
Charles University in Prague

Faculty of Mathematics and Physics

DIPLOMA THESIS

Antonín Prukl

A RELATIONAL APPROACH TO INDEXING
RELAČNÍ PŘÍSTUP K INDEXACI

Department of Software Engineering

Supervisor: Prof. RNDr. Jaroslav Pokorný, CSc.

Study Program: Computer Science

I would like to thank my supervisor, Prof. RNDr. Jaroslav Pokorný, CSc., for his valuable
advice.

I hereby declare that I have written this diploma thesis on my own, and used no other than the
named sources and aids. I agree with lending the thesis.

Prague, April 20, 2007 Antonín Prukl

Contents i

Contents

1 Introduction 1
1.1 Problem Outline ...1
1.2 Implementation of New Access Method..2

1.2.1 Integrating Approach..2
1.2.2 Generic Approach ..2
1.2.3 Relational Approach...3

1.3 Goals ..3

2 Relational Index 4
2.1 Relational Access Method ...4

2.1.1 Basics ...4
2.1.2 Relational Storage of Index Data ...4
2.1.3 Operations on Relational Access Method ..5

2.2 Generic Schemes of Relational Index ..6
2.2.1 Navigational Scheme of Index Tables..6
2.2.2 Direct Scheme of Index Tables ..6

3 Multidimensional Indexing 8
3.1 Multidimensional Data...8

3.1.1 Applications ...8
3.1.2 Relational Databases ..9
3.1.3 Range Query...10

3.2 Common Index Methods..11
3.2.1 B-Tree ..11
3.2.2 B-Tree with Compound Keys...12

3.3 UB-Tree ...14
3.3.1 Z-curve ...14
3.3.2 Z-value ...14
3.3.3 Z-region..15
3.3.4 Tree Structure...16
3.3.5 Formal Definition...16
3.3.6 Range Query...16
3.3.7 Processing Multidimensional Objects ..17

4 Implementing the Relational UB-Tree Index 19
4.1 Oracle Database Platform ..19
4.2 Common Properties of UB-Tree Index ..20

4.2.1 Multidimensional Tuple ...20
4.2.2 Defining the Constraints...20
4.2.3 Integrating the Index with a Database ..21

4.3 UB-Tree via the Direct Scheme ...22
4.3.1 Basic Concept...22
4.3.2 Index Table...22
4.3.3 Inserting, Updating and Deleting a Tuple ..23
4.3.4 Querying Tuples...23

4.4 UB-Tree via the Navigational Scheme ..27
4.4.1 Basic Concept...27

Contents ii

4.4.2 Index Table...27
4.4.3 Inserting a Tuple...28
4.4.4 Deleting a Tuple ...28
4.4.5 Updating a Tuple..29
4.4.6 Querying Tuples via Recursive SQL Statement...29
4.4.7 Querying Tuples in Procedural Way ..29
4.4.8 Querying Tuples via a Database Cursor ...30

4.5 Algorithms for Processing Z-value ..32
4.5.1 Get Next Z-value ..32
4.5.2 Get Next Z-value Out ...35
4.5.3 Inside Box ..40

5 Experiments 41
5.1 Testing Environment..41

5.1.1 Database Systems & Examined Indexes ..41
5.1.2 Data ..42
5.1.3 Values to be Determined ..42
5.1.4 Methods..43

5.2 Improvements Determined During Experiments ...44
5.2.1 Optimal Constant for Extended Query Box in Direct Scheme...................................44
5.2.2 Inserting Tuples in Navigational Scheme...46
5.2.3 Using Optimizer Hints..47
5.2.4 Page Size of UB-Tree and Cluster Definition in Navigational Scheme48
5.2.5 Optimizing Disk Access Cost in Direct Scheme ..48

5.3 Results..49
5.3.1 Traversing the UB-Tree in Navigational Scheme ..49
5.3.2 Direct Scheme vs. Navigational Scheme..52
5.3.3 Index Size...56
5.3.4 Relational Index vs. Native Index Performance ...57

6 Summary and Conclusion 62

References 63

A Relational UB-Tree Usage 64

B Relational UB-Tree Data Types 68

Abstract iii

Název práce: Relační přístup k indexaci

Autor: Antonín Prukl

Katedra: Katedra softwarového inženýrství

Vedoucí diplomové práce: Prof. RNDr. Jaroslav Pokorný, CSc.

e-mail vedoucího: jaroslav.pokorny@mff.cuni.cz

Abstrakt: Za účelem efektivního vyhodnocení SQL dotazů mohou uživatelé databázových
systému využít řadu specializovaných přístupových metod, které se obecně nazývají
indexy.

V některých případech však nemusí být množina metod poskytovaná databázovým
systémem dostačující. Jednou z možností, jak implementovat nový index v relačním
SŘBD, je využít tabulek daného systému. Tento přístup nevyžaduje změny v jádru
databázového systému a je tak dostupný vývojářům i v případě, že cílový SŘBD není
distribuován jako open source. V rozšiřitelné databázové architektuře je tak vyžadována
pouze možnost přidat nový datový typ do stávajícího SŘBD.

V této práci byl zmíněným způsobem integrován UB-strom do SŘBD Oracle. Relační
tabulky související s indexem byly navrženy dvěma různými způsoby, zároveň byly
zkoumány čtyři metody pro vyhodnocení relevantních SQL dotazů. V rámci experimentů
bylo pak implementované řešení relačního indexu porovnáno s nativním nasazením téhož
indexu.

Klíčová slova: databázové systémy, relační indexace, UB-strom, benchmarkování

Title: A Relational Approach to Indexing

Author: Antonín Prukl

Department: Department of Software Engineering

Supervisor: Prof. RNDr. Jaroslav Pokorný, CSc.

Supervisor's e-mail address: jaroslav.pokorny@mff.cuni.cz

Abstract: In order to achieve efficient evaluation of SQL queries, database systems provide its
users with set of integrated index access methods.

When a new access method is required for various reasons, one of the possibilities to
implement such method in a relational DBMS is the way of exploiting relational tables of
given database system. This approach does not involve any internal changes of database
system kernel and thus it is available to all developers even when the target DBMS is not
distributed as an open source. In the terms of extensible database architecture, only the
availability to extend existing DBMS with a new data type is required.

In this work, UB-Tree index has been integrated into Oracle DBMS in such way. Index
related tables have been designed in two different ways and four alternatives to evaluate
relevant queries have been proposed and studied. Finally, several experiments have been
done to compare performance of an access method implemented via the relational approach
and a native kernel integration of the same method.

Keywords: database systems, relational indexing, UB-Tree, benchmarking

Chapter 1 Introduction 1

In database area, working with high amount of data often brings a requirement for
speeding up the access time to searched entries with usage of some specialized
secondary data structures. This is obvious mainly in case when the amount of searched
data is very small in comparison with the volume of all data. Such structures that are
used for direct access to a small subset of data instead of sequential passing through all
data are called indexes.

Currently database systems provide a set of integrated indexes, e.g. B-Tree index, bitmap
index etc. However, for many applications this may not be sufficient as they may require
a specialized "tailor-made" access to data to improve their performance significantly.
Thus a possibility to implement and integrate new custom access method is needed.

1.1 Problem Outline
The design of extensible architectures represents an important area in database research.
Relational database servers gained advanced functionality by introducing the object-
relational data model with abstract data types. Thus, object-relational database systems
can be naturally employed as platforms to design an integrated user-defined database
solution.

As custom data types can be stored in relational tables along with the native ones, some
applications may require a specialized index structures to be built on these data types to
effectively handle frequent operations. As an example, we may consider a custom data
type polygon representing a polygonal object in n-dimensional space, and custom
predicate INTERSECTS which tests intersection of two objects of given type. Object-
relational queries can be expressed in usual declarative fashion, e.g. "SELECT * FROM
polygon_table p WHERE p.polygon_object INTERSECTS :query_region". Provided
only with a functional implementation which evaluates the INTERSECTS predicate, the
built-in optimizer of underlying database system has to include a full-table scan into the
execution plan to perform given selection. In consequence, the resulting performance
will be very poor for highly selective query regions.

Other needs for custom index types may arise when native data types are regarded in an
application-specific manner, e.g. when table entries with standard data types are
considered as points of a multidimensional space (this is equivalent to the case when
range searches according to multiple attributes are frequent) or when an application
carries out sophisticated access to text or LOB table items.

 C H A P T E R 1

Introduction

Chapter 1 Introduction 2

In order to achieve seamless integration of user-defined access methods, database
systems provide developers with extensible indexing frameworks. An object-relational
index type encapsulates stored functions for creating and dropping a custom index and
for opening and closing index scans. Although the embedding of a custom index type is
thus well supported, the actual implementation of its low-level functionality within a
fully-fledged database kernel can be fairly complicated.

1.2 Implementation of New Access
Method

When a new type of database index access method is needed for whatever reason, its
actual implementation can be done according to three basic approach types. Particularly
they are the integrating, the generic, and the relational approach as presented in [1]. This
section discusses their advantages and disadvantages in relation to the difficulty of their
implementation, the expected performance and their availability.

1.2.1 Integrating Approach
Outline: A new index access method is hard-wired directly into the kernel of an existing

database system.

Implementation: Two types of implementation are distinguished: the Extending
Approach and the Enhancing Approach. The enhancing approach is the easier one -
many properties get inherited from an access method that already exists in the kernel;
e.g. B-Trees can be enhanced to become a functional B-Trees. On the other hand the
extending approach stands for real adding of a new access method which comprises
sophisticated support for transactions (concurrency control, locking, recovery
services etc).

Performance: The expected performance is the best possible in comparison with other
approach types.

Availability: Code maintenance is a very complex task and requires access to low-level
kernel components which is nearly impossible when the target database is not
distributed as open source.

1.2.2 Generic Approach
Outline: To overcome the restrictions of the integrating approach, such called

Generalized Search Tree (GiST) has been proposed as a generic way of
implementation of a new index. GiST serves as a high-level framework to plug in
block-based tree structures. It has to be built only once into a database kernel and
already includes support for transactions.

Implementation: New index integration is quite easy; however the actual implementation
of the GiST itself remains a very complex task.

Chapter 1 Introduction 3

Performance: Although the framework induces some overhead, GiST-based access
methods can still be of high performance.

Availability: Due to its complex implementation, GiST exists only as a research
prototype and it is an open question, if and when a comparable functionality will be a
standard component of major commercial database systems.

1.2.3 Relational Approach
Outline: Custom index structure is mapped into a relational schema organized by built-in

access methods and all the operations are done on top of a relational query language.

Implementation: No extensions to the database kernel are required and therefore an index
can be implemented with less effort when comparing with other approach types.

Performance: The performance is questionable; however it should be sufficient as
mentioned in [1].

Availability: By design, a relational access method is supported by any object-relational
database system. It requires the same functionality as an ordinary database user or a
relational database application.

1.3 Goals
In this work a new access method via the relational approach will be implemented.
Particularly, the chosen index type is the UB-Tree which stands for a promising structure
in the field of multidimensional access methods (MAMs). MAMs in common have high
impact on different database application domains like data warehousing, data mining, or
geographical information systems. However, they have not made their way into
commercial database systems on a broad scale yet. The only exception is Transbase
DBMS [2, 9] which comprises the native kernel implementation of just the UB-Tree.

All the advantages and drawbacks of relational index implementation will be studied in
this work; then it will be compared with the native kernel integration, mainly with
respect to performance issues.

Chapter 2 Relational Index 4

2.1 Relational Access Method
The basic idea of a relational access method is to delegate the management of persistent
data to an underlying relational database system by implementing the index definition
and manipulation on top of its SQL interface. In other words, an access method is called
a relational access method, if any index-related data are exclusively stored in and
retrieved from relational tables.

2.1.1 Basics
Relational access methods rely on the exploitation of the built-in functionality of existing
database systems. Instead of extending any database kernel component, just the native
data definition language (DDL) and data manipulation language (DML) with common
object-relational enhancements in the sense of SQL:1999 (mostly the object types and
collections) are employed to process updates and queries related to index data. This
approach can be used for implementation of both basic services of all-purpose database
systems and also very specialized application-specific extensions.

In other words, the SQL layer of the DBMS is used as a virtual machine for management
of persistent data. It also means that a relational access method immediately benefits
from any improvement of the underlying DBMS.

2.1.2 Relational Storage of Index Data
Relational access methods are designed to operate on relations rather than on dedicated
disk blocks which is common to standard block-oriented access methods of a DBMS
kernel. The actual persistent storage and block-oriented management of the relations are
delegated to the underlying database server. The relational access method and the
database system cooperate to maintain and retrieve the index data and all the
functionality of the DBMS including concurrent transactions and recovery can be reused.

In order to support queries on index tables, a relational access method can employ any
built-in secondary indexes, including hash indexes, B-trees, and bitmap indexes.
Alternatively, payload data can be included into clustering by organizing index tables in
a cluster or by storing them in index-organized tables.

C H A P T E R 2

Relational Index

Chapter 2 Relational Index 5

2.1.3 Operations on Relational Access Method
According to previous specifications, a common block-oriented access method can be
transformed to a relational access method by simple replacing each invocation of the
underlying block manager by an SQL-based DML operation (e.g. calling of a function
"blocks.get(block_id)" would be replaced by "SELECT * FROM blocks WHERE id =
:block_id"). Thus the original procedural style of index operations remains unchanged,
whilst all I/O requests are newly handled by the DBMS.

Such simple scenario however reduces the DBMS to a plain block manager and most of
its functionality remains unexploited. To maximize the architecture-awareness, two types
of declarative operations have been proposed in [1] in order to reduce the possible
number of DML operations submitted from a procedural environment - particularly the
cursor-bound and cursor-driven operations.

Cursor-bound operation stands for a query or an update related to a relational access
method such that the corresponding I/O requests on the index data can be performed by
submitting O(1) DML statements, i.e. by sequentially and concurrently opening constant
number of cursors provided by the underlying DBMS. Its main advantages are:

� Declarative semantics. Operations are bound to the DML engine of the DBMS rather
than to user-defined implementation code, therefore the DBMS gains responsibility
for significant parts of the query processing. Thus the formal verification of the
semantics is simplified if we can rely on the given implementation of SQL layer.

� Query optimization. Whereas the database engine optimizes the execution of single
closed-form DML statements, a joint execution of multiple independently submitted
queries is very difficult to achieve. By using only a constant number of cursors, the
DBMS captures significant parts of the operational semantics at once.

� Cursor Minimization. The CPU cost of opening variable number of cursors or
submitting several DML statements out of a stored procedure may become very high.
For cursor-bound operations, the relatively high cost of opening and fetching
multiple database cursors remains constant with respect to the complexity of the
operation.

Cursor-driven operation is a special case of cursor-bound operation where the result can
be retrieved as an immediate output of a single cursor provided by the DBMS.
Particularly a query or an update related to a relational access method can be divided into
two consecutive phases:

1 Procedural phase: In the first phase, index parameters are read, query specifications
are retrieved and data structures required for the actual query execution may be
prepared by user-defined procedures and functions. Additional DML operations on
user data or index data are not permitted.

2 Declarative phase: In the second phase, only a single DML statement is submitted to
the DBMS, yielding a cursor on the final results of the index scan which requires no
post-processing by user-defined procedures or functions.

Chapter 2 Relational Index 6

The major advantage of cursor-driven operations is their smart integration into larger
execution plans. However, the ability to take advantages of cursor-driven operations
heavily relies on the expressive power of the underlying SQL interface, often including
availability of recursive queries.

2.2 Generic Schemes of Relational
Index

In [1] two generic schemes for a relational storage of index data have been identified;
particularly they are the navigational scheme and the direct scheme. This section
discusses their main properties, advantages and disadvantages.

2.2.1 Navigational Scheme of Index Tables
Let P = (T, R1, …, RN) be a relational access method with a primary data table T and
index related tables R1, …, RN. P is called navigational scheme ⇔ (∃ t ⊆ T) (∃ ri ⊆ Ri, 1
≤ i ≤ n): at least one ρ ∈ ri is associated with rows {τ1, …, τm} ⊆ t and m > 1.

Therefore, a row in an index table of a navigational index may logically represent many
objects stored in the primary table. This is typical in case of hierarchical structures that
are mapped to a relational schema. In other words, an index table contains data that are
recursively traversed at query time in order to determine the resulting rows. To
implement a navigational query as a cursor-driven operation, a recursive version of SQL
like SQL:1999 is required.

Although the navigational scheme offers a straightforward way to simulate any
hierarchical index structure on top of a relational data model, it suffers from the fact that
navigational data are locked like any other primary data. As two-phase locking on index
tables is too restrictive, the possible level of concurrency is unnecessarily decreased. For
example, uncommitted node splits in a hierarchical directory may lock entire sub-trees
against concurrent updates.

A similar overhead exists with logging, as atomic actions on navigational data, e.g. node
splits, are not required to be rolled back in order to keep the index tables consistent with
the data table. Therefore, relational access methods implementing the navigational
scheme are only well suited for read-only or single-user environments.

2.2.2 Direct Scheme of Index Tables
Let P = (T, R1, …, RN) be a relational access method with a primary data table T and
index related tables R1, …, RN. P is called direct scheme ⇔ (∀ t ⊆ T) (∀ ri ⊆ Ri, 1 ≤ i ≤
n): each ρ ∈ ri is associated with a single row τ ∈ t.

Chapter 2 Relational Index 7

It means that each row in the primary table is directly mapped to a set of rows in the
index tables. Inversely, each row in an index table exclusively belongs to a single row in
the primary table.

The drawbacks of the navigational scheme with respect to concurrency control and
recovery are not shared by the direct scheme, as row-based locking and logging on the
index tables can be performed on the granularity of single rows in the primary table. For
example, an update of a single row r in the primary table requires only the
synchronization of index rows exclusively assigned to r. As the acquired locks are
restricted to r and its exclusive entries in the index tables, they do not unnecessarily
block concurrent operations on other primary rows. In contrast to navigational indexes,
the direct scheme inherits the high concurrency and efficient recovery of built-in tables
and indexes.

Chapter 3 Multidimensional Indexing 8

3.1 Multidimensional Data
Idea of multidimensional indexing arises from the fact that data (records) can be
considered as points of a multidimensional vector space. In terms of relational databases,
each row of a database table can relate to a point of a multidimensional space, where
each domain is represented by an attribute. Therefore such table stands for a subset of
the space which is defined by Cartesian product of table columns.

3.1.1 Applications
Multidimensional approach can bring lots of benefits into various database applications.
Often it is wise to consider and treat data as points of a multidimensional space. In some
cases the mapping of data to a vector space is straightforward (geographical information
systems, CAD databases etc.), in other cases the mapping is more or less synthetic but
still useful (data warehousing, data mining, systems for information storage and
retrieval, archives etc.). The common identifier for all such applications is that searching
according to several criteria (i.e. according to more than one database attribute) is
required quite often.

Let us consider following example: a database application that is used in a shopping
company comprises table sales with attributes product_type_id, sales_date, branch_id
(and possibly other ones). A common database query could be as follows:
SELECT * FROM SALES
WHERE PRODUCT_TYPE_ID BETWEEN 10 AND 20

AND BRANCH_ID BETWEEN 15 AND 18
AND SALES_DATE BETWEEN '14.05.2007' AND '21.05.2007'

It is likely that the result set of such query will be quite small in relation to the count of
all entries in the sales table; in other words the selectivity of such query is small. This
is the case when it would be wise to create an index on the columns of the table. The
easiest solution available in all database systems is to create separate indexes on each
attribute. An effective query plan would select temporary subsets of the table searched
by particular attribute (with use of particular index) and then the final result would arise
as an intersection of the temporary subsets.

Such principle of separate indexes is shown in Figure 1 (gray lines in upper tables
correspond to search conditions according to particular attributes whilst the lower table
stands for the result based on the intersection of all three attribute-related conditions).

 C H A P T E R 3

Multidimensional Indexing

Chapter 3 Multidimensional Indexing 9

Figure 1: Intersection of temporary result sets within query employing separate indexes

11
13

17
15

13

16
18

14.05.2007
16.05.2007

21.05.2007
19.05.2007

14

1611 16.05.2007
1813 19.05.2007

product_type_id branch_id sales_date

In real applications users usually want only few rows to be returned in the result set (they
would hardly list thousands of entries to find the required ones). It means that even with
growing count of attributes used in a search condition the expected output is still of
approximately the same size. The main problem of above approach is that many rows
from temporary result sets are often filtered out because they do not belong to the
intersection.

Moreover, with more attributes in a search condition, the expected intersection is of
smaller size and more and more rows are filtered out because they seldom fulfill all the
conditions. When the count of entries filtered out becomes comparable with the count of
all entries in a table then it is questionable whether the sequential passing of the whole
table would not be faster.

3.1.2 Relational Databases
In multidimensional databases, objects are indexed according to several or many
independent attributes. However, as mentioned in previous section, this task cannot be
effectively handled by using many standalone indexes. Thus special indexing structures
which would naturally index vectors of values instead of indexing single values have
been required.

Common approach available in nearly all database systems is indexing of compound
keys, i.e. several attributes are indexed by a single index - usually a compound B-Tree
index (see chapter 3.2.2 "B-Tree with Compound Keys"). This method is more effective
then utilization of separate indexes, however it still involves filtering of relatively high
number of entries from temporary result sets.

Chapter 3 Multidimensional Indexing 10

Therefore many access types has been introduced that are more suitable for indexing of
several attributes at once; for example the KD-Tree, the R-Tree and its modifications, the
UB-Tree etc. However, the integration of any such access method into the kernel of a
commercial database system is a very costly task (see chapter 1.2 "Implementation of
New Access Method"). Thus most of such advanced access methods are still in the state
of research prototype or are available only as database plug-ins with restricted usability.
Usually only a specific data types can be indexed (geometric objects of CAD or GIS
databases), concurrency control and recovery services may not be presented at all. The
only exception is the UB-Tree that was integrated into Transbase DBMS [2].

In this work, a cheaper way of developing new access method (particularly the UB-Tree
via the relational approach) is investigated and compared with its native implementation.

3.1.3 Range Query
Range query (window query respectively) in a vector space is usually represented by a
hyper-box in given space. The ranges of a query box QB are defined by two boundary
points, the lower bound QBlow = [a1, a2, …, an] and the upper bound QBup = [b1, b2, …,
bn] where a1 ≤ b1, a2 ≤ b2, …, an ≤ bn. The purpose of a range query is to return all points
located inside the query box, i.e. to return all points o satisfying ai ≤ oi ≤ bi, i ∈ [1,n], as
outlined in Figure 2.

Figure 2: Range query in 2-dimensional space

D1

D
2

QBup = [b1,b2]

QBlow = [a1,a2]

Chapter 3 Multidimensional Indexing 11

3.2 Common Index Methods
The most common method used for indexing of a single attribute is the B-Tree and its
modifications. Its concept can be extended into the B-Tree with Compound Keys so that
it is feasible to index more attributes at once. Basics of these approaches are described in
this section.

3.2.1 B-Tree
B-Tree is a balanced search tree. Its internal nodes can have variable number of child
nodes within some pre-defined range as mentioned later. The tree is balanced which
means that all leaf nodes are at the same depth. Following rules have to be valid for
proper B-Tree of degree m:

1 the root has at least 2 descendants unless it is a leaf

2 all inner nodes except from the root have at least m/2 and at most m descendants

3 all branches are of the same length

4 all nodes except from the root have at least m/2 - 1 and at most m data entries

5 data in a node are organized as p0, (k1,p1,d1), … (kn,pn,dn) where:

� pi is a pointer to a descendant

� ki is a key (the keys are ordered in ascendant or descendant order)

� di stands for associated data

� (ki,pi,di) stands for data entry

6 let us consider U(pi) to be a sub-tree which is pointed to by pi, then

� ∀k∈U(pi-1): k < ki

� ∀k∈U(pi): k > ki

A modification to above principles is a B+ Tree. It differs in points (5) and (6) of B-Tree
definition in following way:

5 data are stored in leaves only (or are referenced from leaves only), inner nodes
comprise only keys and pointers

6 let us consider U(pi) to be a sub-tree which is pointed to by pi, then

� ∀k∈U(pi-1): k ≤ ki

� ∀k∈U(pi): k > ki

Way of searching follows from above definitions and is performed in the typical manner,
analogous to that in a binary search tree. Starting at the root, the tree is traversed top to
bottom, choosing the child pointer whose separation values are on either side of the
value that is being searched. The tree is traversed down to a leaf node (B+ Tree) or to a
node containing searched data (B-Tree).

Chapter 3 Multidimensional Indexing 12

Figure 3 (adapted from [10]) shows operations of inserting and deleting entries.

Figure 3: Insertions and deletions in a B-Tree

3.2.2 B-Tree with Compound Keys
B-Tree presented in previous section does not allow indexing of multidimensional data.
The easiest extension of B-Tree which enables this type of indexing is to consider its
keys as a chained sequence of values of those attributes that are subject to index. When
comparing two keys, they are compared linearly item by item.

Chapter 3 Multidimensional Indexing 13

Such extension is available in most database systems. Unfortunately, it brings some
disadvantages. Probably the biggest one is an asymmetry in the order of the attributes.
The first attribute is always the main one and serves for clustering of the vector space. It
means that all data in the index are ordered only according to the first attribute, and not
according to the other ones. Only in case when the first attribute (or all the previous
attributes in general) has the same value for more entries, the index is sorted also
according to following attribute for these entries. Therefore it is suggested to use an
attribute with the smallest range of values at the first place so that the count of duplicities
is as big as possible.

The asymmetry causes that in a range query many branches of the tree have to be
searched through and this impacts the overall efficiency negatively. A solution would be
to create several indexes, each for a different order of the attributes. However such
approach is hardly affordable because of its enormous disk space demands.

Chapter 3 Multidimensional Indexing 14

3.3 UB-Tree
UB-Tree [5, 4, 2] is one of the access methods that are natively used for indexing of
multidimensional data - this section discusses its features and suitability for
multidimensional queries.

3.3.1 Z-curve
The basic idea of the UB-tree is to use a space filling curve to map a multidimensional
universe to one-dimensional space. Points of the universe are ordered according to such
called Z-curve which preserves multidimensional clustering - it means that points that
are close to each other in the original universe (using standard L2-metric) are in general
also close to each other on the Z-curve. Figure 4 shows the Z-curve for 2-dimensional
universe of size 8×8.

Figure 4: Linear ordering of 2-dimensional space with a Z-curve

6362
6160

59
57

58
56

5554
5352

5150
4948

4746
4540 41

42 43
44

3938
3736

3534
3332

3130
2928

27
25

26
24

2322
2120

1918
1716

1514
138 9

10 11
12

76
54

32
100

1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

3.3.2 Z-value
Z-value (also called Z-address) is an ordinal number representing the position of a
multidimensional point on the Z-curve. For proper determination of the Z-value, the
universe has to be finite in each dimension. Let d be the count of dimensions of the
universe and xi = xi,0 … xi,s-1; i ∈ [1,d] be the binary record of the value of a
multidimensional point in dimension i. Then the Z-value can be counted according to
following formula:

∑∑
−

= =

−+⋅⋅=
1

0 1

1
, 2)(

s

j

d

i

idj
jixxZ

Chapter 3 Multidimensional Indexing 15

Above equation simply represents bit interleaving of values of the point in each
dimension as shown in Figure 5 where step stands for bit position in given dimension
(the most relevant bit position has its step equal to 0).

Figure 5: Computation of Z-value by bit interleaving

bitstring 1
011

0…1
step 0

bitstring d
101

1…1
step 2

…

1…0
step 1

z-value

3.3.3 Z-region
Z-region [α : β] is a part of a multidimensional universe corresponding to all points of
the universe within an interval on the Z-curve. The interval is defined by two boundary
Z-values α and β (where α < β). The upper bound β is called region address. Set of Z-
regions creates a disjunctive partitioning of the whole universe. Figure 6 shows Z-region
[4 : 20] and partitioning of 2-dimensional universe into 5 Z-regions [0 : 3], [4 : 20], [21 :
35], [36 : 47] and [48 : 63].

Figure 6: Z-regions in 2-dimensional space

4 20 21

35
36

47

48

63

Chapter 3 Multidimensional Indexing 16

3.3.4 Tree Structure
The structure of UB-Tree is similar to the standard B-Tree (B+ Tree modification
actually). Leafs of UB-Tree represent the Z-regions containing indexed objects, whilst
inner nodes of UB-Tree represent such called super Z-regions. A super Z-region
comprises all (super) Z-regions that lie entirely inside it. Therefore the UB-Tree structure
is determined by a nested Z-region hierarchy as shown in Figure 7.

Figure 7: Hierarchical UB-Tree structure

0:63

0:31 32:63

0:3 4:9 10:31 32:35 36:41 48:63

O1 O2 O3 O4 indexed
objects

Z-regions

super
Z-regions

Algorithms that handle insertions, deletions and updates are the same as for B-Trees - the
only difference is that at first the Z-value is computed based on indexed attributes of a
database entry and then such Z-value is used as a key in subsequent "B-Tree operation".

3.3.5 Formal Definition
Since the UB-Tree stands for a smart extension of the B+ Tree to handle
multidimensional objects, their formal definitions are quite similar. Particularly, the first
5 points of B+ Tree definition (see chapter 3.2.1 "B-Tree") are shared by the UB-Tree,
just the last one is different:

6 let us consider U(pi) to be a sub-tree which is pointed to by pi, and Z(d) to be a
function that computes Z-value for a multidimensional point d, then

� ∀k∈U(pi-1): k ≤ ki & ∀d∈U(pi-1): Z(d) ≤ ki

� ∀k∈U(pi): k > ki & ∀d∈U(pi): Z(d) > ki

3.3.6 Range Query
Unlike the operations of insert, update and delete, a range query cannot be simply
forwarded to the B-Tree. As mentioned previously, the range query in a
multidimensional space is defined by two boundary points QBlow = [a1, a2, …, an] and
QBup = [b1, b2, …, bn] and its purpose is to return all points lying inside such query box.
In terms of UB-Tree a range query can also be defined as a search through all UB-Tree
Z-regions that intersect given query box as shown in Figure 8.

Chapter 3 Multidimensional Indexing 17

Figure 8: Z-regions intersecting a query box in 2-dimensional space

Following algorithm was presented by Markl in [2]: let us consider ql and qb to be the Z-
addresses related to QBlow or QBup respectively. At first the Z-region containing ql is
located (note that ql does not need to relate to a point existing in the database - we only
need to know which Z-region it belongs in). This Z-region is searched for relevant
objects that really lie inside the query box, the others are filtered out. Then a subsequent
Z-region intersecting the query box is retrieved and processed etc. The algorithm iterates
until the upper bound of currently processed Z-region is higher than qh.

The crucial part is the way of obtaining a subsequent Z-region intersecting the query
box. In Markl's work this is done by calculation of the Z-value for next intersection point
of the Z-curve with the query box based on the currently processed Z-region; then a Z-
region containing the computed Z-value is obtained.

Similar approach has been employed in this work as well. Please refer to the chapter
describing the UB-Tree index implementation (see chapter 4 "Implementing the
Relational UB-Tree Index") for more details on both the above algorithm and the
function used for calculation of next intersection point get_next_zvalue (see chapter 4.5.1
"Get Next Z-value").

3.3.7 Processing Multidimensional Objects
In database area, indexing of multidimensional objects is often simplified to indexing of
their minimum bounding boxes (MBB). A MBB is the smallest cube (in a
multidimensional space) which completely covers the original object, usually with sides
parallel to the axis. This approach reduces demanding computation of objects
intersection, position etc. An example of MBB in 2-dimensional space can be seen in
Figure 9.

Figure 9: Minimum bounding box in 2-dimensional space

Unfortunately, even indexing of MBB in the UB-Tree brings problems. When a UB-Tree
page (i.e. a Z-region) has to be split because the count of items inside it exceeds the
maximal allowed count, we may face a problem of choosing the divider for splitting
algorithm.

Chapter 3 Multidimensional Indexing 18

Let us imagine that two objects have been identified so that the dividing point should be
found on the Z-curve between these objects. The trouble is that the Z-curve may go forth
and back from one object to the other one and therefore such divider cannot be found so
that one object lies entirely on its "left side" and the other object on its "right side". Thus
at least one of the objects would belong to both Z-regions that originate from the
splitting of the original Z-region and we may identify situations where even many
objects would belong to both Z-regions. Then the splitting algorithm would not work as
expected and high redundancy would be involved in such UB-Tree.

Similar problem arises when one MBB lies inside another MBB or when two MBB
intersect each other. A simple example of two problematic objects is shown in Figure 10.

Figure 10: Intersection of Z-curve with two minimum bounding boxes

A possible solution is to consider a MBB with boundaries QBlow = [a1, a2, …, an] and
QBup = [b1, b2, …, bn] to be a point of higher dimension with coordinates [a1, a2, …, an,
b1, b2, …, bn]. The range query mentioned in previous section has to be modified in this
case as well. Thorough information about this approach can be found in [3].

Chapter 4 Implementing the Relational UB-Tree Index 19

4.1 Oracle Database Platform
Relational UB-Tree index was implemented with Oracle database platform [8] as the
underlying DBMS (particularly the free version Oracle 10g XE has been employed in
this work). It has been chosen for three main reasons:

� it natively supports object extensions via its PL/SQL language
� it supports recursive SQL queries which are required for optimal implementation of

navigational type of a relational index
� SQL query plans, processing etc. can be influenced by a programmer with a set of

integrated tools (e.g. optimizer hints)

PL/SQL (Procedural Language/SQL) stands for proprietary server-based procedural
extension to the SQL database language. Its syntax strongly resembles that of Ada and
supports variables, arrays, conditions, loops and exceptions. It also includes features
associated with object-orientation. More details about the syntax and usage of PL/SQL
can be found at [11].

Recursive SQL queries offer a way to traverse tree-like structures with one SQL
statement. In Oracle they have proprietary syntax which differs from the SQL: 1999
standard. It comprises two clauses used for definition of recursive traversing, particularly
START WITH <condition> and CONNECT BY <condition>. In general, evaluation of
such query is done in following way:

1 Oracle selects the root row(s) of the hierarchy - i.e. those rows that satisfy the
condition of the START WITH clause.

2 Oracle selects the child rows of each root row. Each child row must satisfy the
condition of the CONNECT BY clause with respect to one of the root rows.

3 Oracle selects successive generations of child rows. At first it selects the children of
the rows returned in step 2, and then the children of those children, and so on.

4 If the query contains a WHERE clause, Oracle eliminates all rows from the hierarchy
that do not satisfy the condition of the WHERE clause.

The syntax of a recursive statement is as follows:
SELECT <what> FROM <table>
WHERE <filter>
START WITH <condition>
CONNECT BY <condition>

C H A P T E R 4

Implementing the Relational UB-Tree
Index

Chapter 4 Implementing the Relational UB-Tree Index 20

4.2 Common Properties of UB-Tree
Index

In this work several approaches to a relational UB-Tree index implementation are
presented. This section describes basic features that are common for all chosen methods,
whilst particular implementation details are mentioned in subsequent sections.

4.2.1 Multidimensional Tuple
Multidimensional tuple is the base element in probably all applications designed to
handle and store multidimensional data. It represents a logical point in a
multidimensional space which should be involved in multidimensional indexing. The
tuple is compound of items representing the value of the point in corresponding
dimensions of the space.

Concerning the UB-Tree, type of each item of a tuple has to be numeric or any type that
can be converted to numeric type (e.g. date, enumeration, string of fixed length and fixed
number of allowed characters etc.). Moreover, the range of values in each dimension (i.e.
the minimal and the maximal value of an item) has to be known in advance. These
restrictions arise from the characteristic of the Z-curve - it is necessary to know both
where the Z-curve begins (the 0 point) and where it ends (actually the length of the
maximal Z-value has to be known in some algorithms mentioned later, however these
restrictions are identical); otherwise it would not be possible to assign appropriate Z-
value to a tuple.

Without loss of generality only the numeric values for tuple items are considered and
ranges of values of items in all dimensions are supposed to have the same length - it
equals to the nearest higher exponent of 2 of maximal range of a domain, i.e.:

length = min({2exp | exp ∈ N, 2exp ≥ maxdim-mindim ∀ dim})

4.2.2 Defining the Constraints
As mentioned in previous section, restrictions for the range of the value have to be
defined in all dimensions of a multidimensional tuple. However, this task cannot be
achieved by simple definition of some standard database constraints on primary data
table as if it could be done in case the UB-Tree index was implemented directly into the
database kernel similarly to [2].

Therefore a separate table has to be created to hold the restrictions. This table consists of
just 3 columns - an identifier of a dimension, its lower bound and its upper bound:
CREATE TABLE ub_constraints (

dimension_id NUMBER,
lower_bound NUMBER,
upper_bound NUMBER

);

Chapter 4 Implementing the Relational UB-Tree Index 21

4.2.3 Integrating the Index with a Database
A multidimensional tuple serves as an interface between tables storing the primary data
and tables storing the index data. It means that if a row is inserted into (or updated in) the
primary table, then a tuple representing row data that are subject to multidimensional
index should be generated and index data based on the value of such tuple along with an
identifier of primary data row should be inserted into (or updated in) the index table.
This task can be easily achieved by defining appropriate AFTER TRIGGERs on the
primary table. The only restriction is that the identifier of a row in the primary table is
supposed to be just one NUMBER; in case the PRIMARY KEY of the primary table
consists of more attributes or is of a different type, an alternative numeric identifier for a
primary data row has to be created. Then it is necessary to define required constraints via
the ub_constraints table mentioned in previous section. An example can be seen in
Appendix A.

Another way of integrating the index into a database would be exploiting of an
extensible indexing architecture of given DBMS. Currently many commercial database
systems provide an interface which enables developers to register custom secondary
access methods, however the effort of implementing such type of index is behind the
scope of this work because the goal is mainly to compare a relational index with its
native implementation - a custom index type implementation via the extensible
framework would not bring any advantages in comparison with usage of the AFTER
TRIGGERs.

In this work several, ways of relational UB-Tree implementation are presented and for
higher transparency each of them serves as a black box for index data maintenance.
Therefore a common interface is defined for all approaches. It provides a set of functions
to keep index data consistent with primary data whenever the primary data are changed,
and also a function to obtain identifiers of rows in primary table based on the query
specification (the actual usage of the index in a SELECT statement).

Particularly the functions for index data maintenance which should be used in AFTER
TRIGGERs are insert_tuple(tuple, id), update_tuple(tuple, id) and delete_tuple(id),
whilst the function inside_query_box(lower_bound, upper_bound) serves for obtaining
identifiers of primary data rows based on a query box determined by its lower and upper
boundaries (which both are actually multidimensional tuples). The index is then
supposed to be used in following way:
SELECT primary.*
FROM TABLE(inside_query_box(Type_tuple(X1,X2,…,Xn),

Type_tuple(Y1,Y2,…,Yn))) index
LEFT JOIN PRIMARY_TABLE primary

ON index.id = primary.id

More about the real processing of above concept can be found in subsequent sections
describing the particular UB-Tree index implementations. Short specification of user
data types is presented in Appendix B.

Chapter 4 Implementing the Relational UB-Tree Index 22

4.3 UB-Tree via the Direct Scheme
One of the ways proposed in [1] to implement a relational index is the direct scheme (see
chapter 2.2.2 "Direct Scheme of Index Tables") where data of the index are exclusively
related to primary data and do not form any specific structure. Description of this
approach for developing the UB-Tree index can be found in this section.

4.3.1 Basic Concept
According to the definition of the direct scheme, each row in the index table is
associated with only one row in the primary table. In this implementation of the
relational UB-Tree, the mapping of primary data into index data is moreover bijective
and quite simple. Only the actual Z-value of a tuple is computed and this Z-value is
stored to the index table along with the identifier of the primary row.

The idea of obtaining identifiers of primary data lying inside a query box is also
straightforward - the query box is partitioned into several continuous Z-regions and the
index table is queried to get all rows which Z-value lie between the boundaries of such
Z-regions.

4.3.2 Index Table
As outlined in previous section, the index table consists of just 2 columns - the Z-value
and the identifier of a primary data row:
CREATE TABLE ub_index (

z_value Type_z_value,
primary_id NUMBER

);

The PRIMARY KEY constraint should be defined on the z_value attribute to exploit the
power of the underlying database engine when performing a SELECT query with
multiple "WHERE z_value BETWEEN" conditions based on the partitioning of the
query box. For the ease of implementation, if we do not want to implement a custom
index type for our Type_z_value data type, a functional index can be defined instead of
the primary key on the column z_value where the function simply transforms the z_value
into a string; consequently, all concerned query conditions should be transformed to be
in form "WHERE z_value.to_string() BETWEEN" so that the functional index could be
exploited.

The primary_id attribute could be defined as FOREIGN KEY to the PRIMARY KEY of
the primary table and an ON DELETE CASCADE constraint could be used instead of
AFTER DELETE trigger for deleting a row from the index table when a row in the
primary table is deleted, however this approach is not in compliance with the black box
concept and strict separating of primary and index data.

Chapter 4 Implementing the Relational UB-Tree Index 23

If this type of UB-Tree index is used in an environment where changes and deletions of
rows in the primary table are frequent, it may be wise to define a standard secondary
database index on the primary_id attribute, because the ub_index table is queried
according to this attribute when an INSERT or UPDATE of the UB-Tree index structure
is triggered. On the other hand this is not recommended in environments with majority of
insertions because such secondary index could become very large and the insertions
would be slower just because of updates of this index.

4.3.3 Inserting, Updating and Deleting a Tuple
According to the main principle of this approach, all these operations are quite simple:

� in case of inserting or updating, the actual Z-value of a tuple being processed is
computed and is stored to the index table

� in case of deleting only the row with the corresponding identifier is deleted from the
index table

4.3.4 Querying Tuples
The main idea is to partition the query box into several continuous Z-regions. Then the
index table is queried to get all rows which Z-value lies between the boundaries of such
Z-regions. The actual query statement could be as follows:
SELECT primary_id
FROM ub_index u,

TABLE(decompose_query_box(:lower_bound, :upper_bound)) d
WHERE u.z_value BETWEEN d.lower AND d.upper

The function decompose_query_box generates a temporary table that contains rows with
lower and upper bound specification of particular Z-regions covering the query box
which is defined by 2 multidimensional tuples representing its lower_bound and
upper_bound boundaries.

The easiest way to decompose a query box is repeated calling of functions
get_next_zvalue (see chapter 4.5.1 "Get Next Z-value") and get_next_zvalue_out (see
chapter 4.5.2 "Get Next Z-value Out"). This approach guarantees that the query box is
covered by sequence of optimal Z-regions, which means that:

� each of such Z-regions is as long as possible
� it does not exceed the query box in any dimension

However, the experiments have shown that this is also the least efficient way. Even
though both of the functions are of linear time complexity in relation to the bit length of
the maximal Z-value, the characteristics of the Z-curve cause that a query box is
decomposed into huge number of Z-regions and thus the whole computation and query
evaluation take a lot of time.

Chapter 4 Implementing the Relational UB-Tree Index 24

For example a query box in 5-dimensional space with range of values equal to 10 in each
dimension has been divided into approximately 25.000 Z-regions. It means that the
average length of a Z-region has been about 4. Although this simple experiment cannot
impact the actual result in general case (the query box can be covered just by few Z-
regions even though it is much larger), we may estimate that this is not the right way.

The main problem in above scenario is that the average length of a Z-region is too short.
Therefore it would be wise to define minimal allowed length of a Z-region providing that
the Z-region may exceed the boundaries of the query box in some dimensions.

Whole space could be divided by a grid into multidimensional cubes with size equal to
2const in each dimension, where const is an integer higher or equal to 1. Each such cube is
covered by just 1 continuous Z-region which length is considered to be the minimal
allowed one. It means that the actual minimal length equals to (2const)dim, where dim is the
count of dimensions of the space. Moreover, if we define total ordering of the cubes
according to the Z-curve and a query box has non-empty intersection with several
subsequent cubes in relation to such ordering, then the related Z-region covering a part
of the query box has its length equal to the sum of lengths of the subsequent cubes. Such
Z-regions generate an extended query box.

If this logic is applied to the same query box as in the example mentioned in one of the
previous paragraphs, and in case the const equals to 3, then the box is completely
covered just by 1 Z-region. An example is shown in Figure 11.

Figure 11: Query box partitioned into 9 Z-regions and its extended query box partitioned into
4 Z-regions when const=1

Above approach requires post-filtering of selected tuples to ensure that they really
belong to the original query box. Therefore an optimal const should be found so that
both the number of Z-regions covering the extended query box is rather small and the
number of tuples discarded because of post-filtering is not significant in relation to the
number of all tuples lying inside the extended query box. A discussion about choosing
the proper const can be found in Experiments section of this work (see chapter 5.2.1
"Optimal Constant for Extended Query Box in Direct Scheme").

Chapter 4 Implementing the Relational UB-Tree Index 25

The actual algorithm for decompose_query_box function utilizes the method "Divide and
conquer" where the whole space is divided into 2 multidimensional sub-cubes of the
same size and each sub-cube is then processed recursively. When a sub-cube with
minimal allowed size is being processed and in case it has non-empty intersection with
the query box, then its boundaries are sent to the output.

For higher effectiveness both positive and negative pruning are employed in this
algorithm. It means that if the cube being currently processed does not intersect the
query box, then the further processing of such cube is skipped. On the other hand if the
cube is nearly whole covered by a part of the query box (it means that all minimal sub-
cubes of such cube intersect the query box), then it is whole sent to the output.

Simplified pseudo code of this algorithm which does not consider optimization of the
query box intersection with subsequent sub-cubes is as follows:
function decompose_query_box(lower_bound, upper_bound) {

function decompose(query_box, cube) {
if (cube does not intersect query_box)

return;
if (cube is minimal or cube is covered by query_box) {

send cube boundaries to the output;
return;

}

decompose(query_box, lower-sub-cube);
decompose(query_box, upper-sub-cube);

}
query_box = BOX(lower_bound, upper_bound);
cube = BOX(minimal_z_value, maximal_z_value);
decompose(query_box, cube);

}
For estimation of time complexity of above algorithm following definitions are needed:

� The basic cube is a multidimensional cube with size equal to 2int in each dimension,
where int is an integer equal to or higher than 0; moreover such cube has to be filled
by just one continuous Z-region. The length of such Z-region can be easily counted
and equals to (2int)dim.

� Let cnt be the count of maximal basic cubes which Z-regions completely cover the
extended query box. From the construction of the extended query box follows that
the smallest possible size of a basic cube in the extended query box is 2const and the
length of related Z-region is (2const)dim.

� Let n be the bit length of maximal Z-value.

The time complexity of each execution of decompose function is O(n) because:

� The condition "cube does not intersect query_box" is counted as the result of the
function get_next_zvalue (see chapter 4.5.1 "Get Next Z-value") which has
complexity O(n).

� The condition "cube is minimal" is of constant complexity because just an integer
representing the minimal length is added to a Z-value (constant complexity) and then
two Z-values are compared (again constant complexity).

Chapter 4 Implementing the Relational UB-Tree Index 26

� Finally, the "cube is covered by query_box" condition is again of O(n) complexity
because it utilizes the function inside_box (see chapter 4.5.3 "Inside Box") executed
on both the boundaries of the cube.

Because of both positive and negative pruning the recursive dividing of the cube is
executed at most cnt-times in each level of depth of nested calling of the function, in
other cases one of the conditions evaluates to true and the function ends. The maximal
depth of nested calling can be also counted and equals to n/const however the const
factor can be omitted in this computation.

Therefore the overall time complexity of decompose_query_box function is O(cnt*n*n)
= O(cnt*n2) which means that the time complexity is quadratically dependent on the
length of maximal Z-value, and linearly dependent on the complexity of the extended
query box.

Chapter 4 Implementing the Relational UB-Tree Index 27

4.4 UB-Tree via the Navigational
Scheme

Another way proposed in [1] to implement a relational index is the navigational scheme
(see chapter 2.2.1 "Navigational Scheme of Index Tables") where data of the index
create a hierarchical structure. Description of this approach for developing the UB-Tree
index can be found in this section.

4.4.1 Basic Concept
According to the definition of the navigational scheme, each row in the index table is
associated with one or more rows in the primary table. The chosen concept is similar to
the implementation of the relational R-tree in [1].

The rows in the index table form a hierarchical structure that stands for the natural way
of implementing the UB-Tree which is essentially also hierarchical. Each row contains
logic identifier of the page of UB-Tree, its level in the tree, reference to the page that
stand for its direct descendant and boundaries of related Z-region. On the lowest level
the reference actually contains identifier of a row in the primary table, the lower
boundary contains the Z-value of indexed data whilst the upper boundary is null.

There are three ways of obtaining identifiers of primary data lying inside a query box -
either a recursive SQL query statement can be used, or the UB-tree structure can be
traversed programmatically or a database cursor can be opened to obtain required data.

4.4.2 Index Table
The index table for the navigational UB-Tree is designed in following way:
CREATE TABLE ub_index (

page_id NUMBER,
level NUMBER,
son_id NUMBER,
z_lower Type_z_value,
z_upper Type_z_value

);

The page_id attribute stands for the identifier of a logical UB-Tree page. Let max be the
maximal count of items in one logical UB-Tree page. Then there can be several rows in
the table with equal page_id up to the value of max. This concept has been chosen
because it allows flexible assignment of the page size and the query to obtain searched
objects can be written in a smart way, as mentioned later.

Chapter 4 Implementing the Relational UB-Tree Index 28

Another possibility is to transform the schema into non-first normal form and have just
page_id as the PRIMARY KEY. However several boundary sets consisting of son_id,
z_lower and z_upper would have to be stored along with each row and thus the change
of maximal items count in UB-Tree page would be quite difficult because it involves
changes in the code. Moreover queries on this table would be less transparent as the
WHERE clause would comprise several conditions related to each boundary set.

To minimize disk access cost during most SQL queries, clustering of the table is defined
according to page_id attribute. This approach ensures that entries belonging to one
logical UB-Tree page are stored in one physical cluster on the disk.

The PRIMARY KEY constraint is composite and comprises the attributes page_id and
son_id. Another INDEX is defined on the son_id attribute because the updates of the
UB-Tree structure related to INSERT, UPDATE or DELETE of a row in the primary
table involve number of queries according to this attribute.

4.4.3 Inserting a Tuple
At first a logical UB-Tree page has to be found where the z-value of a tuple being
inserted belongs. This can be easily achieved with recursive SQL query:
SELECT * FROM ub_index
WHERE level = 1
START WITH page_id = 1
CONNECT BY

PRIOR son_id = page_id
AND :tuple_z-value BETWEEN z_lower AND z_upper

If the count of items in a logical page exceeds max, then the page has to be split into two
pages and a new divider has to be inserted into the parent page. This may involve
recursive splitting of the ancestor pages up to the root. The algorithm is similar to the
algorithm of splitting standard B-tree page. The interesting part is the way of choosing
the divider. Similar algorithm to the one proposed in [2] has been used - a divider that
causes the least possible partitioning of the space is chosen. If we consider the definition
of the basic cube mentioned in one of the previous chapters (see chapter 4.3.4 "Querying
Tuples"), then the Z-region covering the original page is divided into two Z-regions that
cover maximal possible basic cubes.

4.4.4 Deleting a Tuple
The tuple is simply deleted from the index table according to its identifier.
DELETE FROM ub_index
WHERE son_id = id AND page_lev = 0

If the count of items in the concerned logical UB-Tree page is lower than max/2, then
some items has to be transferred to the page from a neighbor page, provided that the
count of items in the neighbor page is sufficient; otherwise these two pages have to be
merged and their divider has to be removed from the parent page. This may involve
recursive merging of the ancestor pages up to the root. The algorithm is similar to the
algorithm of merging standard B-tree pages and does not include any special solution.

Chapter 4 Implementing the Relational UB-Tree Index 29

4.4.5 Updating a Tuple
This algorithm comprises subsequent calling of delete tuple and insert tuple functions
and therefore it does not need to be described more thoroughly.

4.4.6 Querying Tuples via Recursive SQL Statement
Probably the most interesting part of this approach is the way of obtaining identifiers of
tuples lying inside a specified query box. As mentioned in both [1] and [2] the crucial
problem of many relational index solutions is the number of context switches between
user defined functions and the database kernel if the index tables are traversed
programmatically. Therefore just one recursive SQL query statement has been created
that utilizes the functions get_next_zvalue (see chapter 4.5.1 "Get Next Z-value") and
inside_box (see chapter 4.5.3 "Inside Box"). Particularly the statement is as follows:
SELECT son_id FROM ub_index
WHERE level = 0
START WITH page_id = 1
CONNECT BY

PRIOR son_id = page_id AND
((get_next_zvalue(z_lower, :lower_bound,

:upper_bound, 0) <= z_upper
AND PRIOR level > 1)

OR
(inside_box(z_lower, :lower_bound, :upper_bound) = 1

AND PRIOR level = 1))

The first part of the OR condition within the CONNECT BY clause serves for actual
descending the UB-Tree hierarchy. Even though it may not be seen at first sight, the Z-
region corresponding to a page is simply checked on intersection with the query box via
the get_next_zvalue function executed on its lower bound and subsequent comparison of
the result with its upper bound. The fourth optional parameter (the 0) in the calling of
get_next_zvalue means that the returned Z-value can be equal or higher to the actual Z-
value of z_lower attribute; in original algorithm proposed in [2] only higher Z-values are
considered.

The second part of the OR condition filters out the tuples from the lowest level of the
UB-Tree that belong to the page but do not lie inside the query box (the filtering is done
via the inside_box function).

4.4.7 Querying Tuples in Procedural Way
As mentioned before, the procedural traversing of the index structure is not
recommended in both [1] and [2] because of high number of context switches. However
many programmers would probably consider only this way and therefore it is tested in
this work as well.

Chapter 4 Implementing the Relational UB-Tree Index 30

The traversing is similar to the recursive SQL processing in previous case - algorithm
starts with the root page and continues with all logical descendant pages such that their
Z-region intersects the query box until a page on the lowest level is reached; all tuples
from such page are then tested whether they really belong to the query box.

Moreover a positive pruning takes place in the algorithm - if the Z-region of a page on
any level of the UB-Tree hierarchy lies completely inside the query box then all tuples
belonging to its descendant pages on the lowest level are sent directly to the output.

These techniques are employed in the algorithm:

� The test for intersection of a Z-region with the query box is done via the function
get_next_zvalue (see chapter 4.5.1 "Get Next Z-value") as in previous case.

� The test whether a Z-region lies completely inside the query box is done via the
function get_next_zvalue_out (see chapter 4.5.2 "Get Next Z-value Out") - the
function is executed on the lower bound of a Z-region and then the result is
compared with the upper bound of the same Z-region.

� All tuples from descendant pages to a page which Z-region is inside the box are
obtained by simple SQL range query. An index should be defined on z_lower
attribute to make this range query effective; for the ease of implementation just the
functional index which converts Z-value to a string was used in the relational UB-
Tree.

� Filtering of tuples on the lowest level is done via the function inside_box (see
chapter 4.5.3 "Inside Box") similarly to previous case.

The main algorithm is then following:
function inside_query_box(lower_bound, upper_bound) {

function process_page(page) {
if (page.level == 0)

"filter and output all tuple IDs from page";
else for (all sub-pages of the page) {

if (sub-page completely inside query box)
"output all tuple IDs which z_value lies

between boundaries of the sub-page; the IDs are obtained from the
range scan on whole ub_index table";

else if (sub-page intersects query box)
process_page(sub-page);

}
}
process_page(root);

}

4.4.8 Querying Tuples via a Database Cursor
Because the positive pruning mentioned in previous section cannot be simply employed
in the recursive SQL query, another way that can be used for obtaining the tuples lying
inside a query box is a combination of the recursive query and programmatic traversing
of the UB-Tree. An implicit database cursor is opened on the ub_index table and then
either tuple filtering is executed on the lowest page of the UB-Tree or a range scan based
on boundaries of processed Z-region is performed.

Chapter 4 Implementing the Relational UB-Tree Index 31

Simplified pseudo code follows:
for (row in

SELECT * FROM ub_index
WHERE level = 0
// positive pruning in main condition:
OR (level > 0

AND z_lower.inside_box(:lower_bound, :upper_bound) = 1
AND z_lower.get_next_zvalue_out(:lower_bound,

:upper_bound) >= z_upper)

START WITH page_id = 1
CONNECT BY

PRIOR son_id = page_id AND
((get_next_zvalue(z_lower, :lower_bound,

:upper_bound, 0) <= z_upper
AND PRIOR level > 1

// positive pruning in connect by condition:
AND (PRIOR z_lower.inside_box(:lower_bound,

:upper_bound) = 0
OR PRIOR z_lower.get_next_zvalue_out

(:lower_bound, :upper_bound)
< PRIOR z_upper))

OR
(inside_box(z_lower, :lower_bound,

:upper_bound) = 1
AND PRIOR level = 1)))

{
if (row.level == 0)

"output tuple ID associated with the row";
else

// positive pruning
"output all tuple IDs which z_value lies between

boundaries of the Z-region associated with the row; the IDs are
obtained from the range scan on whole ub_index table";
}

As we may see, the condition for positive pruning in the cursor operation has to be
presented:

� in the WHERE condition of the SQL statement, so that the logical UB-Tree page
fulfilling given criteria is output from the cursor;

� in the CONNECT BY condition of the SQL statement (the condition is presented in
the negative sense), so that the recursive query is traversed further only in case when
the pruning condition is not fulfilled;

� in the actual code processing the cursor output (the condition is simplified to test the
level of a row that got into the output), so that we know whether the range query
should be evaluated.

Similarly to procedural traversing of the UB-Tree structure, the pruning condition
comprises the function get_next_zvalue_out (see chapter 4.5.2 "Get Next Z-value Out"),
which is executed on the lower bound of a Z-region and then the result is compared with
its upper bound; and also the function inside_box (see chapter 4.5.3 "Inside Box"), which
is executed just on the lower bound.

Chapter 4 Implementing the Relational UB-Tree Index 32

4.5 Algorithms for Processing Z-value
During the UB-Tree index implementation several algorithms that handle Z-value have
been used. The most important ones are described thoroughly in this section.

4.5.1 Get Next Z-value
Function get_next_zvalue(z_value, lower_bound, upper_bound) generates the nearest
higher Z-value (to the specified z_value) that lies inside a query box determined by its
lower_bound and upper_bound boundaries; in other words it calculates Z-value nip of
the next intersection point with the query box (see Figure 12). The function was
presented in [2] however the description was rather vague and contained mistakes.
Because it is an essential part of all mentioned UB-Tree range query algorithms, it
deserves a deeper insight in this work.

Figure 12: Example of starting point (a) and searched point (b) in get_next_zvalue function

ab

For detailed description of the algorithm several functions have to be introduced:

� Function bit_position(dim, step) returns the bit position in Z-value that corresponds
to a dimension dim and a step in a tuple item from the dimension dim. Value of step
is derived from the construction of Z-value: it refers to a bit position in a tuple item
where the most relevant bit has its step equal to 0; for more details refer to definition
of the Z-value (see chapter 3.3.2 "Z-value").

� Conversely, given a bit position bp in a Z-value, the functions get_dimension(bp)
and get_step(bp) return the corresponding dimension, respectively step.

� Let us consider {} to be an operator that returns value of a number on specified bit
position; e.g. z_value{bp} returns the bit value of z_value on bp bit position.

Now the algorithm itself can be described:

� At first the original z_value has to be incremented by one, i.e. nip = z_value + 1 (this
step is omitted in some special cases as mentioned previously).

Chapter 4 Implementing the Relational UB-Tree Index 33

� Then nip is tested whether it already lies inside the query box by bitwise comparing
with the Z-values of lower_bound and upper_bound.
The main idea is quite simple and nip does not need to be transformed back to
Cartesian coordinates. Moreover additional information are determined during the
computation. For each dimension several properties are held and they are being
updated whilst nip is being processed bit by bit from the most relevant bit to the least
relevant one according to the comparison of value of nip on actual bit position with
the value of lower_bound (or upper_bound respectively) on the same bit position.

The attributes that are being distinguished for each dimension dim are following:

� flag[dim] indicates the actual position of nip in a dimension dim - the value is 0
if nip is inside the query box in dimension dim; the value is -1 if nip has fallen
below the minimum of the query box in dimension dim; the value is 1 if nip has
exceeded the maximum of the query box in dimension dim; initially the value is
set to 0 for each dimension

� out_step[dim] holds the step in dimension dim where the query box has been
left or "infinity" if nip is inside the query box in dimension dim; initially the
value is set to "infinity" for each dimension

� save_min[dim] holds the step in dimension dim where the minimum of the
query box has been exceeded; initially the value is set to -1 for each dimension

� save_max[dim] holds the step in dimension dim where nip has fallen below
maximum of the query box; initially the value is set to -1 for each dimension

A simplified pseudo algorithm of such computation follows:
bp = maximal_bp;
while (bp > 0) {

dim = get_dimension(bp);
step = get_step(bp);
if (z_value{bp} > lower_bound{bp}) {

if (save_min[dim] == -1)
save_min[dim] = step;

}
else if (z_value{bp} < lower_bound{bp}) {

if (flag[dim] == 0 && save_min[dim] == -1) {
out_step[dim] = step;
flag[dim] = -1;

}
}
if (z_value{bp} < upper_bound{bp}) {

if (save_max[dim] == -1)
save_max[dim] = step;

}
else if (z_value{bp} > upper_bound{bp}) {

if (flag[dim] == 0 && save_max[dim] == -1) {
out_step[dim] = step;
flag[dim] = 1;

}
}
bp--;

}

If flag[dim]=0 in all dimensions, then nip is actually the required intersection point.
Otherwise the value of nip has to be corrected so that it lies inside the query box.

Chapter 4 Implementing the Relational UB-Tree Index 34

Because the nearest higher value than current nip is searched, at first the maximal bit
position max_bp which has to be changed from 0 to 1 has to be determined. Let be
min_out_step=min(out_step[dim]) and min_dim the corresponding dimension. Then
two cases have to be distinguished:

� If flag[min_dim]=-1, then we have already found the bit position
max_bp=bp(min_dim, min_out_step).

� If flag[min_dim]=1, then a higher max_bp has to be found because the bit position
specified by min_out_step and min_dim has to be set to 0 - particularly a bit position
that is lower than the bit position of save_max[dim] in corresponding dimension
and with value equal to 0 is searched.

In both cases all bits following the max_bp has to be adapted according to rules
mentioned in following pseudo code:
max_bp = bp(min_dim, min_out_step);
if (flag[min_dim] == 1) {

max_bp = min({new_bp | new_bp > max_bp
&& get_step(new_bp) > save_max[get_dim(new_bp)]
&& z_value{new_bp} == 0 });

// some attributes have to be updated for further processing
save_min[get_dim(max_bp)] = get_step(max_bp);
flag[get_dim(max_bp)] = 0;

}

// now the z-value can be changed accordingly in each dimension
foreach dimension dim {

if (flag[dim] >= 0) {
// nip has not fallen below the minimum in dim
if (max_bp <= bit_position(dim, save_min[dim]))

"set all bits in dimension dim with
bit position < max_bp to 0 because nip would not surely get below
the lower_bound"

else
"set all bits in dimension dim with

bit position < max_bp to the value of corresponding bits of the
lower_bound"

}
else

// nip has fallen below the minimum in dim
"set all bits in dimension dim to the value of

corresponding bits of the lower_bound because the minimum would not
be exceeded otherwise"
}
The overall time complexity of above algorithm can be easily estimated and equals to
O(n) where n is the bit length of the maximal Z-value. The first part (comparison of nip
with lower_bound and upper_bound) is of this complexity because of the while loop
executed exactly n times. Then the possible searching for alternative max_bp has at most
n steps. And the last foreach loop is executed dim times (dim < n) where each
assignment of bits of nip within this loop is of constant complexity.

Chapter 4 Implementing the Relational UB-Tree Index 35

4.5.2 Get Next Z-value Out
Function get_next_zvalue_out(z_value, lower_bound, upper_bound) generates the
nearest higher or equal Z-value (to the specified z_value) such that the Z-value that
directly follows the result lies outside a query box determined by its lower_bound and
upper_bound boundaries. In other words, for a point lying inside the query box it
calculates Z-value nlp of the next leaving point with relation to the query box (see Figure
13).

Even though the tests has proven that dividing a query box into ideal Z-regions using this
function is time consuming because of the nature of the Z-curve (see chapter 4.3.4
"Querying Tuples"), and therefore the only usage of this function is in procedural way of
traversing the navigational type of the UB-Tree index which is not recommended
because of high number of context switches (see chapter 4.4.7 "Querying Tuples in
Procedural Way"), this algorithm is interesting and therefore it is described thoroughly in
this work.

Figure 13: Example of starting point (a) and searched point (b) in get_next_zvalue_out
function

a
b

The main idea is that for each dimension two numbers are counted - one is the minimal
number that has to be added to the original z_value so that the result gets above the
upper_bound in given dimension; on the contrary the other is the minimal number that
has to be added to the original z_value so that the result gets below the lower_bound in
given dimension. Finally the minimal one from all such numbers is chosen, it is
decreased by one and is added to the z_value.

The algorithm exploits function get_dimension(bp) and operator {} which have been
defined when describing the function get_next_zvalue (see chapter 4.5.1 "Get Next Z-
value"). Similarly to get_next_zvalue several properties are held for each dimension
which are being updated whilst original z_value is being processed bit by bit from the
most relevant bit to the least relevant one according to the comparison of z_value on
actual bit position with the value of lower_bound (or upper_bound respectively) on the
same bit position.

Chapter 4 Implementing the Relational UB-Tree Index 36

The attributes that are being distinguished for each dimension dim are following:

� max_add[dim] contains the value that has to be added to the z_value to get above
the maximum of the query box in dimension dim; initially the value is set to 0 for
each dimension.

� min_add[dim] contains the value that has to be added to the z_value to get below
the minimum of the query box in dimension dim; initially the value is set to 0 for
each dimension.

� is_above[dim] indicates whether the sum of current value of max_add[dim] and
z_value is already above the maximum of the query box in dimension dim; initially
the value is set to false for each dimension.

� is_below[dim] indicates whether the sum of current value of min_add[dim] and
z_value is already below the minimum of the query box in dimension dim; initially
the value is set to false for each dimension.

� min_add_tmp[dim] and max_add_tmp[dim] contain temporary values used for
computation of max_add[dim] and min_add[dim]; initially the value is set to 0 for
each dimension in both arrays.
The usage of these temporary values is following: if a bit position bp is being
processed and both z_value{bp} and lower_bound{bp} equal to 1 or both
z_value{bp} and upper_bound{bp} equal to 0, then we know that 2bp can be added to
the z_value to get outside the query box, however there can be a lower bit position
bp2 where this rule is valid as well and therefore just 2bp2 can be added to z_value.
These arrays thus contain the lowest currently known value.

� bit_min_add[dim], bit_min_add_tmp[dim], bit_max_add[dim] and
bit_max_add_tmp[dim] contain a bit position that has to be changed in related
values min_add[dim], min_add_tmp[dim], max_add[dim] and
min_add_tmp[dim]; initially the value is set to -1 for each dimension in all arrays
(i.e. no bit has to be changed).
The point is that if we realize that we need to change a bit position bp in the original
z_value from 0 to 1 to get above maximum or from 1 to 0 to get below minimum,
then it is not wise to simply add 2bp to the z_value because we may find a lower
number than 2bp that can be added to the z_value and still the bit on bp position will
be changed provided that there is a lower bit position bp2 equal to 1 in the z_value.

Also the number that has to be added to z_value instead of 2bp can be easily counted -
it is an inverted value to the z_value between bp-1 and bp2 positions (i.e. all bits
equal to 1 in z_value are set to 0 in the inverted z_value and vice versa) plus the
inverted z_value on bp2 position is set to 1. An example is shown in Figure 14.

Figure 14: Computation of inverted z-value

z-value

inverted
z-value

result

100110001110000

011001110001111

000001110010000

bp bp2

Chapter 4 Implementing the Relational UB-Tree Index 37

The function that sets all bits of a z_value val between a bp bit position and the last
known bit position of z_value equal to 1 to the inverted z_value is called
set_inverse(val,bp). For the proper computing we need to hold a temporary variable
last_one_bit related to the last bit position of the z_value which equals to 1.

Some problems may come up during the computation:

� When trying to get below the minimum of the query box in a dimension and all
following conditions evaluate to true:
a) there are bit positions bp and bp2 that both belong to the same dimension dim, i.e.

get_dimension(bp) equals to get_dimension(bp2);

b) both z_value{bp} and lower_bound{bp} equal to 0;

c) all bits of z_value between bp and bp2 equal to 1;

d) we realize that 2bp2 should be added to either min_add[dim] or
min_add_tmp[dim],

then the bit on bp position in the sum of z_value and min_add[dim] would change
from 0 to 1 and the result would still not be below the minimum of the query box in
dimension dim.

Therefore min_add[dim]{bp} has to be set to 1 so that it is again set back to 0 in the
sum of z_value and min_add[dim].

Thus we keep a temporary variable last_zero_bit that contains the bit position bp
where the last 0 bit of the z_value has been processed, and in case it is necessary then
all relevant bits of dimension dim=get_dimension(bp) in min_add[dim] or
min_add_tmp[dim] are set to 1 by simple signifying that the bit_min_add[dim]
or bit_min_add_tmp[dim] equal to bp instead of bp2.

Please note that this problem does not arise when bit_min_add[dim] has already
been set to a bit position bp. In such case the inverted z_value (between bp and a
lower bit position bpX which is either equal or lower than currently processed bit
position bp2) is about to be added to the original z_value and their sum will have all
bits behind the bp bit position set to 0.

� When trying to get above the maximum of the query box in a dimension dim and all
following conditions evaluate to true:
a) z_value{bp} for a bit position bp equals to 1;

b) upper_bound{bp} equals to 0;

c) min_add[dim] is not equal to -1,

then we may not simply signify that we are above the query box in the dimension,
because the inverted z_value added to temporary result would change the bit on bp
position in the sum from 1 to 0 and thus the result would not be above the maximum
of the query box. In other words we have to do the same things as if both
z_value{bp} and upper_bound{bp} were equal to 0.

Similarly when both z_value{bp} and upper_bound{bp} equal to 1 and
min_add[dim] is not equal to -1, then we have to do the same things as if
z_value{bp} was equal to 0 and upper_bound{bp} was equal to 1.

Chapter 4 Implementing the Relational UB-Tree Index 38

Following pseudo code stands for the main loop of the algorithm:
last_zero_bit = maximal_bp;
last_one_bit = maximal_bp;
bp = maximal_bp;
while (bp > 0) {

dim = get_dimension(bp);
// compare z_value with lower_bound
if (!is_below[dim]) {

if (z_value{bp} > lower_bound{bp}) {
if (bit_min_add[dim] == -1) {

if (get_dimension(last_zero_bit) = dim)
bit_min_add[dim] = last_zero_bit;

else
bit_min_add[dim] = bp;

}
}
else if (z_value{bp} < lower_bound{bp})

is_below[dim] = true;
else if (z_value{bp} == 1) {

if (get_dimension(last_zero_bit) = dim)
bit_min_add_tmp[dim] = last_zero_bit;

else
bit_min_add_tmp[dim] = bp;

}
}

// remember the last_zero/one_bit
if (z_value{bp} == 0 && get_dimension(last_zero_bit) != dim)

last_zero_bit = bp;
else if (z_value{bp} == 1)

last_one_bit = bp;

// compare z_value with upper_bound
if (!is_above[dim]) {

if (z_value{bp} < upper_bound{bp}) {
if (bit_max_add[dim] > -1)

set_inverse(max_add[dim], bit_max_add[dim]);
bit_max_add[dim] = bp;

}
else if (z_value{bp} > upper_bound{bp}) {

if (bit_max_add[dim] > -1)
bit_max_add_tmp[dim] = bp;

else
is_above[dim] = true;

}
else {

if (z_value{bp} == 0)
bit_max_add_tmp[dim] = bp;

else if (bit_max_add[dim] > -1) {
set_inverse(max_add[dim], bit_max_add[dim]);
bit_max_add[dim] = bp;

}
}

}

bp--;
}

Chapter 4 Implementing the Relational UB-Tree Index 39

Some actions take place after the main loop:

� At first the function set_inverse() is called on all min_*[dim] and max_*[dim]
values that have bit_*[dim]>-1.

� If is_below[dim] or is_above[dim] is still not true for a dimension dim, then the
temporary result min_add_tmp[dim] has to be merged with min_add[dim],
respectively max_add_tmp[dim] with max_add[dim].
� Following logic applies for getting above maximum: let bp be the most relevant

bit equal to 1 in max_add_tmp[dim], then all bits lower than bp are set to 0 in
max_add[dim] and then max_add_tmp[dim] is added to max_add[dim].

The reason for this process is that max_add[dim] currently contains a number
that has to be added to z_value so that the sum of these numbers is not below the
maximum of the query box in dimension dim, whilst max_add_tmp[dim]
contains the minimal number that has to be added to get one of the bits of z_value
in dimension dim above the upper_bound.

Marginal condition applies when there is no bit equal to 1 in
max_add_tmp[dim] - in such case the result for dimension dim is excluded
from the final selection of minimum.

� When trying to get below minimum and bit_min_add_tmp[dim] is not equal
to -1, then:

¤ min_add[dim] is directly considered to be the searched number if also
bit_min_add[dim] is not equal to -1, because all bits behind
bit_min_add[dim] bit position are set to 0 in the sum and therefore the
sum is already below minimum;

¤ min_add[dim] is replaced with min_add_tmp[dim] otherwise.

The result for dimension dim is excluded from the final selection when
bit_min_add_tmp[dim] equals to -1.

� Finally all the min_*[dim] and max_*[dim] numbers are compared and the lowest
one is chosen.
If all the numbers are excluded from the final selection because of the conditions
mentioned in the previous step, then the maximal possible Z-value ("infinity") is
returned as the result (so the algorithms employing this function have to handle this
situation).

The overall time complexity of above algorithm can be easily estimated and equals to
O(n) where n is the bit length of the maximal Z-value. The first part (comparison of
z_value with lower_bound and upper_bound) is of this complexity because the while
loop is executed exactly n times and each inner step within this loop (including the
calling of set_inverse() function) is of constant complexity. All the actions at the end of
the algorithm are executed at most 2*dim times where dim is the count of dimensions,
however dim < n and therefore this computation does not influence the overall time
complexity.

Chapter 4 Implementing the Relational UB-Tree Index 40

4.5.3 Inside Box
Function inside_box(z_value, lower_bound, upper_bound) checks whether a
multidimensional tuple represented by its z_value lies inside a query box determined by
its lower_bound and upper_bound boundaries.

The algorithm simply utilizes the first part of the function get_next_zvalue (see chapter
4.5.1 "Get Next Z-value") where a z_value is compared bit by bit with both boundaries.
Then the result can be generated according to the value of flag[dim] attribute
mentioned in the description of get_next_zvalue. Time complexity is also O(n) where n
is the bit length of the maximal Z-value.

Chapter 5 Experiments 41

5.1 Testing Environment
All experiments in general have to be well defined in advance before the actual testing: it
is necessary to know what should be tested, where it should be tested, how the tests
should look like and what the measured values are. The experiments within this work are
focused on several properties related to multidimensional index methods. This section
describes whole background of testing scenarios.

5.1.1 Database Systems & Examined Indexes
The main purpose of this work was the comparison of a relational UB-Tree index
implementation with its native kernel integration. Since the relational index has been
developed on Oracle DBMS [8], it is the main platform to be studied. The only well-
known commercial database system providing UB-Tree natively is the Transbase [9],
thus it is comprehended into the experiments as well. In addition, the standard compound
B-Tree of Oracle is tested to see Oracle's default handling of multiple-attribute indexes.

All tests have been performed on one physical computer with AMD Athlon64 3200+
CPU, 1GB RAM and 120GB 7400rpm hard disk.

Table 1: Overview of Examined Index Types

DBMS index type identifier
native compound B-Tree btree

relational UB-Tree, direct scheme direct

relational UB-Tree, navigational scheme, recursive SQL traversing navig_sql

relational UB-Tree, navigational scheme, procedural traversing navig_proc

Oracle 10g XE

relational UB-Tree, navigational scheme, traversing via a cursor navig_cursor

Transbase 6.4.2 native UB-Tree transbase

Particular database systems and index methods are referred to during experiments
according to identifiers defined in Table 1. In some cases all the methods of navigational
scheme are referred all together with usage of "navig" identifier.

C H A P T E R 5

Experiments

Chapter 5 Experiments 42

5.1.2 Data
All the experiments were evaluated on synthetic data generated just for the purpose of
testing. Similarly to [7], several sets of data with size 104, 105, 5×105, 106 and 5×106

were prepared in advance. For each set, multidimensional points in dimensions 2, 3, 4, 5,
10, 15 and 20 were obtained from a random number generator so that influence of both
the data size and dimension could have been studied. Range of a dimension was set to 232

in all cases.

Concerning hypothetical real data, their entries usually do not fill whole space regularly,
but they are usually formed into several clusters. Thus also the synthetic data were
generated to create clusters and to correspond at least partially to real data. The count of
clusters was dependent on the size of data according to definitions in Table 2.

Table 2: Count of Clusters in Dependence on the Database Size

#entries #clusters
10'000 10

100'000 100

500'000 500

1'000'000 700

5'000'000 1000

Let dc be the count of dimensions, rng the range of dimensions, and cc the count of
clusters. Then the width of a cluster x was determined according to following equation:

dc dccc
rngx

2×
=

5.1.3 Values to be Determined
Following values were recognized for each type of index:

� Count of accessed pages: the count of pages that were accessed during evaluation of
a single DML statement is probably the most relevant information regarding the
performance of an access method.
Even though the actual performance is mostly influenced by the count of physically
accessed disk pages in comparison with the count of pages accessed in memory (time
to fetch a page from a disk is significantly higher than memory access time), the
actual measured value stands for the sum of both disk and memory pages accessed
during evaluation. The reason for this approach is that such value is independent both
on the actual hardware configuration of a machine used for experiments (size of
RAM) and on settings of particular DBMS (size of cache etc.).

Chapter 5 Experiments 43

� Time: in real applications, the factual time to access searched entries is also very
relevant information. It is heavily platform and hardware dependent and thus it has
only an informative value in the experiments. However, as all the tests were
performed on one physical machine, we may consider the time related results to be
adequate for comparison of examined methods.

� Size of the index: this value stands for the actual size of an index structure on a disk.
In case of Oracle it can be determined from system catalogues; it is computed from
the count of blocks that index occupies. E.g. in case of navigational scheme, many
blocks may not be fully filled because of clustering and thus the real size of an index
may be smaller. However, this information is not of high relevancy and although it
can be also found out from system tables, it is not considered in the experiments.

In case of Transbase the size of an index can be identified by running a statistical
tool.

5.1.4 Methods
In all cases, the page size was set to 8KB so that the comparison of count of accessed
pages would be relevant. In order to keep the conditions equivalent for all index types,
both the data sets and query windows were prepared before testing. It means that queries
related to all indexes were identical and performed upon the same data.

Moreover, all queries were modified to be in form "SELECT COUNT(*) FROM …" to
avoid fetching time to be included in the overall performance time. It is likely that the
COUNT aggregation is not a time-consuming operation and even though it was, it would
influence the results in a similar way for all index types.

The query windows always covered some well defined part of whole space; particularly
windows covering 0.1%, 0.5%, 1%, 5%, 10% and 30% of the space were generated for
each dimension. For each such "selectivity" 20 random query windows were prepared
and the results were then averaged.

For testing purposes a special application was prepared. It connected to a DBMS via
ODBC interface, evaluated the queries and collected statistics either from system
catalogue (Oracle) or from the output of a console application (Transbase). Then the
results were transformed into the form which can be processed by the R-project
application [12] which was used for creation of graphs.

Chapter 5 Experiments 44

5.2 Improvements Determined During
Experiments

Implementation of a relational access method has to rely on underlying database engine.
Therefore some approaches and techniques used during the programming part can be
found unusable or just improper during experiments. This section discusses some
problems which were identified during testing.

5.2.1 Optimal Constant for Extended Query Box in Direct Scheme
During the implementation of the relational UB-Tree via the direct scheme (see chapter
4.3 "UB-Tree via the Direct Scheme") a necessity to decompose the original query box
into several continuous Z-regions arose. Because the count of such Z-regions is usually
very high, this requirement was changed into decomposition of such called extended
query box into set of Z-regions (see chapter 4.3.4 "Querying Tuples").

A constant defining the length of minimal Z-region which covers an extended query box
must have been found. From the construction of the extended query box follows that
such length equals to (2const)dim, where dim is the count of dimensions of the space and
const is a user-defined constant. Consequently, the extended query box exceeds (or drops
below) the boundaries of the original query box by at most 2const-1 in each dimension.

Therefore above problem is simplified into identification of "optimal" const number. The
higher the const number is, the less Z-regions are used for decomposition of an extended
query box but the more tuples are filtered out because they belong to the extended query
box and not to the original query box. Thus a trade-off solution must be found.

Let width be the bit width of the longest range within a domain of the original query box
(e.g. a query box in 3-dimensional space of size 500×500×1000 has its longest range
1000 and therefore its width equals to 10).

The experiments have shown that the const should be equal to width-4 in 2-dimensional
space. The extended query box is then most often covered by 10 - 40 Z-regions; this
number also stands for the count of range queries executed on the ub_index table. If
we consider the fact that in real applications a query box is usually of similar width in
each dimension, then we may estimate that its extended query box will get over the
boundaries of the original box by approximately 6% of its width in a dimension, thus the
count of tuples which are filtered out should be acceptable.

Chapter 5 Experiments 45

However, these findings cannot be so simply applied for higher dimensions. Following
circumstances should be taken into account:

� Time complexity of the decomposition is linearly dependent on the count of such
called basic cubes (see chapter 4.3.4 "Querying Tuples") which all together comprise
the extended query box.
Provided that the const is in general in form width-x where x is an integer, the
extended query box can be covered by up to (2x+1)dim Z-regions with the smallest
allowed length (which equals to (2const)dim). Even though the count of such Z-regions
is for sure significantly higher than the real count of basic cubes (many of the cubes
are of a higher length), it should not be disregarded. This is mostly true in high
dimensions (15 or 20) where even in case of x=1, this number is too high.

� From previous point follows that it may be wise to keep x=0 for higher dimensions.
However, high dimensionality causes that even query boxes with relatively small
selectivity have their width very close or even equal to the bit width of the
dimensions dim_width (please, keep in mind that all dimensions are considered to be
of the same width). It is not wise to have the const equal to the dim_width, because
the Z-region covering whole space would be always returned as the result of
decomposition; note that its length equals to (2dim_width)dim.
In such case we may consider a different point to estimate optimal const. The const
does not even have to be an integer because the overall performance is sufficient if
whole space is divided into reasonable number of Z-regions. The count of such Z-
regions is (2dim_width - const)dim, which is quite high number even if the dim_width-const
equals e.g. to 0.5 and the count of dimensions is 15 or 20.

In order to support above theory, Table 3 shows the optimal setting of const with respect
to the count of dimensions. It also shows average count of Z-regions which arise from
decomposition of a query box in given dimension, and approximated maximal exceeding
over or below the boundaries of a query box in a dimension.

Table 3: Setting of Optimal Constant for Decompose Query Box Algorithm with Respect to the
Count of Dimensions

#dimensions const average #z-regions max exceed

2 width - 4 24 6%

3 width - 2 26 25%

4 width - 1 18 50%

5 width - 1 31 50%

10 width (≤ dim_width -1) 35 100%

15 width + 0.5 (< dim_width) 19 140%

20 width + 0.6 (< dim_width) 15 150%

Chapter 5 Experiments 46

5.2.2 Inserting Tuples in Navigational Scheme
Even though the proposed way of descending the UB-Tree via a recursive SQL
statement seemed to be the most straightforward one in order to find a logical UB-Tree
page where a tuple being inserted belongs during the implementation of the relational
UB-Tree according to the navigational scheme (see chapter 4.4.3 "Inserting a Tuple"),
the actual evaluation of recursive statements in Oracle is probably not the optimal one.

An alternative way to obtain the searched page is exploitation of the secondary database
index defined on the z_lower attribute of the ub_index table which is used in case of
procedural traversing through the UB-Tree (see chapter 4.4.7 "Querying Tuples in
Procedural Way"). The actual statement to identify the page based on z_value of inserted
tuple is then following:
SELECT * FROM ub_index x
WHERE

x.z_lower >=
// find nearest smaller tuple in the table
(SELECT max(u.z_lower) FROM ub_index u

WHERE u.z_lower <= :z_value)
AND x.z_lower <

// find nearest upper tuple in the table
(SELECT min(u.z_lower) FROM ub_index u

WHERE u.z_lower >= :z_value)
AND x.level <= 1
AND rownum = 1

The first sub-query of the statement determines either the nearest lower tuple on the level
0 or the nearest boundary of a Z-region on the level 1 (there can be actually some super
Z-regions on higher levels with the same lower bound, however these are filtered out
because of the condition "x.level <= 1"). Similarly the nearest higher tuple (or a
boundary of a Z-region) is determined.

Only the first row fulfilling the criteria is chosen according to condition "rownum =
1" (a tuple on the level 0 can also stand for a boundary on higher level and thus more
rows can get into the result). Consequently, the page identifier is extracted form the
result according to following criteria:

� if the level of the resulting row equals to 0, then the page_id attribute of the row is
the searched identifier

� if the level of the resulting row equals to 1, then the son_id attribute of the row is the
searched identifier

Although the above statement with two sub-queries looks rather time consuming in
comparison with the original recursive SQL query, the actual time for inserting set of
tuples into the ub_index table is approximately 2-3 times faster in this case.

Chapter 5 Experiments 47

5.2.3 Using Optimizer Hints
Oracle provides developers with set of advanced tools that can be used to influence its
behavior. At first, the query analyzer enables database users to see the actual execution
plan for an SQL DML statement. If the execution plan does not seem to be the right one,
optimizer hints can be used to force the database engine to use an alternative execution
plan. Even though the plans determined by the database are quite often acceptable,
evaluation of some statements may become a resource killer.

Hints for the optimizer are mostly required for DML statements that are used during
inserts, updates and deletes of tuples. To speed up its performance, Oracle generates the
execution plan for an SQL statement only once and stores it into its cache of plans along
with a hash of given statement. Then, if the same statement is executed again (i.e. its
hash can be found in the cache), Oracle reuses the execution plan. However, it seems
that Oracle keeps the plan during whole session even when the count of items in a table
changes significantly and therefore it would be wise to use a different plan.

This is obviously a problem when inserting thousands or millions of entries during a
session. At first the database is empty, Oracle chooses an execution plan which often
comprises full table scan (because it is really the fastest way when there are only few
items in a table) and later it just reuses the plan because the statement is still the same.

Therefore it is wise to examine all DML statements that are used during the
implementation and to find out their execution plans when all tables are empty. Hints for
access paths should then be defined to ensure that the database chooses the proper plan.

In order to fulfill these findings, e.g. the SQL statement to obtain logical UB-Tree page
mentioned in previous section needs to be rewritten in following way with usage of the
optimizer hints:
SELECT /*+ INDEX(x idx_ub_index_z_lower)

INDEX_SS(@lower_bound u idx_ub_index_z_lower)
INDEX_SS(@upper_bound u idx_ub_index_z_lower) */
* FROM ub_index x

...
SELECT /*+ QB_NAME(lower_bound) */ max(u.z_lower)
...

AND
SELECT /*+ QB_NAME(upper_bound) */ min(u.z_lower)
...

...

The first hint refers to the outer condition on the z_lower attribute and recommends the
usage of index idx_ub_index_z_lower defined on it. The other two hints refer to
the inner sub-queries and again recommend usage of the same index, however in this
case it should be used for a "skip scan" access (it means that optimal access according to
min/max condition is chosen).

Chapter 5 Experiments 48

5.2.4 Page Size of UB-Tree and Cluster Definition in Navigational
Scheme

An answer to the question "how many tuples should be stored in one logical UB-Tree
page" is quite difficult. As the physical storage of table entries on a disk can be
influenced only slightly in the relational approach (unlike the case when an index is
integrated directly into database kernel and the disk management is implemented "on
demand"), the only available improvement in contrast to a naive approach is clustering
of items belonging to one logical page together.

A trade-off has to be identified between computation related to processing of one page
and seeking to another page. The more items are stored in a page, the more computation
is involved in the processing and the less seeking should be done. Experiments have
shown that the optimal number is somewhere between 64 and 128 items in a page (both
less and more items bring worse results).

So if a page size is chosen, a cluster size can be defined. At first it is necessary to know
at least approximately the size of one row belonging to the cluster. E.g. in case of 2-
dimensions with ranges 232, the average size is about 43 bytes (this number has been
determined from system tables of Oracle). If we choose page size to be 128, it seems that
the cluster size should be 5.5kB. However, the cluster size must be either a divider or a
multiplier of physical page size of the database engine (i.e. either 8kB or 4kB). We may
think that the optimal cluster size is thus 8kB, however setting it to 4kB brings better
results! The reason is that pages are seldom fully occupied (usually less than 70% of
their capacity is used), thus 4kB are most often sufficient and those few pages with more
items are just partially stored in an overflow area.

5.2.5 Optimizing Disk Access Cost in Direct Scheme
As a range query according to the z_value attribute to obtain a sequence of z-values is
the most common task in case of the direct scheme (see chapter 4.3.4 "Querying
Tuples"), it is wise to order the ub_index table according to this attribute. However,
Oracle does not allow creating of index organized tables based on user defined data
types. Even if it allowed this, the performance of inserts into such table would be
negatively impacted by often reorganization of the table.

This task can be simply achieved by recreating the table once all entries are stored in the
database. A temporary table ub_index_temp is created via following DDL statement:

CREATE TABLE ub_index_temp
AS SELECT * FROM ub_index ORDER BY z_value

Then the original ub_index table is dropped and the temporary table is renamed back
to ub_index.

Chapter 5 Experiments 49

5.3 Results
The results of experiments were focused mainly in following:

� identification of differences between particular methods used for traversing the UB-
Tree structure (recursive SQL statement, procedural traversing and exploiting of a
cursor) in case of the navigational scheme (see chapter 2.2.1 "Navigational Scheme
of Index Tables");

� performance differences between the navigational scheme and the direct scheme (see
chapter 2.2.2 "Direct Scheme of Index Tables");

� comparison of several properties of a relational UB-Tree index implementation in
general with native implementation of both UB-Tree and compound B-Tree index.

5.3.1 Traversing the UB-Tree in Navigational Scheme
There are three ways of traversing the UB-Tree structure proposed for the evaluation of a
range query in case of the navigational scheme (see chapter 4.4 "UB-Tree via the
Navigational Scheme").

In Figures 15 - 18 their behavior is studied thoroughly; particularly the count of accessed
pages and real time of query processing is determined in dependence on the selectivity of
a query and the count of entries in the database. All mentioned results are related to 2-
dimensional space. Behavior of the methods in higher dimensions is very similar, just all
the measured values are higher because of the overall overhead caused by storing and
processing more values.

Figure 15: Traversing UB-Tree in Navigational Scheme, 10'000 tuples

0.001 0.005 0.020 0.100 0.500

20
50

20
0

10
00

50
00

(b) Navigational UB-Tree
Page count (size = 10 000, dim = 2)

Query selectivity (part of the space)

C
ou

nt
of

ac
ce

ss
ed

pa
ge

s navig_sql
navig_proc
navig_cur

0.001 0.005 0.020 0.100 0.500

0.
05

0.
20

1.
00

5.
00

(a) Navigational UB-Tree
Realtime (size = 10 000, dim = 2)

Query selectivity (part of the space)

R
ea

lti
m

e
(s

ec
on

ds
) navig_sql

navig_proc
navig_cur

Chapter 5 Experiments 50

Each figure shows properties of the methods related to fix database size and comprises
two graphs - the first one (a) shows the real time of query processing, whilst the second
one (b) shows the count of accessed pages.

Common features concerning the count of accessed pages can be seen in all figures:

� The count of pages accessed in case of navig_sql and navig_cur is significantly
higher than in case of navig_proc.
The reason is probably an ineffective evaluation of a recursive SQL query by Oracle.
If we investigate the execution plan for a recursive statement, we may realize that
Oracle always involves full table scan in it. Actually, in the default execution plan of
the statement used in navig_sql and navig_cur there are full table scans for each
CONNECT BY clause, which causes even worse performance. With usage of
optimizer hints we may achieve exploitation of an index in the CONNECT BY
clause; however for some strange reason, Oracle accepts only standard index and not
the cluster index, although the performance would surely be better. Moreover, one
full table scan always persists (Oracle probably needs to collect some statistics about
the table).

� The count of pages accessed in case of navig_sql is nearly the same as in case of
navig_cur (it is a bit smaller for navig_cur but the difference is only slight and cannot
be seen clearly in the figures).
It means that there are usually only few Z-regions that lie completely inside a query
box. Even for those Z-regions lying inside the box, the count of pages that are
skipped because of interrupted traversing in the recursive SQL statement is similar to
the count of pages that are physically accessed in secondary index on the z_lower
attribute of the ub_index table when evaluating the range query in case of
navig_cur (see chapter 4.4.8 "Querying Tuples via a Database Cursor").

Figure 16: Traversing UB-Tree in Navigational Scheme, 100'000 tuples

0.001 0.005 0.020 0.100 0.500

50
20

0
10

00
50

00
50

00
0

(b) Navigational UB-Tree
Page count (size = 100 000, dim = 2)

Query selectivity (part of the space)

C
ou

nt
of

ac
ce

ss
ed

pa
ge

s navig_sql
navig_proc
navig_cur

0.001 0.005 0.020 0.100 0.500

0.
1

0.
5

2.
0

10
.0

50
.0

(a) Navigational UB-Tree
Realtime (size = 100 000, dim = 2)

Query selectivity (part of the space)

R
ea

lti
m

e
(s

ec
on

ds
)

navig_sql
navig_proc
navig_cur

Chapter 5 Experiments 51

Figure 17: Traversing UB-Tree in Navigational Scheme, 500'000 tuples

0.001 0.005 0.020 0.100 0.500

0.
2

1.
0

5.
0

20
.0

20
0.

0
(a) Navigational UB-Tree

Realtime (size = 500 000, dim = 2)

Query selectivity (part of the space)

R
ea

lti
m

e
(s

ec
on

ds
)

navig_sql
navig_proc
navig_cur

0.001 0.005 0.020 0.100 0.500

1e
+0

2
1e

+0
3

1e
+0

4
1e

+0
5

(b) Navigational UB-Tree
Page count (size = 500 000, dim = 2)

Query selectivity (part of the space)
C

ou
nt

of
ac

ce
ss

ed
pa

ge
s navig_sql

navig_proc
navig_cur

Figure 18: Traversing UB-Tree in Navigational Scheme, 1'000'000 tuples

0.001 0.005 0.020 0.100 0.500

1e
+0

2
5e

+0
3

1e
+0

5

(b) Navigational UB-Tree
Page count (size = 1 000 000, dim = 2)

Query selectivity (part of the space)

C
ou

nt
of

ac
ce

ss
ed

pa
ge

s navig_sql
navig_proc
navig_cur

0.001 0.005 0.020 0.100 0.500

5e
-0

1
1e

+0
1

5e
+0

2

(a) Navigational UB-Tree
Realtime (size = 1 000 000, dim = 2)

Query selectivity (part of the space)

R
ea

lti
m

e
(s

ec
on

ds
)

navig_sql
navig_proc
navig_cur

Concerning the real time processing of queries, we may again realize some facts:

� Time for processing navig_cur is simply unbearable.
Although the count of accessed pages is similar to navig_sql, the real time is much
worse in case of navig_cur. The main reasons are probably both the overhead caused
by holding opened cursor and high count of context switches for all Z-values and all
Z-regions intersecting the query box.

� For a lower selectivity navig_proc takes less time than navig_sql, whilst for a higher
selectivity navig_sql evaluates faster.

Chapter 5 Experiments 52

The lower count of accessed pages (which is always much lower for navig_proc)
may not result in faster processing. For higher selectivities the high count of context
switches in navig_proc negatively influences overall behavior. On the other hand, for
smaller selectivities the recursive procedural traversing is often stopped because
many Z-regions do not intersect the query box and thus the number of context
switches is kept relatively small. This approves the fact mentioned in both [1] and [2]
that the more barrier crossings occur between database kernel and user defined code,
the worse the performance is.

Similar dependences between navig_proc and navig_sql with respect to both the count of
accessed pages and real time processing can be identified in higher dimensions as well.
E.g. Figure 19 shows their behavior in case of 5 dimensions and 500'000 database
entries:

Figure 19: Traversing UB-Tree in Navigational Scheme, 5 dimensions, 500'000 tuples

0.001 0.005 0.020 0.100 0.500

1
2

5
20

50
20

0

(a) Navigational UB-Tree
Realtime (size = 500 000, dim = 5)

Query selectivity (part of the space)

R
ea

lti
m

e
(s

ec
on

ds
) navig_sql

navig_proc

0.001 0.005 0.020 0.100 0.500

1e
+0

2
1e

+0
3

1e
+0

4
1e

+0
5

(b) Navigational UB-Tree
Page count (size = 500 000, dim = 5)

Query selectivity (part of the space)

C
ou

nt
of

ac
ce

ss
ed

pa
ge

s navig_sql
navig_proc

5.3.2 Direct Scheme vs. Navigational Scheme
Considering the same criteria as in previous section, behavior of the navigational scheme
(see chapter 4.4 "UB-Tree via the Navigational Scheme") and the direct scheme (see
chapter 4.3 "UB-Tree via the Direct Scheme") is compared hereinafter. Concerning the
navigational scheme, only the traversing via navig_sql and navig_proc are included into
the results since the performance of navig_cur is very poor, as proven previously.

Exploring the results in 2-dimensional space (Figure 20), it seems that the direct scheme
overpowers both the methods of the navigational scheme.

Similar results were identified also for different database sizes in 2-dimensional space, at
least with respect to the count of accessed pages. With smaller database size and small
selectivity, the real time for processing direct scheme queries is higher than in case of
both navigational methods. The reason is that the decomposition of a query box in the
direct scheme is computationally intensive task and negatively influences the total time
in mentioned case.

Chapter 5 Experiments 53

It is worth to mention that the complexity of such decomposition is related just to the
dimension of the space and the shape of particular query box. Thus the computation
takes the same time, no matter how big the database is. This is different from other
methods where the overall performance is influenced mainly by the database size and
query selectivity.

Figure 20: Comparison of Navigational Scheme and Direct Scheme, 2 dimensions, 1'000'000
tuples

0.001 0.005 0.020 0.100 0.500

1e
+0

2
5e

+0
3

1e
+0

5

(b) Direct vs. Navigational
Page count (size = 1 000 000, dim = 2)

Query selectivity (part of the space)

C
ou

nt
of

ac
ce

ss
ed

pa
ge

s navig_sql
navig_proc
navig_cur

0.001 0.005 0.020 0.100 0.500

0.
5

2.
0

10
.0

50
.0

(a) Direct vs. Navigational
Realtime (size = 1 000 000, dim = 2)

Query selectivity (part of the space)

R
ea

lti
m

e
(s

ec
on

ds
) navig_sql

navig_proc
direct

Anyway, in Figure 21 we may realize that the behavior of the direct scheme could be
really unpredictable. A remarkable finding is that in some cases a higher selectivity
brings better results for both the real time processing and accessed pages count. Even
though it cannot be simply proven, the reason is probably again the shape of a query box
(or rather the actual count and size of Z-regions that arise from its decomposition).

The main drawback of chosen approach in the direct scheme is that the decomposition of
a query box does not correspond to the physical storage of entries in the database at all.
If a box is decomposed into several small Z-regions, interval queries on the ub_index
table according to boundaries of such Z-regions may lead to traversing the existing
secondary database index several times via the same physical path (i.e. with accessing
the same disk pages several times). This is mainly obvious for Z-regions that are
relatively close to each other and lie within an interval (super Z-region) which comprises
small count of existing database items.

Chapter 5 Experiments 54

Figure 21: Comparison of Navigational Scheme and Direct Scheme, 3 dimensions, 500'000
tuples

0.001 0.005 0.020 0.100 0.500

1e
+0

2
1e

+0
3

1e
+0

4
1e

+0
5

(b) Direct vs. Navigational
Page count (size = 500 000, dim = 3)

Query selectivity (part of the space)

C
ou

nt
of

ac
ce

ss
ed

pa
ge

s navig_sql
navig_proc
navig_cur

0.001 0.005 0.020 0.100 0.500

1
2

5
20

50
20

0

(a) Direct vs. Navigational
Realtime (size = 500 000, dim = 3)

Query selectivity (part of the space)

R
ea

lti
m

e
(s

ec
on

ds
)

navig_sql
navig_proc
direct

Figure 22: Comparison of Navigational Scheme and Direct Scheme, 5 dimensions, 1'000'000
tuples

0.001 0.005 0.020 0.100 0.500

1e
+0

2
1e

+0
3

1e
+0

4
1e

+0
5

(b) Direct vs. Navigational
Page count (size = 1 000 000, dim = 5)

Query selectivity (part of the space)

C
ou

nt
of

ac
ce

ss
ed

pa
ge

s navig_sql
navig_proc
navig_cur

0.001 0.005 0.020 0.100 0.500

1
2

5
10

20
50

(a) Direct vs. Navigational
Realtime (size = 1 000 000, dim = 5)

Query selectivity (part of the space)

R
ea

lti
m

e
(s

ec
on

ds
)

navig_sql
navig_proc
direct

Chapter 5 Experiments 55

Considering 5-dimensional space (Figure 22), it can be determined that a smaller count
of accessed pages in the direct method may bring worse processing time with relation to
the navig_proc, which contrasts to lower dimensions where the time is mostly in relation
to the accessed pages count. This can be caused by higher cost of post filtering in the
direct scheme. The more dimensions are involved, the bigger part of the space is covered
by the extended query box in comparison with the original query box and thus more
tuples are included into temporary result set and then filtered out.

Figure 23: Comparison of Navigational Scheme and Direct Scheme, 15 dimensions, 1'000'000
tuples

0.001 0.005 0.020 0.100 0.500

2e
+0

3
1e

+0
4

5e
+0

4

(b) Direct vs. Navigational
Page count (size = 1 000 000, dim = 15)

Query selectivity (part of the space)

C
ou

nt
of

ac
ce

ss
ed

pa
ge

s navig_sql
navig_proc
navig_cur

0.001 0.005 0.020 0.100 0.500

50
10

0
50

0

(a) Direct vs. Navigational
Realtime (size = 1 000 000, dim = 15)

Query selectivity (part of the space)

R
ea

lti
m

e
(s

ec
on

ds
)

navig_sql
navig_proc
direct

Negative impact of higher dimensions on the performance of the direct scheme can be
also seen in Figure 23. In contrast to the 5-dimensional space, the count of accessed
pages is always higher than in case of the navig_proc. If we take into account exceeding
of an original query box by its extended query box by 140% in each dimension in 15-
dimensional space both in upward and downward direction (see chapter 5.2.1 "Optimal
Constant for Extended Query Box in Direct Scheme"), then the space covered by the
extended box can be even many times bigger than the space covered by the original box.

An approach to overcome processing of such large spaces would be to generate an
extended query box more precisely (i.e. an extended query box which would not exceed
the original box so much). However, in such case the recursive computation takes quite a
long time. Moreover, thousands of Z-regions are usually generated during
decomposition, thus thousands of range queries are involved in such processing.

Unfortunately, neither of these approaches seems to be the appropriate one and the direct
method remains far behind the optimal performance.

Chapter 5 Experiments 56

5.3.3 Index Size
Physical size of an index is one of the criteria that influence the performance of index
evaluation, mostly with respect to the count of accessed physical pages. The bigger the
index is the more pages are usually necessary to be processed.

Index size is more or less linearly dependent on both the size of the database and the
count of dimensions (i.e. on the count of entries that are subject to index). However, this
finding is only partial truth in case of used implementation of the relational index. The
reason is the actual representation of Z-value, which is defined as an array of Oracle's
NUMBER data type, which can hold up to 128-bit integer. As the range of a domain was
always set to 232 during the experiments, one item of such array can hold part of the Z-
value for up to 4 dimensions. Thus the index size is quite similar for dimensions 1-4, 5-8,
9-12 etc. provided that the size of the database is the same.

Table 4 shows the dependency of index size on the size of database for all examined
methods. Particularly, the results are valid for 4-dimensional space. All values are in
megabytes.

Table 4: Physical Size (MB) of Index in Dependence on the Database Size

#entries direct navig btree transbase
10'000 1.1 2.7 0.5 0.5

100'000 11.2 26.7 5.1 4.9

500'000 51.2 12.0 23.5 24.0

1'000'000 100.3 242.0 47.1 47.9

5'000'000 484.3 1153.9 233.6 219.2

Following facts can be identified from the Table 4:

1 Index size is nearly the same for btree and transbase.

2 Index size is much bigger in case of relational methods.

3 Navig requires more than 2 times bigger space than direct.

All these facts can be simply explained if we look deeper on the amount of data stored
for each index entry in particular method:

1 Both Oracle and Transbase store index data related to the same values (four 32-bit
integers in case of 4-dimensional space) and build B+ Tree or UB Tree upon them.
Thus the size of index differs only slightly based on actual representation of the tree
and on more or less successful filling of physical disk pages with index entries.

2 Relational methods store nearly the same amount of data in relational tables as the
standard methods store directly into disk pages. There can be some overhead to store
user defined data types (Z-value) into database tables in case of relational methods,
however this should not influence whole index size significantly.

Chapter 5 Experiments 57

The main reason for higher index size in relational methods is thus different. There
are also standard secondary database index structures built upon the tables of a
relational index to support performance of SELECT queries; and their size simply
cannot be disregarded.

E.g. in case of direct method, the size of the index table takes approximately 45% of
mentioned space, whilst the index built upon this table takes 55%. This finding also
explains why the size of index in direct method is approximately twice higher then in
case of btree or transbase methods.

3 A row of index table in navig method takes in average twice more space then a row
in direct method in case of 4-dimensional space, because it simply holds more items.
Thus the size of just the index table in navig method is similar to the size of whole
relational index (table + related index) in direct method. Moreover, there are again
some secondary database indexes defined on the navig index table which together
take up to 60% of mentioned space.

5.3.4 Relational Index vs. Native Index Performance
Hereinafter, the performance of relational access methods is compared with access
methods integrated natively into a DBMS kernel. The measured values are similar to
previous cases (real time and count of accessed pages), however the procedure is
different. Particularly, following relations are studied:

� Influence of dimension count on performance of all examined index methods (refer
to Figure 24).

� Influence of database size on performance of all examined index methods (refer to
Figure 25).

As we may see, for all methods both processing time and count of accessed pages grow
more or less linearly in dependence on both the dimension count and the database size.
Observing all the results more thoroughly, we may distinguish following:

1 Native kernel implementation of the UB-Tree in Transbase brings clearly the best
performance with respect to both the count of accessed pages and real processing
time.

2 Count of accessed pages measured in navig_proc and direct methods is usually
smaller than in btree method. On the other hand, count of accessed pages in
navig_sql method is always the worst one.

3 Despite of finding (2), the real processing time for all relational access methods is
not only worse than native UB-Tree implementation in Transbase, but also several
times worse than native implementation of "simple" compound B-Tree access
method in Oracle.

Similar results can be identified also when different circumstances are taken into account
than those ones presented in Figures 24 and 25. In other words, above findings are valid
even for different selectivity, different database size (Fig. 24) or different dimension
count (Fig. 25).

Chapter 5 Experiments 58

Figure 24: Impact of Dimension Count on Processing of Range Queries, 1'000'000 tuples,
various selectivity

2 5 10 20

1e
-0

2
1e

-0
1

1e
+0

0
1e

+0
1

1e
+0

2

(a1) Dimension Impact
Realtime (size = 1 000 000, sel = 0.1%)

Count of dimensions

R
ea

lti
m

e
(s

ec
on

ds
)

navig_sql
navig_proc
direct

btree
transbase

2 5 10 20

20
50

20
0

10
00

50
00

(b1) Dimension Impact
Page count (size = 1 000 000, sel = 0.1%)

Count of dimensions

C
ou

nt
of

ac
ce

ss
ed

pa
ge

s

navig_sql
navig_proc
direct

btree
transbase

2 5 10 20

50
20

0
10

00
50

00
50

00
0

(b2) Dimension Impact
Page count (size = 1 000 000, sel = 0.5%)

Count of dimensions

C
ou

nt
of

ac
ce

ss
ed

pa
ge

s

navig_sql
navig_proc
direct

btree
transbase

2 5 10 20

1e
-0

2
1e

-0
1

1e
+0

0
1e

+0
1

1e
+0

2

(a2) Dimension Impact
Realtime (size = 1 000 000, sel = 0.5%)

Count of dimensions

R
ea

lti
m

e
(s

ec
on

ds
)

navig_sql
navig_proc
direct

btree
transbase

2 5 10 20

5e
+0

1
5e

+0
2

5e
+0

3
5e

+0
4

(b3) Dimension Impact
Page count (size = 1 000 000, sel = 1%)

Count of dimensions

C
ou

nt
of

ac
ce

ss
ed

pa
ge

s

navig_sql
navig_proc
direct

btree
transbase

2 5 10 20

1e
-0

2
1e

-0
1

1e
+0

0
1e

+0
1

1e
+0

2

(a3) Dimension Impact
Realtime (size = 1 000 000, sel = 1%)

Count of dimensions

R
ea

lti
m

e
(s

ec
on

ds
)

navig_sql
navig_proc
direct

btree
transbase

Chapter 5 Experiments 59

Figure 25: Impact of Database Size on Processing of Range Queries, various dimension count,
various selectivity

1e+04 5e+04 2e+05 1e+06 5e+06

1e
+0

1
1e

+0
2

1e
+0

3
1e

+0
4

1e
+0

5

(b1) Database Size Impact
Page count (dim = 2, sel = 1%)

Database size (# tuples)

C
ou

nt
of

ac
ce

ss
ed

pa
ge

s

navig_sql
navig_proc
direct

btree
transbase

1e+04 5e+04 2e+05 1e+06 5e+06

5e
-0

3
5e

-0
2

5e
-0

1
5e

+0
0

5e
+0

1

(a1) Database Size Impact
Realtime (dim = 2, sel = 1%)

Database size (# tuples)

R
ea

lti
m

e
(s

ec
on

ds
)

navig_sql
navig_proc
direct
btree
transbase

1e+04 5e+04 2e+05 1e+06 5e+06

5e
-0

3
5e

-0
2

5e
-0

1
5e

+0
0

(a2) Database Size Impact
Realtime (dim = 5, sel = 0.5%)

Database size (# tuples)

R
ea

lti
m

e
(s

ec
on

ds
)

navig_sql
navig_proc
direct

btree
transbase

1e+04 5e+04 2e+05 1e+06 5e+06

1e
+0

1
1e

+0
2

1e
+0

3
1e

+0
4

1e
+0

5

(b2) Database Size Impact
Page count (dim = 5, sel = 0.5%)

Database size (# tuples)

C
ou

nt
of

ac
ce

ss
ed

pa
ge

s

navig_sql
navig_proc
direct

btree
transbase

1e+04 5e+04 2e+05 1e+06 5e+06

1e
-0

2
1e

-0
1

1e
+0

0
1e

+0
2

(a3) Database Size Impact
Realtime (dim = 15, sel = 0.1%)

Database size (# tuples)

R
ea

lti
m

e
(s

ec
on

ds
)

navig_sql
navig_proc
direct

btree
transbase

1e+04 5e+04 2e+05 1e+06 5e+06

50
20

0
10

00
50

00
50

00
0

(b3) Database Size Impact
Page count (dim = 15, sel = 0.1%)

Database size (# tuples)

C
ou

nt
of

ac
ce

ss
ed

pa
ge

s

navig_sql
navig_proc
direct

btree
transbase

Chapter 5 Experiments 60

Similarly to previous section, we will try to identify explanation or at least a deeper
insight into each presented finding. Although many other causes can be considered,
those ones listed below stand more or less for the main reason for determined behavior:

1 The excellent results of native UB-Tree implementation could have been expected
without any doubts. In comparison with other methods it comprises set of
advantages:

� UB-Tree access method is tailor-made for multidimensional data. Thus the
performance of Oracle's native compound B-Tree is less efficient in all measured
values.

� In contrast to any relational access method, native index implementation can
handle any operation with most possible effectivity. This feature has already been
mentioned in the Introduction and it just cannot be beaten simply.

2 The relational access methods generally bring some overhead into their evaluation.
Secondary index structures have to be traversed and then the index table is searched
on relevant items. However, in spite of this cost we may see that relational UB-Tree
methods (particularly navig_proc and direct) usually require less disk pages to be
accessed in contrast to the native compound B-Tree method. The difference is bigger
with growing count of dimensions and also with growing database size. Thus we
may see that the dedicated multidimensional access method again wins over the
simpler one.

The bad performance of navig_sql has already been discussed previously. Full table
scan that is always included into the execution plan of used recursive SQL query
processing just causes that the count of accessed pages is too high.

3 The real time required for processing of a relational access method seems to be the
dark side of its implementation.

Probably the most crucial condition that can negatively impact the overall behavior is
the count of context switches involved in evaluation of user defined predicates and
functions. All SQL statements in used implementation handle with custom data types
Type_tuple and Type_z_value which are stored in index related tables.

Although Oracle provides the possibility to convert the PL/SQL code related to such
data types and predicates into C, then compile the code into a dynamic library and
then link the library, this procedure does not improve the performance much.

When thinking of the steps that the database engine has to take to evaluate access via
each index type, we may approximate following simplified actions:

� In case of btree method, database kernel reads physical pages related to native
compound B-Tree implementation and traverses them to the searched items.

� In case of direct method, quite heavy computation is involved in query box
decomposition at the beginning of whole process; no disk pages are accessed yet,
however the related time is considerable. Then the secondary index is used by the
database kernel to access those pages of the index table that contain result
candidates. Then all such candidates are filtered; the filtering comprises the
mentioned overhead of evaluating user defined function from within a SQL
statement.

Chapter 5 Experiments 61

� In case of navig_proc, high amount of context switches is comprehended directly
into the way of traversing the index table, where several consequent SQL
statements are issued from user environment to perform the actual evaluation of
the access method.

� In case of navig_sql, the real processing time simply cannot be small when the
count of accessed pages is significantly high.

All together, the native compound B-Tree overpowers the relational UB-Tree index
implementation.

Chapter 6 Summary and Conclusion 62

In this work, implementation of a UB-Tree access method via the relational approach has
been presented and compared with implementation of the UB-Tree directly into a
database kernel.

As expected, the performance of a relational access method is far behind the
performance of a native kernel integration of the same access method. The size of
relational index is higher, queries with usage of native method require less disk pages to
be accessed and the overall processing time is simply incomparable.

With respect to determined findings it seems that the native kernel integration of a new
access method is the only suitable approach. However, this way is mostly available only
to those developers who have access to source code of low level DBMS kernel
functionality. Moreover, in terms of development time, the relational implementation is
much cheaper since there is no impact of direct kernel changes on overall DBMS
performance which may simply occur during the integrating approach. Thus it depends
on several circumstances which way is the proper one to be chosen.

Usage of UB-Tree access method as a dedicated method for handling multidimensional
data was proven to be more suitable than usage of less sophisticated B-Tree with
compound keys. Considering just the count of I/O operations, this finding is valid even
when comparing the relational UB-Tree index and a native implementation of compound
B-Tree. Despite this fact, the time for processing queries with usage of the relational
UB-Tree was found significantly worse than in case of the kernel evaluation of B-Tree
access. The bottleneck of a relational approach is the necessity to use user defined
functions in executive SQL queries.

Surely, usage of the relational approach is often the only available way when a
requirement to build an index upon a custom data type arises. On the other hand, when
native database data types are subject to index, it does not seem to be wise to incorporate
a relational approach method which self uses custom data types. An interesting case
would occur if a relational index could be implemented with usage of just the native
database types, or at least when there were no custom predicates and functions in
relevant SQL queries.

C H A P T E R 6

Summary and Conclusion

References 63

[1] Hans-Peter Kriegel, Martin Pfeifle, Marco Pötke, Thomas Seidl: The Paradigm
of Relational Indexing: A Survey, Proc. 10. GI-Fachtagung Datenbanksysteme
für Business, Technologie und Web (BTW), Leipzig, 2003, in: Lecture Notes in
Informatics (LNI), Springer, 2003

[2] Frank Ramsak, Volker Markl, Robert Fenk, Martin Zirkel, Klaus Elhardt,
Rudolf Bayer: Integrating the UB-Tree into a Database System Kernel, in:
Proceeding of the 26th International Conference on Very Large Databases,
Cairo, Egypt, 2000

[3] Robert Fenk, Volker Markl, Rudolf Bayer: Interval Processing with the UB-
Tree, in: Proceedings of the 2002 International Symposium on Database
Engineering & Applications, 2002

[4] Michal Krátký, Tomáš Skopal: Benchmarking the UB-tree, in: Proceedings of
DATESO, Desná-Černá Říčka, 2003

[5] Rudolf Bayer. The Universal B-Tree for multidimensional indexing: General
Concepts, in: Proceedings of World-Wide Computing and its Applications ’97,
1997

[6] Tomáš Skopal, Michal Krátký, Václav Snášel, Jaroslav Pokorný: On Range
Queries in Universal B-trees, ARG technical report, ARG-TR-01-2003,
Department of Computer Science, VŠB-Technical University of Ostrava, 2003

[7] David Hoksza: Multidimensional Indexing for Relational Databases, diploma
thesis (in Czech), Faculty of Mathematics and Physics, Charles University in
Prague, 2006

[8] http://www.oracle.com/ … Oracle DBMS homepage

[9] http://www.transaction.de/ … Transbase DBMS homepage

[10] http://commons.wikimedia.org/wiki/Image:B-tree-aggregated-example.png

[11] http://en.wikipedia.org/wiki/PL_SQL … Details about Oracle's PL/SQL
programming language

[12] http://www.r-project.org/ … Homepage of R-project, free software environment
for statistical computing and graphics

[13] http://www.wampserver.com/en/ … Integrated package of Apache webserver
with PHP5 engine and MySQL database for Windows platform

References

Appendix A Relational UB-Tree Usage 64

This Appendix stands for a short guide of the relational UB-Tree index integration into
Oracle DBMS. It also describes the procedure to launch benchmarking tests and reveals
the content of the enclosed DVD disk.

Enclosed DVD Content

The content of the enclosed DVD is grouped into following folders:

� installs
This folder contains installation files of these applications for Windows platform:

� Oracle XE 10g

� Oracle SQL Developer

� Transbase 6.4.2
� ub_tree

This folder contains executive SQL scripts for integration of relational UB-Tree into
Oracle DBMS. Particularly, they are following:

� create_common.sql: create SQL script containing definitions of functions,
procedures, packages, data types and other database objects related to both the
direct scheme and the navigational scheme implementations of relational UB-
Tree.

� create_direct.sql: create SQL script containing definitions of database
objects related just to the direct scheme implementation of relational UB-Tree.

� create_navigational.sql: create SQL script containing definitions of
database objects related just to the navigational scheme implementation of
relational UB-Tree.

� drop_common.sql: drop SQL script which is used for destruction of database
objects related to both the direct scheme and the navigational scheme
implementations of relational UB-Tree.

� drop_direct.sql: drop SQL script which is used for destruction of database
objects related just to the direct scheme implementation of relational UB-Tree.

� drop_navigational.sql: drop SQL script which is used for destruction of
database objects related just to the navigational scheme implementation of
relational UB-Tree.

� benchmark
This folder contains .zip file with PHP scripts to connect to both Oracle and
Transbase DBMS via ODBC interface, to run benchmarking tests and to collect
results of the tests. There are also several subfolders containing pre-generated data of
different size and dimension that are used during the tests.

A P P E N D I X A

Relational UB-Tree Usage

Appendix A Relational UB-Tree Usage 65

Installation

Following steps have to be taken to integrate the relational UB-Tree into Oracle DBMS:

1 Install Oracle XE 10g (available on enclosed DVD disk). Connect as SYSTEM user
to the Oracle and create a standard user that will be used as an account to log in to
the database in order to integrate the relational index. This user should be granted all
rights except from DBA to be able to integrate the relational UB-Tree.

If you plan to evaluate benchmarking tests under specified user as well, you need to
grant also DBA right to this user, otherwise it is not possible to obtain specific
information from system catalogues during the test.

2 For higher convenience, install Oracle SQL Developer (just extract relevant .zip file
from enclosed DVD disk).

3 Run Oracle SQL Developer, connect to the database with user created in step (1) and
load required scripts:

� To enable navigational scheme of relational UB-Tree, run scripts
create_common.sql and create_navigational.sql.

� To enable direct scheme of relational UB-Tree, run scripts
create_common.sql and create_direct.sql.

� To drop either of the schemes or whole relational index, run scripts
drop_navigational.sql, drop_direct.sql, and eventually
drop_common.sql. Please note that in case a navigational scheme is loaded
into Oracle and you need to load the direct one, the navigational should be
dropped at first (and vice versa).

4 Bind the index with a table as outlined in following section.

This step is not needed if you plan just to launch the benchmarking PHP application
as described later, because it is done automatically during the benchmark tests.

Binding the Index with a Table

To bind the relational UB-Tree index with a table, please take following steps. Each step
also comprises an example of its usage in 3-dimensional space:

1 Create a table that will contain primary data which are subject to the relational UB-
Tree index.

CREATE TABLE primary_table (
id NUMBER PRIMARY KEY,
column_1 NUMBER,
column_2 NUMBER,
column_3 NUMBER

);
2 Define the constraints for each item (dimension) of the space.
INSERT INTO ub_constraints VALUES (1, -1000, 5000);
INSERT INTO ub_constraints VALUES (2, 0, 350000);
INSERT INTO ub_constraints VALUES (3, 1500, 3000);

Appendix A Relational UB-Tree Usage 66

3 Define appropriate AFTER TRIGGERs to keep the index data consistent with
primary data.

CREATE TRIGGER ai_primary_table
AFTER INSERT ON primary_table
FOR EACH ROW
BEGIN

insert_tuple(Type_tuple(:new.column_1, :new.column_2,
:new.column_3), :new.id);

END;
/
CREATE TRIGGER au_primary_table

AFTER UPDATE ON primary_table
FOR EACH ROW
BEGIN

update_tuple(Type_tuple(:new.column_1, :new.column_2,
:new.column_3), :new.id);

END;
/
CREATE TRIGGER ad_primary_table

AFTER DELETE ON primary_table
FOR EACH ROW
BEGIN

delete_tuple(:old.id);
END;

/
4 To exploit the relational UB-Tree in a range query, adjust a SELECT statement to

employ the inside_query_box function.
SELECT primary.*
FROM TABLE(inside_query_box(Type_tuple(-500, 500, 2000),

Type_tuple(4000, 4000, 2500))) index
LEFT JOIN PRIMARY_TABLE primary

ON index.id = primary.id

Experiments Launching

In order to run auxiliary script to evaluate benchmarking tests, following steps are
needed:

1 Install a webserver with PHP5 support. E.g. on Windows platform, free Apache 2.0
with pre-configured PHP5 can be downloaded from [13].

2 In php.ini configuration file of PHP, set the max_execution_time variable to 0 so
that the tests are not interrupted untimely. Restart the webserver.

3 Define the ODBC data source connection for Oracle DBMS (eventually for
Transbase DBMS) in your system settings.

4 Copy and extract the content of benchmark folder from the enclosed DVD to the
executive folder of your webserver.

5 In the executive folder of your webserver, edit the copied file settings.php
appropriately according to the tests you are about to launch and according to your
DBMS and ODBC settings. It is necessary to set the benchmarked index type and log
in information for your database connection by assigning proper values to $database
variable within this file:

Appendix A Relational UB-Tree Usage 67

� $database = new OracleDirect(odbc_name, username, password)
to benchmark the relational UB-Tree index with direct scheme of index tables;

� $database = new OracleNavig(odbc_name, username, password)
to benchmark the relational UB-Tree index with navigational scheme of index
tables;

� $database = new OracleCompound(odbc_name, username,
password) to benchmark the native compound B-Tree index in Oracle;

� $database = new Transbase(odbc_name, username, password) to
benchmark the native UB-Tree index in Transbase.

When benchmarking the Transbase DBMS, additional steps are needed:

� edit the file tbstat.bat so that it contains proper paths to tbstat32
executable and tbstatis.dat file in your Transbase installation folder;

� run the executable tbadm32 in your Transbase installation folder from system
command line in the following way:

tbadm32 -i database_name monitor
The monitoring application has to be launched during whole benchmarking
process to be able to collect statistical information from Transbase.

6 To perform the actual benchmarking tests simply type in your browser link to the
profile.php script under the hostname assigned to your webserver (e.g.
http://localhost/profile.php).

The script connects via ODBC to the specified database, evaluates the tests and
writes the output to a file in your webserver executive folder.

To launch benchmarking tests with different settings just take steps (5) and (6) of above
proceeding.

Appendix B Relational UB-Tree Data Types 68

Short overview of user-defined data types that were used during the relational UB-Tree
implementation is introduced in this Appendix. For each of them a simple description
and particular SQL DDL statement used for its creation are presented.

Type_tuple
CREATE TYPE Type_tuple AS VARRAY(64) of NUMBER;

This data type represents a multidimensional tuple and serves as an interface between
user tables and index tables. All index related functions and procedures that are used in
both AFTER TRIGGERs and SELECT statements operate with this data type.

Type_numbers
CREATE TYPE Type_numbers AS TABLE of NUMBER;
This data type represents a temporary table of identifiers of primary data (which are
required to be of NUMBER data type) and stands for the return value of the function
inside_query_box() which is used in SELECT statements exploiting the relational UB-
Tree index.

Type_z_value
CREATE TYPE Type_z_value_tuple AS VARRAY(32) of NUMBER;
CREATE TYPE Type_z_value AS OBJECT (

z_value Type_z_value_tuple,
ORDER MEMBER FUNCTION zval_order

(other IN Type_z_value) RETURN NUMBER,
MEMBER FUNCTION to_string RETURN STRING DETERMINISTIC

);

Data type Type_z_value is an object that represents the base element of the relational
UB-Tree implementation - the Z-value. For its definition an auxiliary data type
Type_z_value_tuple is needed; it is intended for holding the actual data of a Z-
value.

The object comprises two member functions:

� Function zval_order() is used for comparison of two objects of given type, for
example in ORDER BY SQL clause or in an algebraic comparison.

� Function to_string() generates a deterministic string from actual Z-value which can
be used in a secondary functional index on a table column which is of
Type_z_value type.

 A P P E N D I X B

Relational UB-Tree Data Types

Appendix B Relational UB-Tree Data Types 69

In fact, Type_z_value comprises also other auxiliary member functions and
procedures than those listed. However, they are closely bound to the factual UB-Tree
implementation and thus they are not of high relevancy for this overview. Should you be
interested in the implementation details, please refer to the source code of the relational
UB-Tree on enclosed DVD.

Type_boundary_table
CREATE TYPE Type_boundary AS OBJECT (

lower Type_z_value,
upper Type_z_value

);
CREATE TYPE Type_boundary_table AS TABLE OF Type_boundary;

Data type Type_boundary_table represents a temporary table of boundaries of Z-
regions which arise from the decomposition of a query box in case of the direct scheme
implementation of the relational UB-Tree. It is used as the return value of the function
decompose_query_box() and for its definition an auxiliary data type Type_boundary
is needed; it stands for an item (a row) of given table.

