10, 8] uses the doubling technique described in the algorithm
by Karp, Miller and Rosenberg. First we sort and group all rotations by
their first symbols using radix sort. Rotations are given numbers V [i] like in
the KMR algorithm. In array I[0..n) indexes of rotations sorted by <k-order
of rotations. Next all groups are traversed from left in order of I[i], note
that rotations from the same group form continoues interval in I, to sort
rotations in groups by the second symbols. If I[0] = i, Ri−1 is the smallest
rotation among the group v = V [i − 1]. We can move rotations to their
correct position according to first two symbols. The number of iterations is
at most log n and each iteration can be done in O(n) time, therefore this
algorithm works in O(n log n) time.

4.3 Sadakane’s algorithm

Sadakane algorithm [10, 8] uses comparison based algorithm to sort rota-
tions in group in each iteration instead of radix sort like approach used by
Manber and Myears. MM algorithm passes in each iteration whole array
I to encounter all keys, even of already sorted rotations. On real life data
most rotations get sorted in first few passes. Sadakane’s algorithm is faster
in most cases than MM, because it skips sequences of already sorted ro-
tations. When comparison based qsort is used, Sadakane proposed using
Bentley-Sedgewick’s tripartite qsort algorithm, time of each pass depends on
the number of remaining unsorted rotations.

After i iterations, rotations are sorted according to their first k = 2i

characters. In array I[0..n) rotation in <k-order are stored and in array
V [0..n) we hold group numbers. At the end of algorithm I meats conditions
of RA - rotation array. If there are no two equal rotations, at the end all
values in V are distinct and V is inverse of I and vice versa.

Rotations which have the same prefix of length k form group and have

CHAPTER 4. BWT (CODING) ALGORITHMS 19

Algorithm 2 Sadakane
sort rotations according to their first character using radix sort
create groups and set their sizes and set k = 1
while k < n do

sort unsorted groups according to <k order
split groups
combine consecutive sorted groups k = 2k

end while

equal V [i] values after end of iteration. Since V [i] and I[i] are updated only
when order of rotations could have possibly changed, we distinguish whether
group is unsorted. A group is called unsorted if it contains two rotations
that are equal according to <k order. Each sorted group starts as group
containing one rotation. But later, because we want to skip sorted groups,
we merge consecutive sorted groups. So when Ri gets into sorted group v,
v = V [i] and I[j] = i, then values of V [i] and I[j] remain the same and
consistent with <k order in V and I in all following iterations.

Throughout whole algorithm array V has following properties:

Ri < Rj → V [i] ≤ V [j]

Ri 6=k Rj → V [i] 6= V [j]

where again k depends on the iteration. Note that V [i] and V [j] can have
different values even if Ri =k Rj. In addition to arrays I and V array S is
used to store sizes of groups. V [i] represents the number of rotations that
are smaller than Ri according to <k order and V [I[i]] = i if Ri is in sorted
group.

First group starts at v = 0 and its size is S[0]. Qsort runs on rotations
I[0..S[0] − 1] using V [i + k] as key for Ri. Next group starts at v = S[v]. If
consecutive rotations RI[i] and RI[i+1] in the same group have different keys
V [I[i] + k] 6= V [I[i + 1] + k] we split the group. See Algorithm 2.

4.4 Larsson’s algorithm

4.4.1 Description

Larsson in his paper [8] shows how to get rid of array S holding sizes of
groups in Sadakane’s algorithm. In addition he proves that using tripartite
quick sort algorithm, for example the mentioned Bentley-Sedgewick’s, the
Sadakane’s algorithm is guaranteed to run in O(n log n) time.

CHAPTER 4. BWT (CODING) ALGORITHMS 20

The algorithms are very similar, but Larsson proposes using V slightly
differently. Instead of V [i] representing the number of rotations smaller than
Ri according to <k order as in Sadakane’s algorithm, V [i] is the number
of rotations less of equal than Ri at the end of iteration. At all times for
unsorted groups V [i] is the end of the group - RI[V [i]] is the last rotation in
the group. Consecutive single size groups (they are consecutive in array I)
are handled as follows: if l is the first position (RI[l]the first rotation) in the
sequence and r the last, we interchange the values of V [I[l]] and V [I[r]]; for
all other rotations in the sequence V [I[i]] = i. Note that for all rotations in
sorted groups, including the first and the last in sequence of sorted groups,
V [I[V [I[i]]]] = i. So the Larsson’s trick is that V [i] points to the last rotation
in group and V [I[V [i]]] is the key for rotation i. This way we omit an array
for storing sizes of groups.

To split groups, start at the left end of the group and move to the
right comparing the key with the key of next element (V [I[V [I[i] + k]]] and
V [I[V [I[i + 1] + k]]]). Since we do this just after sorting the group by these
keys, the key of RI[i+1] can be either equal or larger than key of RI[i]. If
the key of next element is larger we split the group. We need to remember
where current group started and whether we are processing sequence of one
element groups. This enables us to set correct values into V after whole
group is passed and we encounter another one. If group is sorted and l is the
first position in the group, in that case l = V [I[V [I[l]]]] ≤ V [I[l]], we can
pass whole group in constant time because V [I[l]] points to position of last
rotation in the group. If l < V [I[V [I[l]]]] = V [I[l]] we encountered unsorted
array and use comparison based sort on range [l..V [l]].

4.4.2 Memory requirements

The most memory demanding phase is the main one, where we need to
hold in memory arrays V [0..n) and I[0..n). In the first phase we radix sort
the input and for that we need original string X[0..n), array for indexes
I[0..n) and array for storing frequencies F [0..|Σ|). Or we can use comparison
based algorithm, requiring only X and I, to sort the rotations according to
first characters. Array X requires n · bytesize(|Σ|) bytes, while V and I
require n · bytesize(n) bytes. Hence for first stage we need n · (bytesize(n) +
bytesize(|Σ|)) + c and if use radix sort |Σ| · bytesize(n) bytes more. In main
stage the memory required is 2n · bytesize(n) + c plus n · bytesize(|Σ|) for X
that we need till end of algorithm. So as long as n ≥ |Σ|, the total memory
requirements are 2n · bytesize(n) + n · bytesize(|Σ|) + c.

CHAPTER 4. BWT (CODING) ALGORITHMS 21

4.4.3 Time complexity

Trivial bound for Larsson’s algorithm is O(n · log2 n). We do at most log n
iterations and in each iteration we qsort interval of length at most n. We show
that the time complexity in worst case is O(n · log n) when using tripartite
qsort with perfect median as the comparison based sort. Tripartite qsort
partitions the input into elements smaller than pivot, elements equal to pivot
and elements greater than pivot. Smaller and greater elements are sorted
recursively.

Consider the sorting process in Sadakane’s algorithm as implicit construc-
tion of ternary tree. Each node corresponds to one partitioning in tripartite
qsort. Left child of the node corresponds to elements smaller than pivot,
middle child to elements equal to pivot and right child to elements larger
than pivot. A leaf represents end of partitioning when only one element is
left.

We want to show that path from any leaf to root has length O(log n). If
a node v is middle child of its parent and rotations were sorted by first k
symbols, than the rotations in children of v will be sorted by first 2k symbols.
Hence there can be at most log n middle nodes between root and leaf.

If a node v is left or right child of its parent, than the number of rotations
in it is at most half of the number of rotations in its parent (perfect median).
Again the number of nodes of this type between root and any leaf can be at
most log n.

Now we see that this implicit tree has depth O(log n). To see that the
work done in each depth is O(n) recall that partitioning in qsort requires work
linear in number of elements (median can be found in linear time). When we
partition rotations each rotation is assigned to exactly one group. Therefore
no two nodes in the same level share a rotation, and consequently, sum of all
rotations in nodes in any fixed level is at most n. Hence in each level at most
O(n) work is done yielding O(n · log n) time complexity for whole algorithm.
This bound is sharp due to using comparison based algorithm.

In the trivial bound n2 · log n we bounded number of iterations by log n.
Note that we can finegrain this bound to log MML. The number of elements
that we have to qsort at k-th iteration depends on the number of rotations
that have ML with some other rotations at least 2k and this value is strongly
correlated with AML [8].

CHAPTER 4. BWT (CODING) ALGORITHMS 22

4.5 Seward’s algorithm

4.5.1 Description

The main idea used in algorithm due to Seward called “copy” in his paper [11]
is to use almost sorted 1-level buckets to omit sorting some 2-level buckets.
K-level buckets are groups of rotations that share the same prefix of length
k.

Bucket c is 1-level bucket of rotations starting with character c and bucket
c1c2 is 2-level bucket consisting of rotations starting with prefix c1c2. We store
in array F [0..|Σ|2] the start positions of 2-level buckets in index array I[0..n).
If we have sorted bucket c2 we can determine order of buckets c1c2, c1 6= c2 by
passing bucket c2. If rotations Ri and Rj start with the same letter then their
relative order is given by relative order of Ri+1 and Rj+1. So we know what
is the first rotation in bucket c1c2, c1 6= c2 once we know the first rotation
in bucket c2. We are quaranteed that when passing bucket c2 we go through
all rotations from bucket c1c2 and hence set order of all rotations from that
bucket.

Another trick is the use of buckets c2c3, c2 6= c3 to sort bucket c2c2. If Ri

is the first rotation in bucket c2c2 then Ri+1 is the first rotation in bucket c2.
But if the third letter in that rotation xi+2 is different from c2 we already
have sorted bucket c2xi+2. Hence we get the first rotation if we pass buckets
c2c3, c3 < c2. (Given that third symbol of first rotation in c2c2 is c3, c3 < c2.
If c3 > c2 we will get to this rotation during passing buckets c2c3, c3 > c2

from right.) If there is rotation Ri that starts with longer sequence of equal
symbols for instance c2c2c2 then there is rotation that starts with sequence of
equal symbols that is shorter by one symbol Ri+1 (except when input string
consists of just one distinct symbol). And we will hit the rotation Ri+1before
hitting Ri, so we are guaranteed to know the order of any rotation in bucket
c2c2 when we need it. We only need to check when passing bucket c2 from
left whether the current rotation is smaller than virtual rotation c2c2..c2

consisting of infinite sequence of symbols c2.
Again X[0..n) is input string, I[0..n) index array. Array F [0..|Σ|2] is

used to store borders of 2-level buckets and arrays S[0..|Σ|] and E[0..|Σ|] for
storing start and end respectively, of unfilled parts of buckets c1c2 for fixed
c2.

Different strategies for choosing the bucket c2, note that we qsort buckets
c2c3, can be used. The most simple approach is to use lexicographic order of
symbols. Better approach is to choose the bucket in which total number of
rotations in unsorted buckets c2c3 is the smallest.

CHAPTER 4. BWT (CODING) ALGORITHMS 23

Algorithm 3 Seward
perform 2-level bucket sort (F holding starting positions of 2-level buckets
in I)
while ∃ unsorted 1-level bucket c2 do

for all c3 6= c2 do
sort c2c3 buckets using qsort

end for
S[c1] ⇐ start of bucket c1c2, E[c1] ⇐ end of c1c2

j ⇐ start of bucket c2

while j < S[c2] do {S[c2] underapproximates c2c2..c2 boundary}
c1 ⇐ X[(I[j] − 1) mod n]
I[S[c1]] ⇐ (I[j] − 1) mod n
j ⇐ j + 1
S[c1] = S[c1] + 1

end while
j ⇐ end of bucket c2

while j > E[c2] do {E[c2] overapproximates c2c2..c2 boundary}
c1 ⇐ X[([Ij] − 1) mod n]
I[E[c1]] ⇐ (I[j] − 1) mod n
j ⇐ j − 1
E[c1] ⇐ E[c1] − 1

end while
end while

CHAPTER 4. BWT (CODING) ALGORITHMS 24

4.5.2 Memory requirements

We need to hold in memory arrays X requiring n · bytesize(|Σ|) bytes, I
taking up n · bytesize(n) bytes and F for which we need |Σ|2 · bytesize(n)
bytes. The memory required for F renders Seward’s algorithm useless for
large alphabets. Array F is needed due to use of 2-level buckets and the
need to store where the buckets begin. And finally we use arrays S and E
of size |Σ| · bytesize(n). In total we need n · (bytesize(n) + bytesize(|Σ|)) +
|Σ|2 · bytesize(n).

4.5.3 Time complexity

Time complexity of Seward’s algorithm, like that of any comparison based
algorithm, is O(AML ·n · log n), neglecting the radix sort phase, where AML
is the average match length of input. The most time demanding part of the
algorithm is sorting 2-level buckets using qsort for small alphabets. Total
time complexity is including radix sort O(AML · n · log n + |Σ|2).

Consider the binary tree implicitly constructed during qsort. Nodes are
calls of qsort that partition rotations into two groups; smaller than pivot and
greater than pivot. No rotations get into both groups. Hence the sets of
rotations in nodes, for any fixed tree depth, are disjoint. In each partitioning
we compare all rotations in the node with pivot. For every rotation RI[i]

the longest match length is either with rotation RI[i−1] or with RI[i+1]. So
we can use match length of neighbor as upper bound on number of symbols
compared when comparing rotation with pivot. At each depth of tree we did
O(n) comparisons of rotations with pivot of respective node. Now recall that
AML is defined as average of match lengths of neighbors to see that at any
fixed depth of tree we compared O(AML ·n) symbols. Since the depth of the
tree is O(log n) we get that the algorithm runs in O(AML · n · log n) time.
The problem is that for highly repetive inputs AML can range up to n.

Consider X =ababab...abc as an example of input with AML = Θ(n).
The Seward’s algorithm on this input calls qsort on bucket ab or ba. Both
contain approximately n/2 rotations and the first n/4 rotations {R2i+q; i ∈
[0..n/4)} (q = 0 for bucket ab and q = 1 for bucket ba) have pairwise match
length at least n/4. Hence we will need to compare Θ(n2) symbols for each
depth of tree resulting in total runtime Ω(n2log n) for this input. This shows
that the upper bound n2 log n) is sharp. For input X =aa..ab which has
AML = Θ(n) Seward’s algorithm will not qsort bucket aa containing almost
all rotations. Note that in fact the algorithm will run in O(n) for this input.
This shows that AML can not be used as lower bound.

As we have shown total time complexity is O(AML · n · log n + |Σ|2).

CHAPTER 4. BWT (CODING) ALGORITHMS 25

4.6 Our Seward based 1-level bucket algorithm

The typical output of parser of program XML creates input with 214 <
|Σ| < 218 and 220 < n < 226. Hence both time and memory requirements
due to 2-level buckets creation would dominate over the rest of algorithm
(|Σ|2 > n · log n). Therefore we looked for an algorithm that would only
use 1-level buckets. The algorithm we came up with uses the same idea of
copying pointers. We hold pointers to unsorted parts of 1-level buckets and
since we call qsort on buckets from smallest to largest we can copy pointer
for rotation Ri for rotation Ri−1 if xi < xi−1. But since we do not write
all rotations of given bucket at once, we need to put the replaced rotation
where the other rotation has been in I. For this we need array C which is
the inverse of index array C[I[i]] = i. Another disadvantage compared to
Seward’s algorithm is that buckets cc are not constructed in linear time, but
are sorted using qsort.

Memory requirements differ from Seward’s by the use of 1-level buckets
and array C[0..n]. So we get n · (2 · bytesize(n) + bytesize(|Σ|)) + 2 · |Σ| ·
bytesize(n).

Time complexity is again very similar. Again the difference is in use of
different level of buckets. We get O(AML · n · log n + |Σ|).

4.7 Itoh’s algorithm

The main idea of the Itoh’s algorithm is to divide rotations into two groups so
that we only have to sort one group using comparison based algorithm. The
order in the other group and of all rotations can be then constructed in linear
time. Group A contains rotation Ri iff xi > xi+1 and group B contains all
other rotations. Consider rotations divided into 1-level buckets. Rotations
from group A are smaller than rotations from group B if they start with the
same symbol. Now if we pass group B in ascending order we can determine
the order of rotations from group A.

Memory requirements are n · (2 · bytesize(n) + bytesize(|Σ|)) + 2|Σ| ·
bytesize(n) and time complexity is O(AML · n · log n + |Σ|).

4.8 Kao’s modification of Itoh’s algorithm

We again divide rotations into groups, but we do not qsort whole group at
once. Rather we qsort unsorted part of group from one bucket. We always
choose between the leftmost and rightmost bucket whichever is smaller. Ro-
tation Ri belongs to:

CHAPTER 4. BWT (CODING) ALGORITHMS 26

• Type A: iff xi > x|i+1|

• Type B: iff xi = x|i+1| and R|i+1| is Type A or Type B

• Type C: iff xi = x|i+1| and R|i+1| is Type C or Type D

• Type D: iff xi < x|i+1|

We use arrays BucketSizeA, BucketSizeB, BucketSizeC, BucketSizeD,
all of them have size |Σ| for holding sizes of buckets. Arrays BucketP trA,
BucketP trB, BucketP trC, BucketP trD point to unsorted parts of buck-
ets in I[0..n). BucketP trA, BucketP trB point to the left end of unsorted
bucket while BucketP trC, BucketP trD point to the right end of buckets.
In addition we use array C[0..n] inverse of I (I[C[i]] = i) for finding position
in I for given rotation. Note that rotations starting with the same symbol of
type A are smaler than all rotations of type B those than type C and finally
all groups contain smaller rotations than group of type D. See Algorithm
4.8.

Note that the leftmost unprocessed type A bucket l = left is sorted,
because the second symbols are smaller than first. Hence when we get to l
we have already processed all smaller symbols from left. So while processing
rotations Ri−1 we had to hit all from type A bucket starting with symbol l.
(The only exception would be if input X would contain only one symbol.) If l
is the smallest symbol then type A bucket is empty. On the other hand some
rotations of type D could have been assigned their index, but not necessarily
all because r = right can at the moment be far from l. So when we have been
assigning the indexes of rotations from this type D bucket, we had to switch
places of rotations at that index. For switching rotation Ri with rotation Rj

we need to know position of Ri in I - we have it stored in C[i].
Memory requirements are n · (2 · bytesize(n) + bytesize(|Σ|)) + 4 · |Σ| ·

bytesize(n) and time complexity is O(AML · n · log n + |Σ|).

4.9 Kärkkäinen and Sanders’ algorithm

4.9.1 Description

This algorithm is the first one to directly construct suffix array without
constructing suffix tree. It recursively sorts suffixes at positions i mod 3 6= 0.
Then it sorts positions i mod 3 = 0 and finally merges those two groups. It
implicitly uses the idea of doubling technique, but it generally multiplies the
sorted length by higher number (in this case 3). We describe version of the
algorithm DC3 that divides suffixes into three groups and is elegant.

CHAPTER 4. BWT (CODING) ALGORITHMS 27

Algorithm 4 Kao
{Bucket c is bucket of rotations starting with character c. We divide this
bucket further into buckets of type A,B,C and D.}
radix sort I by first symbols
set BucketSize(A,B,C,D) arrays
{BucketSizeA[c] holds the number of rotations belonging to group A start-
ing with character c}
set BucketP tr(A,B,C,D) arrays
{BucketP trA[c] points to left end of rotations belonging to group A start-
ing with character c}
left ⇐ 0
right ⇐ |Σ| − 1

while ∃ unsorted group do
if unsorted part of bucket left of type D ≤ unsorted part of bucket
right of type A then

Pass whole sorted bucket of type A upto end of type B bucket from
left setting indexes of rotations Ri−1 ≥ Ri.
Qsort the unsorted part of type D bucket.
Pass whole type D bucket from right upto start of type C bucket
setting indexes of rotations Ri−1 from type C bucket.
Pass type C and type D from left setting indexes of rotations Ri−1 >
Ri.
left ⇐ left + 1

else
Mirror of actions in the first case.

end if
end while

In previous algorithms we have explained how to use them to construct
index array I storing order of rotations for input string X. However for this
algorithm, straightforward switch from sorting suffixes to sorting rotations
in not possible. So we can only use it to construct suffix array. Recall that
suffix array of X$ is equivalent to index array of X$.

We assign suffixes Si : i mod 3 = 1 (that we call group 1 suffixes) num-
bers rank(Si) = R′

1[i/3] so that they correspond to <3 order: Si <3 Sj ↔
R′

1[i/3] < R′
1[j/3] and Si =3 Sj ↔ R′

1[i/3] = R′
1[j/3]. In the rank array R′

1,
number corresponding to Si is followed by number corresponding to Si+3.
So to compare Si with Sj we can instead compare suffixes R′

1[i..n/3] with
R′

1[j..n/3] from array R′
1. If there are no two equal numbers in R′

1 we can

CHAPTER 4. BWT (CODING) ALGORITHMS 28

construct suffix array SA1 for R′
1 by single pass of R′

1. If not, we use re-
cursion to find suffix array for R′

1. Note that we always triple the order by
which the suffixes are sorted.

This itself would not suffice. But due to the fact that the string is $
terminated we can sort suffixes Si : i mod 3 6= 0 at the same time. For
suffixes Si : i mod 3 = 2 (group 2 suffixes) we create R′

2 the same way as
we created R′

1 for group 1 suffixes. Now we concatenate them to obtain
R′

12 = R′
1 ◦ R′

2. Note that the numbers have to be chosen so that the <3

condition is met also for comparing Si and Sj from group. We can use this
array due to the fact that the last numbers in R′

1 and R′
2 are unique. So

for suffix from R′
1 the order is determined before we look for number from

R′
2. This holds since our string is $ terminated and would not work with

rotations. For technical reasons consider string to be terminated by $$.
Consider example X = mississippi$$. The triplets for group 1 suffixes

are [iss, iss, ipp, i$$] and [ssi, ssi, ppi] for group 2. Array R′
12 = [3, 3, 2, 1] ◦

[5, 5, 4] meets the conditions for <3 order of group 12 suffixes. In the next
recursive call the triplets would be [321, 554] and [215, 54$]. Now all the
triplets would be unique and no more recursion is required.

Following is the description of implementation of the idea described.

Step 0: Construct a sample.

For k = 0, 1, 2 Rk = [i ∈ [0, n]; i mod 3 = k]. Let R12 = R1 ◦ R2 be the array
of sample positions and SR the set of sample suffixes.

Example. R1 = [1, 4, 7, 10], R2 = [2, 5, 8], R12 = [1, 4, 7, 10, 2, 5, 8].

Step 1: Radix sort sample suffixes.

First we radix sort array R12 using first three symbols of corresponding
suffix as keys.

(First we call stable radix sort using third symbol as key: key(R[i]) = Si[2] =
xi+2 to get array SA′′′

12.
Second call of radix sort on SA′′′

12 using key(SA′[i]) = Si[1] = xi+1 to get SA′′
12.

Third call of radix sort on SA′′
12 using key(SA′[i]) = Si[1] = xi+1 to get SA′

12.)

Now we have array SA′
12 similar to suffix array, but it just represents <3

order of suffixes.
Pass the SA′

12 and set ranks of suffixes into R′
12.

(Start with rank = 1 and if SSA′′′[i] <3 SSA′′′[i+1] increase rank by one.
If suffix SSA′′′[i] is from group 1: R′

12[SA′′′[i]/3] = rank. If the suffix is from
group 2: R′

12[SA′′′[i]/3 + n/3] = rank.)
After this step R′

12 = [3, 3, 2, 1] ◦ [5, 5, 4].

CHAPTER 4. BWT (CODING) ALGORITHMS 29

If all ranks are different then array SA′
12 is the suffix array for group 12.

Otherwise recursively call algorithm DC3 with R′ ◦ $$ as input string.
After recursive call R′

12 = [4, 3, 2, 1]◦ [6, 5, 4] and SA′
12 = [3, 2, 1, 0, 6, 5, 4].

Step 2: Sort nonsample suffixes.

To sort suffixes Si : i mod 3 = 0 (group 0) we use ranks of already sorted
suffixes. To compare two suffixes from group 0 use pair (xi, rank(Si+1))as
key for Si. Recall that for Si from group 0, rank(Si+1) is defined in R′

12.
Since Si ≤ Sj ↔ (xi, rank(Si+1) ≤ (xj, rank(Sj+1)) it is enough to use radix
sort.

Step 3: Merge.

When merging group 12 with group 0 we distinguish two cases. To compare
Si from group 0 with

• Sj from group 1: Si ≤ Sj ↔ (xi, rank(Si+1)) ≤ (xj, rank(Sj+1))

• Sj from group 2: Si ≤ Sj ↔ (xi, xi+1, rank(Si+2)) ≤ (xj, xj+1, rank(Sj+2))

4.9.2 Memory requirements

We need array X for storing input of size n · bytesize(|Σ|) throughout the
whole algorithm. The phase of sorting sample requires storing input strings
in recursive calls which requires n · bytesize(|Σ|) for array X in the top call
which works with alphabet Σ plus

∑∞
i=1 (2

3
)i · bytesize(n) for recursive calls

which work with alphabet of ranks. This is equal to n · bytesize(|Σ|) + 7
3
n ·

bytesize(n).
Sorting non-sample suffixes requires original input array X, two arrays

of size n
3
· bytesize(n) and two arrays for already sorted group 12 of size

2
3
n · bytesize(n). Total of n · bytesize(|Σ|) + 2n · bytesize(n) bytes.

The most memory demanding is the final merging. We need arrays X
with input string, R12 with ranks of suffixes from group 12, SA12 - suffix
array for group 12 suffixes, SA0 - suffix array for group 0 suffixes and finally
SA where we will store the resulting suffix array for input X. These arrays
total to n · bytesize(|Σ|) + 8

3
n · bytesize(n) bytes.

CHAPTER 4. BWT (CODING) ALGORITHMS 30

4.9.3 Time complexity

The algorithm devides suffixes into two groups and radix sorts them in O(n).
Then it recursively calls itself on two thirds of original data. Finally merging
in linear time is performed. Hence the recursive equation is T (n) = O(n) +
T (2

3
n) which has solution T (n) = O(n). The number of recursive calls

depends on MML.

Chapter 5

Reverse BWT for string
transformed using suffix array

Burrows and Wheeler have invented the transform while working with suffix
arrays [3]. The decoding as described in Section 3.2 uses the structure of
rotations to find original string. For most inputs rotation array and suffix
arrays are the same, but they can also be quite different. Recall that we
form X̃ from X by taking last characters of rotations in order in which they
appear in index array I. We show how the rotation arrays and suffix arrays
are related and propose algorithm for decoding transformed string X̃ created
using suffix array instead of rotation array. The preference of suffixes over
rotations is due to better running times. In addition some algorithms, such
as linear algorithm due to Kärkkainen and Sanders described in Section 4.9,
need to work with suffixes. We show how to avoid using X$ as input string.
We use example string dabraca for illustration.

Lemma 5.0.1. Rotation array and suffix array for string X$ are equal.

Proof. When we compare two rotations, their relative order is always deter-
mined when we encounter $ or sooner since $ is not in Σ. Hence we compare

Figure 5.1: String X=dabraca.

31

CHAPTER 5. REVERSE BWT FOR SUFFIXES 32

Figure 5.2: Rotation array and suffix array for dabraca.

rotations and suffixes the same way.

We see that we can perform BWT using suffix array instead of rotation
array if we $ terminate the input string. The disadvantage is that we have to
increase the length of the string. Consequently transformed string is longer
than input string and after decoding we have to truncate the string to get rid
of the terminal symbol $. When we split input string into blocks, which is
common to lower memory requirements and running time, we can not place
the transformed string X̃ back into its place in array holding the input string,
since X̃ is longer than X.

Lemma 5.0.2. Let SAX be suffix array for string X. Then suffix array
SAX$ for string X$ is given by:

SAX$[0] = n, ∀i ∈ [1..n] : SAX$[i] = SAX [i − 1]

Let SAX$ be suffix array for terminated string X$. Then suffix array
SAX for string X is given by:

∀i ∈ [0..n) : SAX [i] = SAX$[i + 1]

Proof. First entry in SAX$ is the position of $. Relative order of all suffixes
from X is the same in X$ since $ placed at the end of string does not affect
the order.

Lemma 5.0.3. Let X̃$ be the transformed string for X$ and X̃ transformed
string for X. Then

indexX$ = indexX + 1, X̃$[0] = xn−1, X̃$[indexX$] = $, X̃[indexX] = xn−1

and for the rest

∀i ∈ [1..n] \ {indexX$}; X̃$[i] = X̃[i − 1]

CHAPTER 5. REVERSE BWT FOR SUFFIXES 33

Figure 5.3: Transformed string for dabraca.

Proof. This is direct consequence of previous lemma. Note that the shift is
due to suffix Sn = $ which is smaller than all other suffixes.

We use the previous lemmas to propose a way to decode transformed
string X̃ created using suffix array.

Theorem 5.0.4. We can decode X̃ created using suffix array into original
string X.

Proof. We have shown that SAX$ = RAX$ and hence X̃$ is the same re-
gardless if we use suffix array or rotation array. We have also shown how are
X̃ and X̃$ related when we use suffix arrays. Now we use this similarity to
modify Algorithm 1 to perform decoding of X̃ created using suffix array. For
the resulting algorithm see Algorithm 5.

After we have counted the frequencies of characters and set array C[0..|Σ|]
so that C[c] stores number of suffixes starting with character smaller than c

the relation is following: CX̃ [c] = C
X̃$

[c] − 1. The second phase of decoding
algorithm sets predecessors in array T [0..n] by passing X̃ from left. We set
T [i] = C[x̃i] and we increase C[x̃i] by one - this is were we use the fact that
if we shift all rotations to right, rotations starting with the same character
appear in the same relative order. See Section 3.2.2.

For X̃$ we hit xn−1 as the very first character at position i = 0 (X̃$[0] =

xn−1) and we increase C[xn−1], while for X̃ we hit xn−1 at X̃[indexX]. If
we increase C[xn−1] for X̃ at the beginning of the pass and do not increase
C[xn−1] at position indexX we get the following relation of predecessor arrays:
TX̃ [i] = T

X̃$
[i + 1] − 1 for all i except i = indexX . Since xn−1 is the first

character in X̃$ its predecessor will be equal to indexC ≡ T
X̃$

[0] = C[xn−1]
just after the first phase (before we have been increasing it by one when

CHAPTER 5. REVERSE BWT FOR SUFFIXES 34

Algorithm 5 Reverse BWT (decoding)
{C[0..Σ − 1] array for frequencies of characters initialized to 0}

{first phase – find first characters of rotations}
for i = 0 to n − 1 do

C[X̃[i]] ⇐ C[X̃[i]] + 1
end for
for i = 0 to |Σ| do

j ⇐ C[i]
C[i] ⇐ sum
sum ⇐ sum + j

end for

{second phase – build predecessor list}
indexC ⇐ C[X̃[index]]

C[X̃[index]] ⇐ C[X̃[index]] + 1
for i = 0 to index − 1 do

T [i] ⇐ C[X̃[i]]

C[X̃[i]] ⇐ C[X̃[i]] + 1
end for
Tindex ⇐ indexC

for i = index + 1 to n − 1 do
T [i] ⇐ C[X̃[i]]

C[X̃[i]] ⇐ C[X̃[i]] + 1
end for

{third phase – form output}
for i = n − 1 downto 0 do

X[i] ⇐ X̃[index]
index ⇐ T [index]

end for

CHAPTER 5. REVERSE BWT FOR SUFFIXES 35

Figure 5.4: Array C after first phase of Algorithm 5.

Figure 5.5: Array T after first phase of Algorithm 5.

assigning predecessors). So we set TX̃ [indexX] = indexC and the predecessor
array TX̃ looks as follows:

∀i ∈ [0..n) \ {indexX} : TX̃ [i] = T
X̃$

[i + 1] − 1

TX̃ [indexX] = T
X̃$

[0]

Note that T
X̃$

[indexX$] = 0 and hence when decoding X̃$ we get to
position 0 just after position indexX$. The position 0 in T

X̃$
is correlated

with position indexX in TX̃ and hence from this point the decoding will follow
the same pattern for both X̃ and X̃$.

Figure 5.6: Array T that we would obtain using Algorithm 1 for reverse
BWT for rotations.

Chapter 6

Improving performance of BWT

In this chapter we discuss various aspects of implementation that influence
the performance of presented algorithms. The factor that has biggest influ-
ence on performance of BWT is alphabet. We show that for large textual files
using alphabet of words greatly improves the speed of BWT and in addition
improves the compression ratio.

We have already shown that we can use suffixes instead of rotations.
Now we are about to show that algorithms described are faster when they
use suffixes and that compression ratio is almost the same for suffixes and
rotations.

We have implemented several comparison based algorithms and tested
them for performance. Results show that careful choice of appropriate sorting
algorithm as subroutine for BWT coding algorithms can improve the running
time by tens of percent.

Finally, and from first glance most importantly, we need to choose BWT
coding algorithm. We do this choice as last, because we first optimize the
algorithms before making decisions on their performance. Decisive factor for
appropriate algorithm is AML of the input. For repetitive inputs, we should
use algorithm with good asymptotic complexity such as Larsson’s algorithm
or Kärkkäinen and Sanders’ algorithm.

6.1 Testing Environment

All presented results have been obtained using application XBW [4]. This
program is highly modular and supports number of parameters. For mea-
suring compression ratio, we used BWT over specified alphabet followed by
move-to-front (MTF) and run-length-encoding (RLE). For RLE parameter
–RLE=3 has been used. For details, see documentation of the program.

36

CHAPTER 6. IMPROVING PERFORMANCE OF BWT 37

All algorithms have been implemented for various alphabet sizes using
1, 2 and 4 byte numbers in an attempt to minimize cache misses. We also
implemented several subroutines that are used by the algorithms. Namely
we implemented half a dozen quick sort algorithms, and three comparison
functions for comparing strings. In addition all algorithms expect Kärkkainen
and Sanders’ have been implemented for both sorting rotations and suffixes.

Run time has been measured on Linux system and we list user time plus
system time. Hence we exclude time for waiting for I/O devices. The code
has been compiled using gcc version 4.1 with optimization parameter -O3.
The personal computer on which we run the tests had processor Athlon 64
X2 3800+ and 2GB of RAM.

6.2 Corpus Summary

We use files from several corpora for testing. From Calgary corpus we use files
book2, paper1 and progc. Two of them contain English texts and the last one
is program in C language. From Cantebury corpus we use file E.coli contain-
ing DNA sequence, file bible.txt with Bible in English and file world192.txt
containing CIA World Factbook from 1992. We have taken some larger files
from corpus Silesia. Namely file dickens with texts by Dickens’ and file web-
ster with Webster’s dictionary. The largest file called enwik8 contains pages
from Wikipedia and is taken from compression contest. Finally we have two
XML files containing hundreds of web pages. File xml_cz contains web pages
in Czech and file xml_en web pages in English.

In Table 6.1 we show basic information about files. AML and MML are
measures of repetitiveness of files (see Section 2.2.3 and Section 2.2.4). These
two parameters together with size of the file are the most important factors
that influence run time of BWT.

6.3 Notation in Results

We try to use consistent notation throughout the tables. For most tables we
list the results for whole corpus. In some tables we list results for each file
specifically while in others for whole corpus. When not specified, results are
for whole corpus.

Results for compression ratio are in bits per byte. Results for run time
are in seconds and represent sum of user time and system time on Linux
system.

For algorithms we use following notation:

CHAPTER 6. IMPROVING PERFORMANCE OF BWT 38

File Name Size in Bytes AML MML
E.coli 4638690 17.4 2815
bible.txt 4047392 14.0 551
book2 610856 9.6 246
dickens 10192446 56.1 10263
enwik8 100000000 16.4 5317
paper1 53161 8.0 104
progc 39611 8.3 156
webster 41458703 34.3 11293
world192.txt 2473400 23.0 559
xml_cz 19100318 2701.0 54814
xml_en 14493168 1639.1 53402

Table 6.1: Corpus Summary

Basic – Algorithm that runs one or two level bucket sort. Then each bucket
is sorted by comparison based sort. We show results for various qsorts.

Sada – Sadakane’s algorithm improved by Larsson. See Section 4.4.

Sew1level – Our modification of Seward’s algorithm that uses 1 level buck-
ets. See Section 4.6.

Itoh – Itoh’s algorithm improved by Kao. See Section 4.8.

Seward – Seward’s algorithm. See Section 4.5.

KS – Kärkkäinen and Sanders’ algorithm. See Section 4.9.

6.4 Comparing rotations vs. comparing suf-

fixes

Suffix arrays and rotation arrays are very similar, but are usually not iden-
tical. Hence also the transformed strings differ slightly. In Table 6.2 you
can see that the differences in compression ratio are really negligible. More
careful analysis of separate files shows as well that the difference is irrelevant.

When comparing two rotations we have to keep track of how many char-
acters we have compared and also to check that we did not get over the end of
array when we have to continue from the beginning. Simple implementation
of comparison function can be found in Algorithm 6. In each iteration we

CHAPTER 6. IMPROVING PERFORMANCE OF BWT 39

Bits per Byte Bytes 2 Bytes Syllable Word
rotation 1.697233 1.776992 1.644089 1.663771
suffix 1.697234 1.776991 1.644088 1.663780

rotation – result for transformed string using rotation array
suffix – result for transformed string using suffix array

Table 6.2: Compression Ratio of Rotations vs. Suffixes

Algorithm 6 Compare rotations - simple

int compare(int first, int second, VARTYPE X[], int n){

if(first==second)

return(0);

for(i=0;i<n;i++){

if(X[first++]!=X[second++])

return(X[--first]-X[--second]);

if(first>=n)

first-=n;

if(second>=n)

second-=n;

}

return(0);

}

check three variables against n. Seward [11] proposed to extend the array X
by small value k so that in each iteration we compare more characters from
suffixes, but checking values i, first, second only once. Seward measured up
to 45% improvement when this trick has been used on direct comparison
based algorithm. We have to set X[n + i] = X[i mod n] for i ∈ [0..k). See
Algorithm 7 for details where we use k = 2 for illustration, but value around
10 yields better results. We have used k = 8 in our implementation.

Now we consider comparison of two suffixes which is faster than compar-
ing rotations even in optimized version. We again use extension of array X
where we place terminal value. Let all values from alphabet in X be positive.
We set X[n] = 0 and we can use the function as in Algorithm 8 to compare
two suffixes. Note that we only compare the characters from array and no
extra variables.

In Table 6.3 we list results that clearly show that for all algorithms that

CHAPTER 6. IMPROVING PERFORMANCE OF BWT 40

Algorithm 7 Compare rotations - unroll

int compare(int first, int second, VARTYPE X[], int n)

{

if(first==second)

return(0);

if(X[first++]!=X[second++])

return(X[--first]-X[--second]);

if(X[first++]!=X[second++])

return(X[--first]-X[--second]);

if(first>=n)

first-=n;

if(second>=n)

second-=n;

while(i=0;i<n;i+=2){

if(X[first++]!=X[second++])

return(X[--first]-X[--second]);

if(X[first++]!=X[second++])

return(X[--first]-X[--second]);

if(first>=n)

first-=n;

if(second>=n)

second-=n;

}

return(0);

}

Algorithm 8 Compare suffixes

int compare(int first, int second, VARTYPE X[], int n){

if(first==second)

return(0);

while(X[first++]==X[second++]);

return(X[--first]-X[--second]);

}

CHAPTER 6. IMPROVING PERFORMANCE OF BWT 41

R
ot

.
/

Su
ffi

x

B
SO

R
T

Q
SO

R
T

Basic Sada Sew1level Itoh Seward KS
RS 1 3P 957.06 422.36 541.54 467.35 n/a n/a

RUR 1 3P 570.45 422.13 342.53 300.5 n/a n/a
S 1 3P 420.28 427.54 263.27 236.56 n/a 407.3
RS 2 3P 922.84 355.34 545.86 466.84 439.8 n/a

RUR 2 3P 526.78 355.56 346.31 305.57 261.98 n/a
S 2 3P 386.41 361.11 267.87 237.42 199.09 407.3
RS 1 SI 1180.81 667.61 657.58 561.56 n/a n/a

RUR 1 SI 803.23 669.25 461.44 398.93 n/a n/a
S 1 SI 511.77 701.04 311.28 275.76 n/a 407.3
RS 2 SI 1134.97 490.62 662.07 561.93 535.41 n/a

RUR 2 SI 761.42 488.31 465.25 398.53 366.95 n/a
S 2 SI 473.48 514.39 315.25 275.13 238.32 407.3

RBS 1 BS 801.54 422.38 459.3 398.45 n/a n/a
S 1 BS 623.33 425.96 254.05 225.56 n/a 407.3

RBS 2 BS 788.42 354.81 463.76 398.56 375.62 n/a
S 2 BS 610.82 360.09 258.26 226.07 198.77 407.3

Rot. / Suffix: RS – rotation with simple cmp function, RUR – rotation
with unroll cmp function, RBS – rotation with special cmp function
for BS, S – suffix.
BSORT : 1 – one-level bucket sort, 2 – two-level.
QSORT : SI – simple q-sort, 3P – 3-part q-sort, BS – Bent-
ley&Sedgewick’s q-sort.

Table 6.3: Run Time of Rotations vs. Suffixes

CHAPTER 6. IMPROVING PERFORMANCE OF BWT 42

// Suffix compare function 1

if(first==second)

return(0);

while(X[first++]==X[second++]);

return(X[–first]-X[–second]);

// Suffix compare function 2

if(first==second)

return(0);

while(X[first]==X[second]){

first++;

second++;

}

return(X[–first]-X[–second]);

Figure 6.1: Suffix Compare Variants

compare whole strings, all except Sadakane’s and Kärkkäinen and Sanders’,
suffixes yield better results. Unroll version of comparison function for rota-
tions really improves run time by around 40 % over with simple comparison
function. Using suffixes we can decrease the run time by another 25 %.

We would like to warn that the effectivity of implementation of compari-
son functions is strongly compiler dependent. Since these functions are used
very frequently it is important to inline them into qsort function in order to
omit function calls. As curiosity and warning we give two versions of body
for comparison functions for suffixes in Figure 6.1. Although semantically
the same, difference in run time of whole BWT algorithm due to this differ-
ence has been over 20 %. 1 Even more interestingly one version is better for
our implementation of tripartite qsort and the other for simple qsort. This
emphasizes how much of the instructions are used on comparing the strings
and that comparing long strings is bottle neck of algorithms.

6.5 Choosing q-sort

We have implemented several comparison-based sorting algorithms that are
used in algorithms which we have presented in Chapter 4. Our goal has been
to compare their performance for different BWT coding algorithms and to

1gcc 4.1

CHAPTER 6. IMPROVING PERFORMANCE OF BWT 43

choose the appropriate ones to be used. Table 6.4 shows that this choice is
important.

Method of choosing a pivot is important for all q-sort algorithms. Using
median as pivot is costly, but on the other hand, choosing some predefined
element as pivot often leads to bad partitioning. We have tested using pre-
defined pivot, median of nine elements as pivot and method of switching
among first, middle and last element in recursive calls due to Sedgewick.
Another specific of our application is that comparison of keys is more costly
than switching order of elements for which algorithm due to Bentley is well
suited.

For Sadakane’s algorithm improved by Larsson, that uses group number
of rotation as key, 3-part q-sort due to Bentley and McIlroy [2] performs very
well. This q-sort divides elements into three groups: elements smaller, equal,
and bigger than pivot. It recursively sorts elements smaller and bigger than
pivot, avoiding sorting again elements equal to pivot. For other algorithms,
3-part q-sort also works better compared to basic quick sort implementation
we call simple q-sort. However this difference is not that big and is due to
better choice of pivot and using insert sort when few elements are left.

We have also implemented algorithm due to Bentley and Sedgewick [1]
which is aimed at sorting strings. Its core is the 3-part q-sort, but for strings
it also recursively calls itself on elements with first character equal to pivot.
In recursive call for elements that start with the same character it uses their
second character as key. We refer to it as BS q-sort.

We can see that BS q-sort performs the best for rotation with simple
comparison function. When we compare long blocks of string quickly as for
suffixes, 3-part q-sort is the fastest among q-sorts we list in Table 6.4.

Note that Kärkkäinen and Sanders’ algorithm is not using any of the
qsorts. For Sadakane’s algorithm 3-part qsort and BS qsort are equivalent
since length of key is one.

6.6 Reverse of Input String

In decoding process, as described in 3.2, original string is decoded from end.
For this reason it is common to perform BWT on input string that we reverse.
This way the decompression can start from front. In Table 6.5 we show that
this slightly worsens the compression ratio. The exception is when we use 2
bytes as alphabet. This suggests that for textual data we can slightly better
predict what was before some suffix than to predict what follows after prefix.
Or to be more precise: BWT better groups common prefixes of suffixes than
vice versa.

CHAPTER 6. IMPROVING PERFORMANCE OF BWT 44

R
ot

.
/

Su
ffi

x

B
SO

R
T

Q
SO

R
T

Basic Sada Sew1level Itoh Seward KS
RS 1 SI 1180.81 667.61 657.58 561.56 n/a n/a
RS 1 3P 957.06 422.36 541.54 467.35 n/a n/a
RBS 1 BS 801.54 422.38 459.3 398.45 n/a n/a
RS 2 SI 1134.97 490.62 662.07 561.93 535.41 n/a
RS 2 3P 922.84 355.34 545.86 466.84 439.8 n/a
RBS 2 BS 788.42 354.81 463.76 398.56 375.62 n/a
RUR 1 SI 803.23 669.25 461.44 398.93 n/a n/a
RUR 1 3P 570.45 422.13 342.53 300.5 n/a n/a
RBS 1 BS 801.54 422.38 459.3 398.45 n/a n/a
RUR 2 SI 761.42 488.31 465.25 398.53 366.95 n/a
RUR 2 3P 526.78 355.56 346.31 305.57 261.98 n/a
RBS 2 BS 788.42 354.81 463.76 398.56 375.62 n/a
S 1 SI 511.77 701.04 311.28 275.76 n/a 407.3
S 1 3P 420.28 427.54 263.27 236.56 n/a 407.3
S 1 BS 623.33 425.96 254.05 225.56 n/a 407.3
S 2 SI 473.48 514.39 315.25 275.13 238.32 407.3
S 2 3P 386.41 361.11 267.87 237.42 199.09 407.3
S 2 BS 610.82 360.09 258.26 226.07 198.77 407.3

Rot. / Suffix: RS – rotation with simple cmp function, RUR – rotation with
unroll cmp function, RBS – rotation with special cmp function for BS, S –
suffix.
BSORT : 1 – one-level bucket sort, 2 – two-level.
QSORT : SI – simple q-sort, 3P – 3-part q-sort, BS – Bentley&Sedgewick’s
q-sort.

Table 6.4: Comparison of Run Time of QSORT Functions

CHAPTER 6. IMPROVING PERFORMANCE OF BWT 45

Bits per Byte Bytes 2 Bytes Syllable Word
normal 1.698 1.777 1.644 1.664
reverse 1.716 1.751 1.680 1.680

normal - standard BWT for input string
reverse - input string has been reversed before BWT

Table 6.5: Influence of Reverse String on Compression Ratio

Seconds Basic Sada Sew1level Itoh Seward KS
normal 610.82 360.09 258.26 226.07 198.77 407.3
reversed 609.51 358.29 269.54 231.7 209.59 410.29

normal – standard BWT for input string
reverse – input string has been reversed before BWT

Table 6.6: Influence of Reverse String on Run Time

Note that reverse string has the same AML and MML as original string.
Consider any two strings and their longest common prefix. Now this com-
mon prefix is their longest common suffix for reversed string. Any matching
substring for two strings is also matching substring if we consider those two
strings reversed.

We have tested also the run time and as you can see in Table 6.6 there are
no big differences in run time for any algorithm. Slight difference in run time
of algorithms is due to different sizes of two level buckets resulting in differ-
ent number of strings compared using qsort. Algorithm by Kärkkäinen and
Senders’ does not recurse on suffixes Si, i ≡ 0 mod 3 while for reversed string
this changes to reversed suffixes Si, i ≡ (file_size + 1 mod 3) mod 3. Note
that suffixes from different modulo group can have different MML which
influences number of recursive calls for Kärkkäinen and Senders’ algorithm.

6.7 Changing the block size

In most implementations of block compression that we have seen each byte
is taken to be a symbol from alphabet. Large files are split into blocks and
the BWT is carried on each block. For larger blocks the compression ratio is
better. Usually the blocks have to be at least 100KB large so that block com-
pression – BWT followed by move to front (MTF) and run length encoding
(RLE) has better compression ratio than dictionary LZ type algorithms.

CHAPTER 6. IMPROVING PERFORMANCE OF BWT 46

Figure 6.2: Block Size vs. Compression Ratio

Table 6.7 shows the influence of block size on compression ratio. We
see that increasing the size of block improves compression ratio significantly.
Also the results suggest that there is no upper bound on block size, above
which compression ratio does not improve with increase of block size.

For the textual files from our corpus, compression ratio improves approx-
imately with logarithm of block size. Although it is not possible to make
conclusions from testing few files, the fact that we selected the textual data
quite randomly without considering how well they can be compressed or how
repetitive they are suggests that the result we got should be applicable for
most textual files. See Figure 6.2.

The disadvantages of large blocks are memory requirements and running
time. For alphabet of bytes the memory requirements for most algorithms
are around 10n where n is the size of input in bytes. For all algorithms we
have tested, the dependency is linear. For details about memory and time
complexity of specific algorithm see its description in Chapter 4.

In Table 6.8 we show how does run time of BWT change depending on
block size. The time shown is sum of times for all files from corpus with
specified block size. We can see that the dependency of run time on block
size is different for various algorithms. Run time of algorithms with better
asymptotic complexity (KS, Sada) grows slower with increasing block size
than for algorithms that compare whole strings. This is consequence of larger
AML and MML in larger blocks.

CHAPTER 6. IMPROVING PERFORMANCE OF BWT 47

10KB 100KB 1000KB 10MB 100MB
E.coli 4639 KB 2.0983 2.0940 2.0914 2.0873 2.0873

bible.txt 4047 KB 2.6622 2.0953 1.7911 1.7134 1.7134
book2 611 KB 3.1567 2.5234 2.2127 2.2127 2.2127

dickens 10192 KB 3.2734 2.7258 2.3567 2.1795 2.1679
enwik8 100000 KB 3.2676 2.7587 2.4410 2.2161 2.0180
paper1 53 KB 3.1924 2.6186 2.6186 2.6186 2.6186
progc 40 KB 3.0123 2.6443 2.6443 2.6443 2.6443

webster 41459 KB 2.6179 2.0758 1.7779 1.6074 1.5233
world192.txt 2473 KB 3.3766 2.2352 1.6502 1.4758 1.4758

xml_cz 19100 KB 2.0263 1.5368 1.2976 0.8940 0.6814
xml_en 14493 KB 2.2034 1.6971 1.4132 1.0187 0.8702
TOTAL 197108 KB 2.8937 2.3803 2.0787 1.8476 1.6972

Table 6.7: Influence of Block Size on Compression Ratio

Basic Sada Sew1level Itoh Seward KS
10KB 61.6 53.6 40.6 29.0 54.0 38.5
100KB 77.9 68.2 51.5 43.0 38.5 68.7
1000KB 106.0 144.1 84.0 76.6 54.6 239.0
10MB 344.9 245.3 167.0 148.1 125.9 327.6
100MB 608.9 358.9 257.8 225.6 197.7 407.9

Table 6.8: Influence of Block Size on Run Time

CHAPTER 6. IMPROVING PERFORMANCE OF BWT 48

Bytes 2 Bytes Syllable Word
E.coli 2.087 1.999 2.454 3.050
bible.txt 1.714 1.804 1.586 1.583
book2 2.213 2.566 2.170 2.225
dickens 2.168 2.186 2.072 2.083
enwik8 2.018 2.079 1.933 1.926
paper1 2.618 4.414 2.753 2.865
progc 2.644 4.932 2.902 2.894
webster 1.523 1.570 1.507 1.552
world192.txt 1.476 1.674 1.464 1.475
xml_cz 0.682 0.884 0.641 0.636
xml_en 0.870 1.057 0.824 0.815
TOTAL 1.698 1.777 1.644 1.664

Table 6.9: Influence of Alphabet on Compression Ratio

6.8 Influence of Alphabet

In this section we will discuss the influence of alphabet on compression ratio
of block compression and system requirements for performing BWT. In Table
6.9 we show compression ratio for different alphabets and in Table 6.10 we
show run times obtained.

Basic Sada Sew1level Itoh Seward KS
byte 623.3 426.0 254.1 225.6 n/a 407.3
2 bytes 93.4 151.2 69.1 69.3 n/a 209.2
syllable 108.9 160.0 74.7 70.8 n/a 196.0
word 77.4 120.7 52.2 49.1 n/a 146.8

Table 6.10: Influence of Alphabet on Run Time

In most implementations of compression programs using BWT the size
of alphabet used is 28. Since all values of the byte can be used, there is no
value left that could be used as terminal symbol $. Hence we need to work
with rotations which as we have shown is slower than working with suffixes.
We can overcome this by using more bytes to represent one symbol, but at
a cost of requiring more memory and producing more cache misses.

If we shorten the input that will be transformed, the BWT will be quicker.
The most straightforward approach is to use two bytes instead of one byte of
input as alphabet. For most algorithms that we have described, the memory

CHAPTER 6. IMPROVING PERFORMANCE OF BWT 49

and time complexity dependency on size of alphabet is linear and hence
we can use alphabet of size 216 for real life use without problem. On the
other hand for Seward’s algorithm (Section 4.5.3) and related algorithm by
Manzinni and Ferragina [9], which require |Σ|2 bytes of memory for storing
starting positions of level 2 buckets, we would require 232 bytes for an array
which is not possible on 32 bit architectures and wasteful for all systems.

If we create dictionary, we can easily number symbols from alphabet start-
ing with number one and leave zero for terminal symbol $. For terminated
string we can use suffixes which improves the run time.

If we can find substrings which are frequent in input string and use them
as alphabet, then we can improve both compression ratio and run time. Long
substrings mean that we shorten the input for BWT and if they are frequent,
we can compress dictionary effectively. The drawback is that finding frequent
substrings in general is nor easy nor fast. Hence simple heuristics are the first
to try.

In application XBW [4] we have implemented parser that enables us to
use characters, syllables or words as alphabet. For definition of words and
syllables see Section 2.3. This approach proves to be very effective for textual
files.

Creating dictionary for non-textual data remains a challenge. We would
like to test several approaches similar to idea in LZ algorithm in future work.
Another approach we plan to test is counting frequencies of substrings of
limited length.

We have tested in program XBW use of syllables and words as alphabet
for textual data. Our results show that for text files over 500KB syllables
as alphabet have the best compression ratio. For large textual files, namely
enwik8, xml_cz, xml_en, with some XML markup words have the best com-
pression ratio. We also tested using 2 bytes as alphabet, but this method
degrades the compression. Results also show that syllables and words for
large files produce very similar results.

For files larger than a megabyte, use of words and syllables as alphabet
is equivalent in terms of compression ratio.

Now we present results for dependency of run time of algorithms on al-
phabet used. Using any of the mentioned alphabets we improve the run time
dramatically. The reason is very simple – large alphabet shortens the input
array for BWT. But there are also another factors at which we will look
closer; namely AML and MML. In Tables 6.11 and 6.13 you can see how
AML and MML change for different alphabet.

Specially look at change of run time of algorithms from first group. For
algorithm Itoh, the run time for alphabet of words is less than quarter com-
pared with byte alphabet. This massive difference is not just due to reduction

CHAPTER 6. IMPROVING PERFORMANCE OF BWT 50

bytes 2 bytes syllable word
E.coli 4638690 2319345 829617 18687
bible.txt 4047392 2023696 2011488 1686466
book2 610856 305428 303006 231323
dickens 10192446 5096223 4933442 4040241
enwik8 100000000 50000000 46999581 35405034
paper1 53161 26581 26940 20869
progc 39611 19806 20535 17390
webster 41458703 20729352 20924847 17970536
world192.txt 2473400 1236700 1247553 940040
xml_cz 19100318 9550159 9339300 7788878
xml_en 14493168 7246584 6981183 5793929
TOTAL 197107745 98553873 93617492 73913393

Table 6.11: Influence of Alphabet on Array Size

bytes 2 bytes syllable word
E.coli 256 65536 121319 18685
bible.txt 256 65536 5734 13727
book2 256 65536 4685 8482
dickens 256 65536 12099 35457
enwik8 256 65536 128598 403326
paper1 256 65536 1612 1992
progc 256 65536 1395 1446
webster 256 65536 37477 206145
world192.txt 256 65536 12776 23137
xml_cz 256 65536 28667 61516
xml_en 256 65536 24842 45160

Table 6.12: Influence of Alphabet Type on Alphabet Size

CHAPTER 6. IMPROVING PERFORMANCE OF BWT 51

AML bytes 2 bytes syllable word
E.coli 17.4 7.2 1.5 0.0
bible.txt 14.0 5.9 7.2 6.3
book2 9.6 4.0 5.3 4.8
dickens 56.1 22.4 23.6 16.0
enwik8 16.4 7.1 8.2 6.7
paper1 8.0 3.0 4.5 4.2
progc 8.3 3.0 4.3 3.9
webster 34.3 15.5 15.4 13.0
world192.txt 23.0 9.8 11.7 9.3
xml_cz 2701.0 910.4 665.9 515.6
xml_en 1639.1 590.0 386.6 303.1

Table 6.13: Influence of Alphabet on AML

of length of input string to 40%. Note that word alphabet reduced AML
which is critical factor for performance of algorithms from first group. AML
decreases by over 80% for files with the highest AML.

Now we look at run time of algorithms for each file in Tables 6.14, 6.15,
6.16. We choose one algorithm from each group; namely Itoh, Sada and KS.
In Figure 6.3 you can see comparison of their run time for whole corpus. In
Figures 6.4 and 6.5 we list speed of algorithms in millions of symbols per
second. For Figure 6.4 we take size of original whole corpus as base size
and for Figure 6.5 the base size is length of the input string over specified
alphabet. The length of string over alphabet of bytes is the same as size of
corpus in bytes. For 2 bytes the length is half of the size of corpus. For
syllables and words see Table 6.11.

Figure 6.5 shows that increase of speed of algorithm Itoh is not just due
to shortening of the input string. Note that in Figure 6.5 we have speeds
relative to length of input string. This is consequence of decreasing AML of
input string with change of alphabet.

6.9 Choosing Algorithm

In this section we will compare optimized versions of coding algorithms.
First we can leave out of our choice algorithm by Seward since it’s memory
requirements are Θ(|Σ|2) and we want to work with large alphabet. In Table
6.12 you can see that for large files we get size of alphabet well over 216. For
example for file enwik8 we would need 186GB for storing starting positions

CHAPTER 6. IMPROVING PERFORMANCE OF BWT 52

bytes 2 bytes syllable word
E.coli 2.2 1.0 0.3 0.2
bible.txt 1.9 0.8 0.8 0.7
book2 0.2 0.1 0.1 0.1
dickens 7.1 2.5 2.6 1.9
enwik8 70.4 30.0 30.2 19.0
paper1 0.0 0.0 0.0 0.1
progc 0.0 0.0 0.0 0.1
webster 33.6 12.0 14.3 11.0
world192.txt 1.2 0.4 0.5 0.4
xml_cz 77.7 15.5 15.4 10.8
xml_en 31.4 7.0 6.6 4.7
TOTAL 225.6 69.3 70.8 49.1

Table 6.14: Itoh Algorithm: Run Time vs Alphabet

bytes 2 bytes syllable word
E.coli 7.6 3.1 0.8 0.0
bible.txt 5.4 1.9 2.2 1.8
book2 0.5 0.2 0.2 0.1
dickens 15.5 5.4 6.3 5.1
enwik8 235.7 83.4 88.3 63.0
paper1 0.0 0.0 0.0 0.0
progc 0.0 0.0 0.0 0.0
webster 81.0 27.6 32.1 26.9
world192.txt 3.1 1.0 1.2 0.9
xml_cz 46.2 17.1 17.5 13.8
xml_en 30.9 11.5 11.5 9.1
TOTAL 426.0 151.2 160.0 120.7

Table 6.15: Sada Algorithm: Run Time vs Alphabet

CHAPTER 6. IMPROVING PERFORMANCE OF BWT 53

bytes 2 bytes syllable word
E.coli.4 7.6 3.8 1.4 0.0
bible.txt.4 6.3 3.4 3.2 2.6
book2.4 0.6 0.3 0.3 0.2
dickens.4 18.3 10.0 9.3 7.7
enwik8.4 236.5 118.2 111.2 77.8
paper1.4 0.0 0.0 0.0 0.0
progc.4 0.0 0.0 0.0 0.0
webster.4 78.9 41.4 40.9 34.7
world192.txt.4 3.6 1.9 1.7 1.3
xml_cz.4 31.5 17.1 16.0 12.9
xml_en.4 24.0 13.1 11.9 9.6
TOTAL 407.3 209.2 196.0 146.8

Table 6.16: KS Algorithm: Run Time vs Alphabet

Figure 6.3: Run Time vs. Alphabet

CHAPTER 6. IMPROVING PERFORMANCE OF BWT 54

Figure 6.4: Coding Speed vs. Alphabet in MB/s

Figure 6.5: Coding Speed vs. Alphabet in Symbols per Second

CHAPTER 6. IMPROVING PERFORMANCE OF BWT 55

of 2 level buckets.
In Tables 6.17, 6.18 and 6.19 we list run times of algorithms for each file.

Data have been measured using suffixes with BS qsort and 1 level bucket
sort. The first table is for alphabet of bytes, the second for syllable alphabet
and the third for alphabet of words. From the remaining three algorithms
from the first group (Basic, Sew1level, Itoh) we choose Itoh because it is the
fastest. Only for two files for syllables our Sew1level is slightly faster than
Itoh. Hence we conclude that Itoh supersedes Basic and Sew1level.

Now we have three algorithms each with different asymptotic complexity
to consider. The choice of the best algorithm depends on AML of the file.
For most files Itoh runs twice faster than the other two. However for file
xml_cz which has the highest AML among all files Itoh runs more than
twice as long as KS. In general AML can reach up to n where n is length
of string. For such inputs Itoh algorithm can not be used. Hence for very
repetitive inputs we need one of the algorithms Sada or KS which have good
asymptotic complexity. Here we have to make trade off between run time
and memory complexity since KS is faster, but requires more memory. Recall
that for byte alphabet Sada requires 9n bytes while KS 112

3
n. We suggest

using KS, because it can be used also when not whole data fit into RAM.
Recall that it does not as the only one use qsort which jumps in data quite
randomly. KS uses radix sort to find ranks and in final phase, it uses merge
sort. Hence it accesses data in arrays sequentially.

For robust implementation we suggest first trying to use Itoh and if the
input file is too repetitive, fall back to algorithm KS. We can count total
length of comparisons we made in Itoh and if it exceeds threshold value, end
it and use the other algorithm. We see that Itoh starts to be slower KS when
the AML exceeds 1000. Again note that by use of large alphabet we decrease
the AML of input.

CHAPTER 6. IMPROVING PERFORMANCE OF BWT 56

Basic Sew1level Itoh Sada KS
E.coli 3.66 2.59 2.20 7.61 7.61
bible.txt 2.43 1.84 1.90 5.39 6.25
book2 0.23 0.19 0.19 0.53 0.64
dickens 12.20 7.20 7.05 15.51 18.31
enwik8 93.29 73.87 70.36 235.71 236.47
paper1 0.01 0.01 0.01 0.02 0.01
progc 0.01 0.01 0.01 0.01 0.01
webster 55.72 35.39 33.57 80.99 78.92
world192.txt 1.72 1.24 1.16 3.07 3.64
xml_cz 313.82 93.63 77.74 46.22 31.45
xml_en 140.24 38.08 31.37 30.90 23.99
TOTAL 623.33 254.05 225.56 425.96 407.30

Table 6.17: Run Time of Algrorithms for Bytes

Basic Sew1level Itoh Sada KS
E.coli 0.47 0.29 0.32 0.78 1.40
bible.txt 1.02 0.74 0.79 2.20 3.21
book2 0.10 0.08 0.09 0.18 0.29
dickens 3.66 2.46 2.58 6.30 9.33
enwik8 38.37 29.40 30.25 88.26 111.17
paper1 0.00 0.00 0.02 0.01 0.01
progc 0.00 0.01 0.02 0.01 0.01
webster 19.54 13.60 14.26 32.11 40.93
world192.txt 0.65 0.52 0.49 1.24 1.74
xml_cz 32.75 19.48 15.39 17.46 16.02
xml_en 12.36 8.14 6.58 11.46 11.93
TOTAL 108.93 74.70 70.77 160.00 196.05

Table 6.18: Run Time of Algorithms for Syllables

CHAPTER 6. IMPROVING PERFORMANCE OF BWT 57

Basic Sew1level Itoh Sada KS
E.coli 0.00 0.02 0.24 0.01 0.02
bible.txt 0.85 0.60 0.71 1.79 2.57
book2 0.07 0.06 0.11 0.13 0.21
dickens 2.68 1.73 1.93 5.10 7.71
enwik8 26.50 18.61 19.03 63.02 77.80
paper1 0.01 0.01 0.12 0.01 0.01
progc 0.00 0.01 0.12 0.01 0.01
webster 15.45 10.38 11.01 26.91 34.67
world192.txt 0.46 0.37 0.40 0.89 1.26
xml_cz 22.52 14.26 10.77 13.75 12.92
xml_en 8.84 6.15 4.70 9.10 9.57
TOTAL 77.37 52.21 49.14 120.72 146.75

Table 6.19: Run Time of Algorithms for Words

Chapter 7

Conclusion

We have described Burrows-Wheeler Transform and role of suffix arrays in
this transform. Since our motivation is the use of BWT in block compression,
we show how several modifications can improve compression ratio and run
time of suffix arrays creation.

We have implemented several algorithms for one, two and four byte al-
phabet. One the algorithms is our own inspired by work of Seward [11].
For optimization we have compared several qsort algorithms and comparison
functions. Then we have compared optimized coding algorithms for various
data and have proposed which should be used.

We have presented our proof that suffix arrays can be used instead of
rotation arrays in BWT when the string is not terminated by special symbol.

Our main positive result is that using alphabet of words for textual data
can improve compression ratio of block compression by ten percent and in-
crease speed of coding more than four times.

We see as perspective using large alphabet also for binary data. For this
purpose we plan to look for algorithm that would find frequent substrings
in input and create dictionary of them. Then we would perform BWT over
alphabet of words from this dictionary.

58

Appendix A

Contents of Compact Disk

We include on compact disk sources of program XBW. Code related to this
thesis is in directory bwt. We include also documentation of program XBW
and corpus used for testing performance.

59

Bibliography

[1] Bentley and Sedgewick. Fast algorithms for sorting and searching
strings. In SODA: ACM-SIAM Symposium on Discrete Algorithms (A
Conference on Theoretical and Experimental Analysis of Discrete Algo-
rithms), 1997.

[2] Jon Louis Bentley and M. Douglas McIlroy. Engineering a sort function.
Software - Practice and Experience, 23(11):1249–1265, 1993.

[3] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression
algorithm. Technical Report 124, 1994.

[4] Radovan Šesták et al. Xbw project, 2007.

[5] Tsai-Hsing Kao. Improving suffix-array construction algorithms with
applications.

[6] J. Kärkkäinen and P. Sanders. Simple linear work suffix array construc-
tion. In Proc. 13th International Conference on Automata, Languages
and Programming. Springer, 2003.

[7] Jan Lánský. Slabiková komprese, 2005.

[8] N. Jesper Larsson. Notes on suffix sorting. Technical Report LU-CS-
TR:98-199, Department of Computer Science, Lund University, Sweden,
jun 1998.

[9] Giovanni Manzini and Paolo Ferragina. Engineering a lightweight suffix
array construction algorithm (extended abstract), 2004.

[10] K. Sadakane. A Fast Algorithm for Making Suffix Arrays and for
Burrows-Wheeler Transformation. In Proceedings of IEEE Data Com-
pression Conference (DCC’98), pages 129–138, 1998.

60

BIBLIOGRAPHY 61

[11] Julian Seward. On the performance of bwt sorting algorithms. In DCC
’00: Proceedings of the Conference on Data Compression, page 173,
Washington, DC, USA, 2000. IEEE Computer Society.

[12] Julian Seward. Space-time tradeoffs in the inverse b-w transform. In
Data Compression Conference, pages 439–448, 2001.

[13] Pavel Žoha. Algoritmy konstrukce sufixového pole, 2006.

