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Introduction
Mathematicians often study objects that can be described as a set of elements A
and a set of operations on A, say A. Such tuple (A,A) is called an algebra,
and the field of mathematics studying these structures in general is usually being
referred to as universal algebra.

For the properties studied in algebras, it is often not that important what is
the base set of operations itself, but rather what is the set of term operations,
i.e., what operations can be obtained by composing the basic operations. This
leads to the notion of clones – sets of operations closed under composition, which
contain all projections πn

i : (x1, ..., xn) ↦→ xi. For every algebra we can consider
a clone of its term operations, and for every clone C on a set A we have an
algebra (A, C).

Clones on a fixed set form a lattice with respect to the inclusion; the greatest
element is the clone of all operations, and the least is the clone of projections.
Mathematicians are interested in describing the lattices of clones on finite sets.
There is only countably many clones on a 2-element set and they were fully
described already by Post [16]. However, the situation is more complicated for
larger sets. It is known that already on 3-element set, there are 2ℵ0 clones [10].

Given a clone C, one of the interesting questions is whether it is finitely gen-
erated, that is, whether there exists a finite subset S ⊂ C such that all the other
operations in C can be expressed as compositions of the operations in S. By [16],
all clones on a 2-element set are finitely generated, and in [10] the first examples
of non-finitely generated clones were provided.

One of the important results in clone theory is the complete description of
maximal clones by Rosenberg’s classification [17]. Since the clone of all operations
is finitely generated, it follows that every proper subclone is contained in some
maximal clone, and there are only finitely many maximal clones on a given finite
set [15]. One of the classes of maximal clones are clones of monotone operations
with respect to bounded partial orders. It was proved in [11] that all maximal
clones, with the possible exception of the aforementioned clones of monotone
operations, are finitely generated. For the clones of monotone operations, it was
also shown in [11] that they are finitely generated if the partial order is a lattice
order or if the poset has at most seven elements. An example of a non-finitely
generated clone of monotone operations on an 8-element poset was provided by
Tardos [18], and further generalized for example in [19, 5]. The classification
of finitely generated maximal clones is still an open problem. One question in
particular is whether every finitely generated clone of monotone operations of a
bounded poset contains a near-unanimity operation.

Apart from the result of Tardos and the above mentioned generalizations,
we have not found much recent research concerned with finitely and non-finitely
generated clones. In this thesis we build on the clones presented in [7] and aim
to give examples of both finitely and non-finitely generated clones. In Chapter 1
we provide basic definitions and important concepts of clone theory. Chapter 2
is concerned with finitely generated clones, namely with a simple explicit con-
struction showing that a clone is finitely generated. The clones in this chapter
are adopted from or inspired mainly by [7, 13]. In Chapter 3 we relationally
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define certain clones of operations with restricted essential arity, which yields
non-finitely generated clones. Then we consider some possible modifications of
the relations. Finally, in Chapter 4, given a binary operation f which cannot
generate an operation that depends on three or more variables, we find a maxi-
mal clone of operations that depend on at most two variables, which contains f .
We partially generalize the result to higher arities, which, again, yields examples
of non-finitely generated clones.
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1. General concepts of clone
theory
1.1 Basic definitions and notation
Given a nonempty set A, an operation on A is a mapping f : An −→ A from a
power of A to A. We call n the arity of f and denote it by ar(f) = n. We only
consider operations of finite nonzero arity. In this thesis we also deal exclusively
with operations on finite sets.

We denote tuples by boldface letters and, unless stated otherwise, its coordi-
nates by the same letters indexed from 1 to the arity, e.g., for a ∈ An we have
a = (a1, a2, . . . , an). We use this convention also for variables, e.g., for an n-ary
operation we often write f(x) and mean f(x1, x2, . . . , xn).

We will often evaluate an n-ary operation on k-tuples component-wise, and it
will be convenient to use a shorthand notation. For ai = (ai

1, ai
2, . . . , ai

k) and an
n-ary operation f we write

f(a1, a2, . . . , an) = f

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

a1
1

a1
2
...

a1
k

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎝

a2
1

a2
2
...

a2
k

⎞
⎟⎟⎟⎟⎠

, . . . ,

⎛
⎜⎜⎜⎜⎝

an
1

an
2
...

an
k

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

f(a1
1, a2

1, . . . , an
1 )

f(a1
2, a2

2, . . . , an
2 )

...
f(a1

k, a2
k, . . . , an

k)

⎞
⎟⎟⎟⎟⎠

.

For sets A1, . . . , An ⊆ A we define a set

f(A1, . . . , An) = {f(a1, . . . , an) | ai ∈ Ai for i = 1, . . . , n}

and similarly for sets of tuples using the above convention.
Another shorthand notation will be used for universal equalities, where we

omit the universal quantifiers, e.g.,

∀x ∈ An : f(x1, . . . , xn) = g(x1, . . . , xn)

will be written as
f(x1, . . . , xn) = g(x1, . . . , xn).

By n-ary projection onto the i-th coordinate we mean the operation

πn
i (x1, . . . , xn) = xi.

The central concept of this thesis is a structure called clone.

Definition 1. Let A be a nonempty set and C be a set of operations on A. We
say that C is a clone if

• C contains all projections, and

• C is closed under superposition, that is, if f, g1, . . . , gn ∈ C, where f is n-ary
and g1, . . . , gn are k-ary, then also

f(g1, . . . , gn)(x1, . . . , xk) := f(g1(x1, . . . , xk), . . . , gn(x1, . . . , xk)) ∈ C.
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Using projections and superposition, we can see that a clone is closed under a
general composition, i.e., an operation given by any term in some operations from
a clone is again in the clone. For instance, given f(x1, x2, x3), g(y1, y2), h(z) ∈ C
we have also

f(g(x1, x2), x1, h(x3)) =
f(g(π3

1(x1, x2, x3), π3
2(x1, x2, x3)), π3

1(x1, x2, x3), h(π3
3(x1, x2, x3))) ∈ C.

It will be sometimes useful to depict composed operations as trees. The above
example would be depicted as in Figure 1.1.

f

g x1 h

x1 x2 x3

Figure 1.1: A tree depiction of f(g(x1, x2), x1, h(x3))

It will be convenient to also use a different definition of a clone, see e.g.
[9, 12, 15].

Definition 2. We say that a set of operations on a given set is a clone, if it
contains identity and is closed under the following four procedures:

• Substitution. Given an n-ary operation f and an m-ary operation g, sub-
stitution forms an (n + m− 1)-ary operation

(f ∗ g)(x1, x2, . . . , xm+n−1) = f(g(x1, . . . , xm), xm+1, . . . , xm+n−1).

• Permutation of variables. Given an n-ary operation f and a permutation σ
on {1,. . . ,n}, we can permute the variables to obtain

Permσ(f)(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n)).

• Identification of variables. Given an n-ary operation f , we can identify the
first two variables to obtain an (n− 1)-ary operation

∆f(x1, x2, . . . , xn−1) = f(x1, x1, x2, . . . , xn−1).

• Introduction of a “dummy” / fictitious variable. Given an n-ary operation
f , we can introduce a new variable to obtain an (n + 1)-ary operation

∇f(x1, x2, . . . , xn, xn+1) = f(x1, x2, . . . , xn).

The two definitions are, indeed, equivalent. We have seen how to use pro-
jections and superposition to obtain a general composition. It is clear that we
can also carry out all the procedures in Definition 2 in a similar manner. For
the other direction, we first realize that introducing n − 1 new variables to the
identity and than swapping the first and the i-th variable, we get the projection
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πn
i . To obtain the superposition of f and g1, . . . , gn, we first use the substitution

and permutation of variables to substitute gi’s into f , and than we identify the
corresponding variables in each gi.

We denote PA the clone of all projections, also called the trivial clone, and OA

the clone of all operations on A, also called the full clone. It is easily seen that
an intersection of clones is again a clone. For S, an arbitrary set of operations
on a given set, Clo(S) denotes the smallest clone (with respect to inclusion)
containing S. Every operation in Clo(S) is expressible as a term using operations
from S – with a slight abuse of notation expressing any projection as just a single
variable. We also say that S generates the clone Clo(S), which leads us to define
another core notion for this text.

Definition 3. Let C be a clone on a set A. We say that C is finitely generated
if there exists a finite subset S ⊆ C such that C = Clo(S).

In the opposite case, when there is no such a finite subset, the clone C is said
to be non-finitely generated.

We denote
C(k) = {f ∈ C | f is at most k-ary} .

Given f ∈ C(k), we may always assume f to be k-ary. If the arity of f is lower,
we add fictitious variables to make it k-ary.

It is easy to observe that a clone C on a finite set is finitely generated if and
only if there exist k ∈ N such that C = Clo(C(k)). If C is finitely generated by
f1, . . . , fn, and m is the maximal arity of f1, . . . , fn, then C = Clo(C(m)). The
converse holds since C(k) is finite.

1.2 Relations, compatibility and Galois
correspondence

There is a powerful tool for studying clones emerging from a connection between
sets of operations and sets of relations on a given set [2], [6].

Given a set A, a relation on A of arity n is a subset R ⊆ An. We will sometimes
write R(a1, a2, . . . , an) for (a1, a2, . . . , an) ∈ R. Given a set of relations R, a pair
A = (A,R) is a relational structure and is often denoted by blackboard bold
letters. By abuse of notation we will also treat A as the set of relations itself.

Definition 4. We say an operation f : An → A is compatible with a relation
R ⊆ Ak if f(a1, a2, . . . , an) ∈ R whenever a1, a2, . . . , an ∈ R, i.e., we have the
following scheme:

a1
1 a2

1 . . . an
1

f→ f(a1
1, a2

1, . . . , an
1 )

a1
2 a2

2 . . . an
2

f→ f(a1
2, a2

2, . . . , an
2 )

... ... ... ... ...
a1

k a2
k . . . an

k

f→ f(a1
k, a2

k, . . . , an
k)∈ ∈ ∈ ∈

R R . . . R R

.

We also say that R is preserved by f .
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The schemes of the form used in the definition will be referred to as “compat-
ibility schemes”. We will call the right-hand side column the resulting column.

An operation compatible with all relations of a relational structure A is called
a polymorphism of A. The set of all polymorphisms of A is denoted Pol(A).
Similarly a relation preserved by all operations from a given set S is said to be
invariant under S and the set of all relations invariant under S is denoted Inv(S),
i.e.,

Pol(A) =
{
f : An → A |n ∈ N, ∀R ∈ A : f is compatible with R

}
,

Inv(S) =
{
R ⊆ Ak | k ∈ N, ∀f ∈ S : f is compatible with R

}
.

For a fixed set A, operators Pol and Inv realize a Galois correspondence between
sets of operations on A and sets of relations on A.

Seeing this, an important question arises. What are the closed sets on either
side of this correspondence? We are concerned only with the case where the
domain A is finite. On the operations side the answer is clones. It is not difficult
to observe that Pol(A) forms a clone for any set of relations A. The more difficult
part is to show that clones, indeed, form closed sets, i.e., that every clone is a set
of polymorphisms of some set of relations.

Theorem 1 ([2], [6]). Let A be a finite set and S be a set of operations on A.
Then

Clo(S) = Pol(Inv(S)).

A similar result can be derived for the relational side. The closed sets there
are so called relational clones, which are sets of relations that are closed under
pp-definitions (primitively positive definitions), and contain the empty relation.
We say a relation R is pp-definable from R1, . . . , Rk if there exists a formula defin-
ing R, which uses only existential quantifiers, conjunctions, equality and relations
R1, . . . , Rk. We denote by RelClo(A) the smallest relational clone containing A.
It is, again, straightforward to check that Inv(S) is always a relational clone. The
converse implication also holds.

Theorem 2 ([2], [6]). Let A be a finite set and A be a set of relations on A.
Then

RelClo(A) = Inv(Pol(A)).

1.3 Near-unanimity operations and finitely
generated clones

In this section we introduce the notion of near-unanimity operations and demon-
strate how the Pol-Inv Galois correspondence can be utilized.

In universal algebra, it is often studied what we can derive about an algebra
or a variety given the existence of an operation satisfying some interesting iden-
tity. One of the important operations is a so called majority, which is a ternary
operation satisfying

m(y, x, x) = m(x, y, x) = m(x, x, y) = x.
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This concept can be generalized in a straightforward manner to so called
near-unanimity operations. We say that an operation f of arity n ≥ 3 is a
near-unanimity operation if the identity

f(x, x, . . . , x, y, x, . . . , x) = x

holds for y being in any position. Note that majority is a special case of near-
unanimity operation and it is actually the strongest one in the following sense.
Let C be a clone and f ∈ C be an n-ary near-unanimity operation. Adding
fictitious variables y1, . . . , yk, we can construct an operation g ∈ C of arity n + k
as

g(x1, x2, . . . , xn, y1, . . . , yk) := f(x1, x2, . . . , xn),
and g is then also a near-unanimity operation.

We now aim to prove the following known corollary of the results due to
K. A. Baker and A. F. Pixley [1].

Proposition 3. If a clone on a finite set contains a near-unanimity operation,
then it is finitely generated.

To prove the proposition, we will need the concept of a projection of a relation.
Given an m-ary relation R and a set of coordinates I = {i1, . . . , ik}, the projection
ProjI(R) of R onto the coordinates I is the k-ary relation

ProjI(R) = {(ri1 , ri2 , . . . , rik
) | (r1, r2, . . . , rm) ∈ R} .

Note that a projection of a relation can be always pp-defined from the relation.
For example the projection onto the first two coordinates of a 5-ary relation R
would be defined as

Proj1,2(R)(x1, x2) ≡ ∃y3 ∃y4 ∃y5 : R(x1, x2, y3, y4, y5).

Before we continue, let us go through a simple example to build up the intu-
ition. Let us imagine we have two relations

R1 =

⎧
⎪⎨
⎪⎩

⎛
⎜⎝

1
0
0

⎞
⎟⎠ ,

⎛
⎜⎝

0
1
0

⎞
⎟⎠ ,

⎛
⎜⎝

0
0
1

⎞
⎟⎠

⎫
⎪⎬
⎪⎭

,

R2 =

⎧
⎪⎨
⎪⎩

⎛
⎜⎝

1
0
0

⎞
⎟⎠ ,

⎛
⎜⎝

0
1
0

⎞
⎟⎠ ,

⎛
⎜⎝

0
0
1

⎞
⎟⎠ ,

⎛
⎜⎝

0
0
0

⎞
⎟⎠

⎫
⎪⎬
⎪⎭

.

The projection of both R1 and R2 onto any two coordinates is

P =
{(

1
0

)
,

(
0
1

)
,

(
0
0

)}
.

This shows us that in general the projections of a relation do not uniquely deter-
mine the relation. However, if we have an unknown ternary relation R?, we know
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that the projections of it onto any two coordinates is P , and, moreover, that it
is compatible with a majority operation m, then we know that

? 0 0 m→ 0
0 ? 0 m→ 0
0 0 ? m→ 0∈ ∈ ∈ ∈

R? R? R? R?

,

which rules out the option R1. We then actually know now that necessarily
R? = R2. The compatibility with a majority tells us the relation is “maximal”
with given projections in the sense that every tuple consistent with the projections
is in the relation. Note that this exactly means that R? can be pp-defined from
its projections as
R?(x1, x2, x3) ≡ Proj1,2(R?)(x1, x2) ∧ Proj1,3(R?)(x1, x3) ∧ Proj2,3(R?)(x2, x3).

This holds in general.
Lemma 4. Let f be an n-ary near-unanimity operation which preserves an m-ary
realtion R, where n ≤ m. Then R is uniquely determined by its (n − 1)-ary
projections as

R(x1, . . . , xm) ≡
⋀

{i1,...,in−1}⊆{1,...,m}
Proji1,...,in−1(R)(xi1 , xi2 , . . . , xin−1).

Proof. We inductively prove that for all k, such that n − 1 ≤ k < m, the k-ary
projections of R uniquely determine the (k + 1)-ary projections of R in the sense
of the pp-definition in the claim. It is enough to show that the projection onto
the first k + 1 coordinates is uniquely determined by all the projections to “all
but one of the first k +1 coordinates”. For the other cases, there are just different
indices.

Suppose that (a1, a2, . . . , ak+1) is such that the projections of the tuple are in
the corresponding projections of R, i.e., for all i = 1, . . . , k + 1 we have

(a1, . . . , ai−1, ai+1, . . . , ak+1) ∈ Proj1,...,i−1,i−1,...,k+1(R).
Then we obtain

? a1 a1 . . . a1 a1
f→ a1

a2 ? a2 . . . a2 a2
f→ a2

a3 a3 ? . . . a3 a3
f→ a3

... ... ... . . . ... ... ...
ak ak ak . . . ? ak

f→ ak

ak+1 ak+1 ak+1 . . . ak+1 ? f→ ak+1

? ? ? . . . ? ? f→ ?
... ... ... . . .

... ... ...
? ? ? . . . ? ? f→ ?∈ ∈ ∈ ∈ ∈ ∈

R R R R R ⇒ R

,

which means that (a1, . . . , ak+1) ∈ Proj1,...,k+1(R), and that is what we wanted.
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A direct consequence is the following lemma.

Lemma 5. Let S be a set of operations on a finite set A containing an n-ary
near-unanimity operation. Then

S = Pol(Inv(S)) = Pol(Inv(S)(n−1)),

where Inv(S)(n−1) are all the at most (n− 1)-ary relations from Inv(S).

Proof. The inclusion “⊆” is trivial. For the other inclusion, let R ∈ Inv(S) be a
relation of arity at least n. Then Inv(S)(n−1) contains all of its (n − 1)-ary pro-
jections, since Inv(S) is a relational clone, i.e., it is closed under pp-definitions.
Since R is compatible with the near-unanimity operation in S, by Lemma 4, R
is pp-definable from these projections. This means that if we take a polymor-
phism of Inv(S)(n−1), it will also be compatible with R. This proves the inclusion
Pol(Inv(S)) ⊆Pol(Inv(S)(n−1)).

Getting back to the proof of Proposition 3; since there are only finitely many
at most (n − 1)-ary relations on a finite set, there are also only finitely many
sets of the form Inv(D)(n−1). Recall that C(k) denotes the set of all at most k-ary
operations from C. We have a chain

C(1) ⊆ C(2) ⊆ C(3) ⊆ · · · ⊆ C(k) ⊆ · · · ⊆ C,

and applying Inv(-)(n−1) we get

Inv(C(1))(n−1) ⊆Inv(C(2))(n−1) ⊆. . . ⊆Inv(C(k))(n−1) ⊆. . . ⊆Inv(C)(n−1),

in which we can then only have finitely many strict inclusions. But that means
there exists k such that

Inv(C(k))(n−1) = Inv(C)(n−1). (1.1)

We can assume that k ≥ n, so C(k) contains an n-ary near-unanimity operation.
Using Theorem 1 and Lemma 5, we obtain

Clo(C(k)) Theorem 1= Pol(Inv(C(k))) Lemma 5= Pol(Inv(C(k))(n−1)) (1.1)=

= Pol(Inv(C)(n−1)) Lemma 5= Pol(Inv(C)) Theorem 1= C,

which shows that C is finitely generated by its at most k-ary part, and hence
finishes the proof of Proposition 3.

This result can be generalized to clones whose operations have restricted image
as shown in [4]. For B ⊆ A we say that f is B-near-unanimity operation if

∀b, c ∈ B : f(b, . . . , b, c, b, . . . , b) = b

for every position of the different element c. We can then formulate the following.

Proposition 6 ([4]). Let B ⊆ A be finite sets and C be a clone on A. Let us
denote

C[B] = {f ∈ C | Im(f) ⊆ B} ∪ PA.

If C[B] contains a B-near-unanimity operation, then it is finitely generated.
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1.4 Characterizations of non-finitely generated
clones

In this section we introduce several known equivalent formulations of a clone being
non-finitely generated. A simple observation which we use throughout Chapter 3
is the following lemma.

Lemma 7. Let {Ck}k∈N be a sequence of clones such that

C1 ⊊ C2 ⊊ · · · ⊊ Ck ⊊ · · · ⊊
⋃

k∈N
Ck =: C.

Then C is a non-finitely generated clone.

Proof. Clearly, C is a clone, since for any f, g1, . . . , gn ∈ C there exists k ∈ N such
that f, g1, . . . , gn ∈ Ck, i.e. also the superposition f(g1, . . . , gn) ∈ Ck ⊆ C.

By the same argument, C is non-finitely generated, because given any finite
number of operations f1, . . . , fn ∈ C, there exists k ∈ N such that

Clo(f1, . . . , fn) ⊆ Ck ⊊ C.

In particular we can always consider the chain of clones generated by the at
most m-ary parts. We then obtain a characterization.

Lemma 8. A clone C on a finite set is non-finitely generated iff there are infinitely
many strict inclusions in the chain

Clo(C(1)) ⊆ Clo(C(2)) ⊆ · · · ⊆ Clo(C(m)) ⊆ · · · ⊆
⋃

m≥1
Clo(C(m)) = C.

Proof. By Lemma 7, we have the implication from right to left. The converse
also holds, because if there is only finitely many strict inclusions in the chain, we
have Clo(C(m)) = C for some m ∈ N, and hence C is finitely generated, since there
are only finitely many at most m-ary operations on a finite set.

Using the Pol-Inv Galois correspondence, we can prove another useful condi-
tion equivalent to C being non-finitely generated. The following characterization
was used by Tardos in [18].

Lemma 9. Let C be a clone on a finite set A. Then C is non-finitely generated
if and only if

∀m ∈ N ∃R, a relation on A : R ∈ Inv(C(m)) and R /∈ Inv(C). (1.2)

Proof. Let C be finitely generated by operations f1, . . . , fk. We set

m = max ar(a1), . . . , ar(ak).

Let R be a relation on A such that R ∈ Inv(C(m)). Then R is compatible
with f1, . . . , fk, and hence it is also compatible with Clo(f1, . . . , fk) = C, i.e.,
R ∈ Inv(C).

11



For the converse implication, let m be such that for all relations R on A we
have R ∈ Inv(C(m))⇒ R ∈ Inv(C). Then Inv(C(m)) = Inv(C), since “ ⊆” holds for
every clone. We have

C = Pol(Inv(C)) = Pol(Inv(C(m))) = Clo(C(m)),
hence C is finitely generated by the set C(m).

Essentially, this is just a relational reformulation of the previous Lemma 8,
since we have Pol(Inv(C(m))) ⊊ Pol(Inv(C)) iff Inv(C(m)) ⊊Inv(C), so the condi-
tion (1.2) is equivalent to saying that there are infinitely many strict inclusions
in the chain

Pol(Inv(C(1))) ⊆ Pol(Inv(C(2))) ⊆ · · · ⊆ Pol(Inv(C(m))) ⊆ · · · ⊆
⋃

m≥1
Pol(Inv(C(m))) = C.

Since Pol(Inv(C(m))) = Clo(C(m)) by Theorem 1, this is the chain from Lemma 8.
As shown in [19], Lemma 9 can be reformulated using the notion of m-covers.

For a set R and m ∈ N we say that R1, . . . , Rs is m-cover of R, if

(i)
s⋃

i=1
Ri = R, and

(ii) every m-element subset of R is contained in one of the sets R1, . . . , Rs.
This notion offers an equivalent condition to membership of a relation in

Inv(C(m)).
Lemma 10. Let C be a clone on A, and R be a relation on A. Then R ∈ Inv(C(m))
iff there exist R1, . . . , Rs, an m-cover of R, such that R1, . . . , Rs ∈ Inv(C).
Proof. If R ∈ Inv(C(m)), we set Rr1,...,rm =

{
f(r1, . . . , rm) | f ∈ C(m)

}
for every set

of m elements r1, . . . , rm ∈ R. Then clearly {r1, . . . , rm} ⊆ Rr1,...,rm for any m
element subset of R, since C(m) contains projections. By R ∈ Inv(C(m)), we have
Rr1,...,rm ⊆ R. Hence, it follows that {Rr1,...,rm | r1, . . . , rm ∈ R} is m-cover of R.

Let r1, . . . , rm ∈ R. We show that Rr1,...,rm ∈ Inv(C). Let g ∈ C be an
n-ary operation and s1, . . . , sn ∈ Rr1,...,rm . Then there exist m-ary operations
f1, . . . , fn ∈ C(m) such that fi(r1, . . . , rm) = si for all i = 1, . . . , n. Since the
superposition g(f1, . . . , fn) is m-ary, that is, g(f1, . . . , fn) ∈ C(m), we have also

g(s1, . . . , sn) = g(f1, . . . , fn)(r1, . . . , rm) ∈ Rr1,...,rm .

On the other hand, let R1, . . . , Rs ∈ Inv(C) be an m-cover of R and f ∈ C(m).
Let r1, . . . , rm ∈ R. Then there exists i ∈ {1, . . . , s} such that r1, . . . , rm ∈ Ri.
Since Ri ∈ Inv(C), we have

f(r1, . . . , rm) ∈ Ri ⊆ R.

Therefore, R ∈ Inv(C(m)).

Putting Lemma 9 and Lemma 10 together yields the following characteriza-
tion.
Corollary 11. A clone C on a finite set is non-finitely generated iff for every
m ∈ N there exist R1, . . . , Rs ∈ Inv(C), an m-cover of R := ⋃s

i=1 Ri, such that
R /∈ Inv(C).
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2. Finitely generated clones
In this chapter we present several examples of finitely generated clones, describe
an explicit construction showing how to express operations using the generators,
and demonstrate how the construction can be modified.

2.1 The clone of all operations
As noted before, OA – the set of all operations on a set A – is a clone, and,
by Proposition 3, it is finitely generated for any finite A, since it contains a
near-unanimity operation. There is, however, also a simple explicit construction
showing that OA is finitely generated, which can also be modified to show that
some other clones without near-unanimity operations are finitely generated.

Boolean functions

Let us start with the binary case O{0,1}. It is a well known fact that we can
construct any boolean function f : {0, 1}n −→ {0, 1} using just identity, nega-
tion, conjunction and disjunction. The trick is to take all the tuples on which
f evaluates to 1, and, using the available operations, construct a logical formula
saying “the tuple x is one of these”.

For every a such that f(a) = 1 we define an n-ary operation

ga→1(x1, . . . , xn) := u1(x1) ∧ u2(x2) ∧ · · · ∧ un(xn),

where ui is identity if ai = 1 and negation if ai = 0. Then ga→1(x) = 1 if and
only if x = a. This way we get f = ⋁

a:f(a)=1
ga→1, where ⋁ is just a composition of

binary disjunctions.

The explicit construction for OA

Generalizing this construction to an arbitrary finite set A is quite straightforward.
We will show that any operation on A is generated by some unary and binary
operations. Let us fix an element 0 ∈ A. In place of identity and negation we
will need simple unary operations ua→b given by

ua→b(x) =
{

b if x = a,
0 otherwise.

As for the binary operations, we take a quite natural generalization of conjunction
and disjunction defined by

∧(x, y) =
{

x if x = y,
0 otherwise

and ∨(x, y) =

⎧
⎪⎪⎨
⎪⎪⎩

x if y = 0 or x = y,
y if x = 0 or x = y,
0 otherwise.

(2.1)

Note that both operations are associative and by composing we get n-ary versions
⋀

(x) =
{

a if x1 = · · · = xn = a,
0 otherwise

,
⋁

(x) =
{

a if {x1, . . . , xn} = {0, a},
0 otherwise.

13



Even though these are formally different operations for each arity, for the sake
of simplicity we will denote them by the same symbol for all n ∈ N. Note that
for n = 2 we have just the basic operation ∧/∨ and for n = 1 we define both as
identity, which is always in a clone since it is a projection. The intended arity
will be always clear from the context.

Given a tuple a ∈ An and a desired result b ∈ A we can now generate an
n-ary operation ga→b(x) = ua1→b(x1) ∧ ua2→b(x2) ∧ · · · ∧ uan→b(xn) satisfying

ga→b(x) =
{

b if x = a,
0 otherwise.

The definition works even for ga→0. We get a constant 0, but it is convenient for
clarity to take these into account as well.

Let now f ∈ OA be an arbitrary n-ary operation on A. It is easy to see that
f = ⋁

a∈An
ga→f(a), since for any tuple at most one “g” will be nonzero and so the

disjunction returns the result of this “g”, which is the result of f on the given
tuple.

⋁

⋀ ⋀ . . . ⋀

ua1
1→f(a1) ua1

2→f(a1) . . . ua1
n→f(a1) ua2

1→f(a2) . . . ua2
n→f(a2) ... ... . . .

x1 x2 . . . xn x1 . . . xn

ga1→f(a1)(x)

Figure 2.1: Operation f generated by conjunction, disjunction and unary opera-
tions. The “⋀-blocks” are ga→f(a) for all the different tuples a ∈ An. The ⋀ and⋁ are compositions of the binary versions, so the tree is in fact much deeper then
three levels.

We have shown that any operation is generated by unary and binary opera-
tions. Since there are only finitely many of these – and we do not even need all
of them – this proves that the clone OA is finitely generated.

2.2 Modifications of the construction
In this section we demonstrate how the above construction can be modified to
show that various clones are finitely generated.

In Section 3.3 we talk about restricted image and about so called insensitivity,
and show that clones of all operations with image restricted to some B which are
also B-insensitive are non-finitely generated. Here we show that taking each
of these two properties on its own yields finitely generated clones. The clones
described here are inspired by [7].

Next we talk about “full cube-term blocker clones”, studied in [13], which
are interesting for classification of non-finitely related clones and are themselves
non-finitely related (we explain this notion later). We show that they are finitely
generated.
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The clone of operations with restricted image

For a nonempty finite set B ⊊ A we define a clone by

CB = {f : An → A |n ∈ N, Im(f) ⊆ B} ∪ PA.

The set CB is indeed a clone, as if we take f, g1, . . . , gn ∈ CB and the su-
perposition h(x) = f(g1(x), . . . , gn(x)), then either f is a projection onto the
j-th variable, and we have h = gj ∈ C, or Im(f) ⊆ B, and then we have also
Im(h) ⊆ B.

Although CB does not contain any near-unanimity operation, it does contain
a B-near-unanimity operation, so we know that the clone is finitely generated
by Proposition 6. We can, however, modify the above construction in a very
straightforward way to explicitly show that CB is generated by its unary and
binary operations and is, therefore, finitely generated.

We fix 0 ∈ B and define unary operations ua→b for a ∈ A, b ∈ B as before. We
need to have b ∈ B to have the image of the operation in B. But we only need
operations of the form ua→f(a) for a tuple a and an operation f with Im(f) ⊆ B,
which satisfy this condition.

The image of conjunction and disjunction as defined before is not in B but,
we do not need to pass elements from A \B through them, so we take a slightly
modified version where we just return 0 if we would normally return anything
outside B, i.e.,

∧(x, y) =
{

x if x = y and x ∈ B,
0 otherwise

,

∨(x, y) =

⎧
⎪⎪⎨
⎪⎪⎩

x if (y = 0 or x = y) and x ∈ B,
y if (x = 0 or x = y) and y ∈ B,
0 otherwise.

For any a ∈ An and b ∈ B we can now construct

ga→b(x) = ua1→b(x1) ∧ · · · ∧ uan→b(xn),

and, as before, for any f ∈ CB which is not a projection we get f = ⋁
a∈A

ga→f(a).

A union of clones of operations with restricted image

If we take a finite set A and several subsets B1, . . . , Bk ⊊ A, then we know that
CBi

is a finitely generated clone for all i = 1, . . . , k. Let us consider

C = CB1 ∪ CB2 ∪ · · · ∪ CBk
.

First of all, C is a clone. Take f, g1, . . . , gn ∈ C and h(x) = f(g1(x), . . . , gn(x)).
Then either f is a projection, and we have h = gj ∈ C for some j, or f ∈ CBi

for
some i, and then Im(f) ⊆ Bi, hence also Im(h) ⊆ Bi.

Now it is clear that C is finitely generated, because it is generated by the union
of the finite sets of generators of CB1 , . . . , CBk

. We can also finish the construction
by taking “translator functions”, which is a concept that will be useful later.
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Let us assume that B1 is the largest of the subsets with respect to the number
of elements. Then for each i we have a unary operation ti ∈ CBi

which “translates”
the elements of B1 to elements of Bi, meaning that the restriction t ↾B1 : B1 → Bi

is surjective. But then for any operation f ∈ CBi
we have an operation f̃ ∈ CB1

such that f = ti(f̃), hence C is generated by the generators of CB1 and one unary
translator operation ti for each i.

The clone of B-insensitive operations

Let B ⊊ A be again nonempty finite sets. We say that f is B-insensitive if it
cannot distinguish between different elements of B on the input, i.e., if

∀i ∀a ∈ An ∀b, b′ ∈ B :
f(a1, . . . , ai−1, b, ai+1, . . . , an) = f(a1, . . . , ai−1, b′, ai+1, . . . , an).

Let ∼B be the equivalence on A such that a ∼B a′ if either a = a′ or a, a′ ∈ B.
For a, a′ ∈ An we write a ∼B a′ if ai ∼B a′

i for every i ∈ {1, . . . , n}. Now we can
also say that f is B-insensitive iff f(a) = f(a′) whenever a ∼B a′.

We will now study the set

C = {f : An → A |n ∈ N, f is B-insensitive} ∪ PA.

We need to add projections separately, since they are not B-insensitive.
To show that C is a clone, take f, g1, . . . , gn ∈ C and consider the operation

h(x) = f(g1(x), . . . , gn(x)). If f is a projection, then h = gj ∈ C for some j.
Otherwise we show that h is B-insensitive.

Let a ∼B a′. Now for each i ∈ {1, . . . , n} either gi is B-insensitive, and than
the input to f is the same for a and a′, or gi is the projection onto the j-th
variable, and than gi(a) ∼B gi(a′), so switching from a to a′ in gi will not change
the result, because f is B-insensitive. Hence h(a) = h(a′).

Showing that C is finitely generated by our explicit construction is somewhat
tricky, since we can not directly pass elements from B through the operations of
C as before. We need to incorporate some kind of coding into the construction
to pass the information about which element from B should we output. There is
no problem when the operation outputs an element from A \B, but to make the
construction clearer, we will encode all the elements of A. It is essential here to
have some element outside of B to our disposal.

Let us fix 0 ∈ A and 0 ̸= 1 ∈ A \B, and let A = {e0, e1, . . . , ek−1}.
The unary operations “ua→b” will now only check if the input is right, but will

not tell anything about the output. That is, we will only use operations ua→1
defined by

ua→1(x) =
{

1 if x ∼B a,
0 otherwise.

For b ∈ B the operation ub→1 cannot distinguish between different elements of B,
but neither can the operations we want to generate, so this is not a problem.

The conjunction and disjunction can be quite simple. We want them to be
a regular conjunction and disjunction on 0, 1 and they can behave arbitrarily on
the other elements, since we never input any other elements in them. A natural
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way of defining them to make sure that they are in C is to let them “see” all
elements in B as 0 and all the other elements as 1, i.e.,

∧(x, y) =
{

1 if x, y /∈ B,
0 otherwise

and ∨(x, y) =
{

1 if x /∈ B or y /∈ B,
0 otherwise.

Together we can compose ga→1(x) = ua1→1(x1) ∧ · · · ∧ uan→1(xn) so that

ga→1(x) = χx∼Ba(x) =
{

1 if x ∼B a,
0 otherwise.

Now to the encoding. Let l be fixed such that k ≤ 2l. For b0, b1, . . . , bl ∈ {0, 1}
we denote by b0b1 . . . bl−1 the number with a binary representation b0b1 . . . bl−1.
We define unary encoders cj

i and l-ary decoder dec such that dec(cj
0, cj

1, . . . , cj
l−1)

evaluates to aj on (1, . . . , 1). We achieve this by letting

cj
i (x) =

{
the i-th digit of binary representation of aj if x = 1,
0 otherwise,

and

dec(x0, . . . , xl−1) = ay0,y1,...,yl
, where yi =χx/∈B(xi) =

{
1 if xi /∈ B,
0 if xi ∈ B.

There are actually only two coding operations: either it is a constant 0, or it
maps 1 to 1 and anything else to 0. Note that all the defined operations are
B-insensitive and that we have only one dec operation of a fixed arity l, so we
have still defined only finitely many operations.

Let now f be an n-ary B-insensitive operation on A. We will construct f
using the defined operations. The construction is illustrated in Figure 2.2.

Explicitly we will have f = dec(digf
0 , digf

1 , . . . , digf
l ), where

digf
i (x) :=

⋁

j∈{0,1,...,k−1}

⎛
⎝cj

i (
⋁

a:f(a)=ej

ga→1(x))
⎞
⎠ .

What happens here is that given a tuple a such that f(a) = er, 1 will be inputed
into cr

0, . . . , cr
l−1, and 0 will be inputed into every other cj

i . This is true, because
for all b such that f(b) ̸= er we have necessarily b ̸∼B a, and thus gb→1(a) = 0.
Therefore, for this a we have

digf
i (a) = cr

i (1) ∨
⋁

j ̸=r

cj
i (0) = cr

i (1) ∨
⋁

j ̸=r

0 = cr
i (1),

i.e., all together

dec(digf
0 , digf

1 , . . . , digf
l−1)(a) = dec(cr

0(1), cr
1(1), . . . , cr

l−1(1)) = er = f(a),

which is what we wanted.
Let us remark that we could use any 01-encoding of the elements, which might

be useful if we wanted to modify the construction for different clones. Another
simple encoding we could use here is ei ←→ (0, . . . , 0,

i−1
1 , 0, . . . , 0) ∈ {0, 1}k.

17



dec

⋁ ⋁ . . . ⋁

c0
0 c0

1 . . . c0
l−1 c1

0 c1
1 . . . c1

l−1 ck−1
0 ck−1

1
. . . ck−1

l−1

⋁ ⋁ . . . ⋁

ga0
0→1 ga0

1→1 . . . ga0
n0 →1 ga1

0→1 ga1
1→1 . . . ga1

n1 →1 . . . . . .

digf
0 , digf

1 , . . . , digf
l−1

Exactly one
of these will
evaluate to 1

Figure 2.2: The construction of a given f from the defined operations. Each of
the bottom blocks belongs to tuples on which f evaluates to a certain value, i.e.,
{aj

0, aj
1, . . . , aj

nj
} are exactly the tuples for which f(aj

i ) = ej.

B-insensitive operations with image restricted by set(s) different
than B

Let A, B, 0, 1 and C be as above and let D ⊆ A be such that 0, 1 ∈ D. Except
for the decoder, all the operations defined in the construction have image in
{0, 1} ⊆ D. Therefore, when we restrict the decoder so that it only returns ai if
ai ∈ D and returns 0 otherwise, we immediately see that the clone

DD = {f ∈ C | Im(f) ⊆ D} ∪ PA

= {f : An → A |n ∈ N, f is B-insensitive and Im(f) ⊆ D} ∪ PA

is finitely generated. The essential fact here is that D ̸⊆ B.
Note that if we would have |B ∩D| ≤ 1, the construction would be much

simpler. We would not need any encoding, since we could pass all needed el-
ements through conjunction and disjunction. The construction for clones with
just restricted image would suffice with a slight modification to make sure all the
operations are B-insensitive – they would just treat the whole B as one element.

For example if A = {0, 1, 2}, B = {0, 1} and D = {0, 2}, we get a clone used
in [7]

D02 = {f operation on {0,1,2} | f is {0, 1}-insensitive, Im(f) ⊆ {0, 2}} ∪ PA,

which is thereby finitely generated.
We can now go one step further. Let A be a finite set, B, D1, . . . , Dk ⊆ A be

nonempty such that 0, 1 ∈ D1 and 1 /∈ B, that is, in particular D ̸⊆ B. Let

DDj
= {f : An → A |n ∈ N, f is B-insensitive and Im(f) ⊆ Dj} .
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Then
D = DD1 ∪ DD2 ∪ · · · ∪ DDk

is a finitely generated clone. It is easy to see that D is a clone. We can use the
same arguments we used for the clone of B-insensitive operations and the union of
clones of operations with restricted image. Note, however, that we allow Dj ⊆ B
for j ̸= 1. That means we do not know if DD2 , . . . ,DDk

are finitely generated.
Later we show that if Dj ⊆ B, then DDj

is actually non-finitely generated.
To see that D is finitely generated, recall the “translator” unary operations

we used for the union of clones of operations with restricted image. We could still
use the same trick if |D1 \B| ≥ |Dj| for all j ̸= 1. In general we do something
similar. We just take a different decoder for each j. That is, for a given n-ary
operation f ∈ DDj

, we will first map a ∈ An to the 01-encoding of f(a), using
the operations from DD1 , and then decode them to get the desired result by the
decoder from DDj

.

The full cube-term blocker clone

For a clone C, we ask whether there exist finitely many operations generating C.
Similarly, we can ask whether we can describe it in the terms of compatibility
using only finitely many relations. We say that C is finitely related if there exists
a finite set of relations R such that C = Inv(R). Note that by Lemma 5, all
clones containing a near-unanimity operation are finitely related.

Finitely related clones are studied in [13], using, among other concepts, so
called cube-term blockers. For a clone C on A and subsets ∅ ̸= D ⊊ S ⊆ A, we
say that C has cube-term blocker (D, S) if all operations f ∈ C satisfy

∃i : f(S, . . . , S,
i

D, S, . . . , S) ⊆ D. (2.2)

It is proved that the clone of all such operations, for a fixed (D, S), is non-finitely
related. The paper is mainly concerned with the idempotent case. We say an
operation is idempotent, if f(a, . . . , a) = a for every a ∈ A. A bit simplified, one of
the main results in [13] is that the clones of all idempotent operations satisfying
(2.2) for some ∅ ̸= D ⊊ S ⊆ A are maximal non-finitely related idempotent
clones, in a sense that if we added another idempotent operation, the resulting
clone would be finitely related.

We fix B ⊊ A, and consider the clone of all operations satisfying (2.2) for
(B, A). We call it the full cube-term blocker clone. We show that both the full
cube-term blocker clone and its full idempotent reduct are finitely generated.

Let us denote the full cube-term blocker clone as

B =
{

f : An → A |n ∈ N, ∃i : f(A, . . . , A,
i

B, A, . . . , A) ⊆ B

}
.

It is easy to see that B is, indeed, a clone. The projections are in B and when
we compose f(g1, . . . , gn) we can easily find a variable with the desired property.
If f fulfills the condition in the i-th variable and gi in the j-th variable, then
the superposition fulfills it in the j-th variable. We now aim to modify our
construction to show it is finitely generated. As before, we fix 0 ∈ B.
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The first problem we might notice is that all unary operations u ∈ B fulfill
u(B) ⊆ B, which is inconvenient since we can have, for instance, f such that
f(a, b . . . , b) = a for some b ∈ B, a /∈ B, and, therefore, we need ub→a.

The second problem is that ∨ /∈ B for ∨ as in (2.1), since for a /∈ B we have
a ∨ 0 = 0 ∨ a = a /∈ B, but 0 ∈ B.

We fix both issues by introducing a new variable to the operations which will
satisfy the desired condition. We will denote ∧ and ∨ as in (2.1). We will use ∧
as it is; there is no issue with it. We define new operations

∨̃(x, y, z) =
{∨(x, y) if possible, i.e., if z /∈ B or ∨(x, y) ∈ B,

0 otherwise (0 ∈ B),

ũa→b(x, z) = ua→b(x) for b ∈ B,

ũa→b(x, z) =
{

ua→b(x) if z /∈ B,
0 otherwise (0 ∈ B)

for b /∈ B.

The new operation ∨̃ being ternary, it is now not clear what do we mean by an
“n-ary version of ∨̃”. When composing ∨̃ we will plug the same variable into the
third coordinate of all ∨̃’s composed. For a given n, we thus obtain an (n+1)-ary
operation

⋁̃
(x1, x2, . . . , xn, z) := ∨̃(∨̃(. . . ∨̃(∨̃(x1, x2, z), x3, z), . . . , z), xn, z)

=
⎧
⎨
⎩

⋁(x) if possible, i.e., if z /∈ B or ⋁(x) ∈ B,
0 otherwise.

Analogous to the full clone case we also denote ⋁̃(x1, x2, z) = ∨̃(x1, x2, z) and⋁̃(x1, z) = π2
1.

∨̃

... xn z

∨̃

∨̃ x3 z

x1 x2 z

⋁̃(x1, x2, . . . , xn, z) =

Figure 2.3: Tree depiction of how to compose ⋁̃.

Let now f be an n-ary operation in B with the i-th variable satisfying the
property ∀a ∈ An : ai ∈ B ⇒ f(a) ∈ B. Let a ∈ An. We will exploit the fact
that f(a) /∈ B ⇒ ai /∈ B to define n-ary operations ga→f(a) as

ga→f(a)(x1, . . . , xn) := ũa1→f(a)(x1, xi) ∧ ũa2→f(a)(x2, xi) ∧ · · · ∧ ũan→f(a)(xn, xi)

=
⎧
⎨
⎩

f(a) if x = a,
0 otherwise.
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This construction works because for f(a) ∈ B everything is defined as in the full
clone case and for f(a) /∈ B the operations ũaj→f(a) have the element ai /∈ B at
disposal in the troublesome second coordinate so they have the freedom to output
whatever f(a) is.

The same trick used for ⋁̃ suffices to generate f as

f(x) =
⋁̃

(ga1→f(a1)(x), ga2→f(a2)(x), . . . , ga|A|n →f(a|A|n )(x), xi),

where a1, . . . , a|A|n are all the tuples of An.

The idempotent reduct of the full cube-term blocker clone

For finite nonempty sets B ⊊ A and B as before, we set B̃ to be the full idempotent
reduct of B, that is,

B̃ = {f ∈ B | ∀a ∈ A : f(a, . . . , a) = a} .

Note that idempotence is consistent with the defining property of B and B̃ is
therefore not trivial.

The operations ∧ and ∨̃ as defined above are already idempotent, so we only
need to modify the operations ũa→b by introducing another variable. We need to
distinguish two cases here – |B| = 1 and |B| ≥ 2.

For the first case let 0 be the only element of B and let us define

˜̃ua→b(x, z, w) =
⎧
⎨
⎩

x when forced by idempotence, i.e., if x = z = w,
ũa→b(x, z) otherwise

Given n-ary f ∈ B̃ with the i-th variable fulfilling the property for B, we plug
in xi for z, as before, and we plug in ⋀

j
xj for w. For a ∈ An we obtain

ga→f(a)(x1, . . . , xn) :=
˜̃ua1→f(a)(x1, xi,

⋀

j

xj) ∧ ˜̃ua2→f(a)(x2, xi,
⋀

j

xj) ∧ · · · ∧ ˜̃uan→f(a)(xn, xi,
⋀

j

xj)

=

⎧
⎪⎪⎨
⎪⎪⎩

f(a) if x = a,
x1 if x is constant, i.e., x1 = x2 = · · · = xn,
0 otherwise.

This indeed works because for a non-constant tuple c ∈ An with ci ̸= 0 we have
two different inputs in ˜̃u’s, ci ̸= 0 and ⋀

cj = 0, so ˜̃u’s are not bound by the
idempotency and may output whatever needed. For c with ci = 0 the result of
every used operation is 0, but also f(c) = 0. For constant tuples c = (c, . . . , c)
everything outputs c, but also f(c) = c.

For the case |B| ≥ 2 we have a problem for such f that fulfills the property for
B in the first coordinate, and f(0, a) = b ̸= 0. We would have ˜̃u0→b(x1, x1, x1∧x2)
and for the tuple (0, a) we would be forced to output ˜̃u0→b(0, 0, 0) = 0, which is
not what we need.

We will fix this by adding yet another variable. We fix two different zeros
0, 0′ ∈ B and define a second conjunction ∧′ which is the same as ∧, only it uses

21



0′ instead of 0. This allows us to have guaranteed two different elements ⋀ aj and⋀′ aj for every non-constant a. We then define

˜̃ua→b(x, z, w, w′) =

=
⎧
⎨
⎩

x when forced by idempotence, i.e., if x = z = w = w′,
ũa→b(x, z) otherwise

and for a given f ∈ B̃ with the special coordinate at i we take

ga→f(a)(x) := ˜̃ua1→f(a)(x1, xi,
⋀

j

xj,
⋀

j

′
xj) ∧ · · · ∧ ˜̃uan→f(a)(xn, xi,

⋀

j

xj,
⋀

j

′
xj).

In both cases we finish the construction the same way as before by taking the
generalized disjunction ⋁̃ over all tuples a ∈ An.
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3. Non-finitely generated clones
In this chapter we look at examples of non-finitely generated clones. We show
how B-insensitivity together with image restricted by B can yield non-finitely
generated clones, as essentially shown in [7]. Inspired by the example, we find
relations such that operations preserving them depend only on a limited number
of variables. The construction yields non-finitely generated clones. Then we
discuss possible modifications and generalizations of these relations.

3.1 Basic examples of non-finitely generated
clones

Both the trivial and full clone are finitely generated. By the deep result of Tardos
[18], a maximal clone can be non-finitely generated. Namely, the maximal clone
of monotone operations of the following poset is non-finitely generated:

On the other hand, a minimal clone is always finitely generated, since minimal
clones are always generated by one operation. Somewhat minimalistic example
of a non-finitely generated clone can be constructed on Z4.

Non-finitely generated clones on Z4

The following are well known examples of non-finitely clones, see e.g. [3, 8, 14].
Consider {0,1,2,3} with standard +, · evaluated modulo 4. The clone generated
by operations

fk(x1, x2, . . . , xk) = 2 · x1 · x2 · · · · · xk.

is non-finitely generated. To see that, we just need to observe that fn can not
be composed using fi’s for i < n. This is clear, because composing fi and fj we
always get a constant 0 – for example, substituting for the first variable, we get

fi(fj(x1, . . . , xj), xj+1, . . . , xj+i) = 2 · 2 · x1 · · · · · xj+1 = 0.

More generally, we can similarly take operations p · x1 · · · · · xn in Zp2 , for any
prime p. If we also include addition, the clone Clo({fn |n ∈ N} ∪ {+}) is still
non-finitely generated. The proof is, however, not that straightforward anymore.

We can also consider

gn(x1, x2, . . . , xn) = 2 · (x1 + x2 + · · ·+ xn) = 2 · x1 + 2 · x2 + . . . 2 · xn.
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Composing gi and gj we do not get a constant operation, but we still can not
compose these into gn for n > i, j, as for example

gi(x1, . . . , xi−1, gj(y1, . . . , yj))
= 2 · x1 + · · ·+ 2 · xi−1 + 2 · (2 · y1 + · · ·+ 2 · yj)
= 2 · x1 + · · ·+ 2 · xi−1

≡ gi−1(x1 . . . , xi−1).

Using the alternative definition of a clone (Definition 2), it is not difficult to
check that the operations in Clo({gi | i ≤ k}) are either projections or of the form

f(x1, x2, . . . , xl) = gj(xi1 , xi2 , . . . , xij
),

where j ≤ l, i1, . . . , ij ∈ {1 . . . , l}. As a consequence, gn /∈ Clo({gi | i ≤ k}) for
n > k, and hence Clo({gn |n ∈ N}) is non-finitely generated.

Note two important properties of the operations gk. First, their image is in
{0, 2}, and secondly, it does not matter if we plug 0 or 2 into the variables, i.e.,
the operations are 02-insensitive. We will later see that this combination does in
general yield non-finitely generated clones.

An intersection of finitely generated clones

L. Haddad shows in [7] that an intersection of two finitely generated clones can
be non-finitely generated by a following example. Let 3 = {0, 1, 2} and

Dij := {f : 3n → 3 |n ∈ N, f is 01-insensitive and Im(f) ⊆ {i, j}} ∪ PA,

C01 := {f : 3n → 3 |n ∈ N, Im(f) ⊆ {0, 1}} ∪ PA,

D := D02 ∪ D01.

As shown in Section 2.2, D02,D and C01 are finitely generated clones. However

D01 = D ∩ C01

is non-finitely generated, as follows from Proposition 12 in Section 3.3, where we
will show that the clones of all B-insensitive operations with image in B, for some
B ⊊ A, are in general non-finitely generated.

We have also shown in Section 2.2 that

E01 = {f : 3n → 3 |n ∈ N, f is 01-insensitive} ∪ PA

is a finitely generated clone. So we have an even more straightforward intersection

D01 = C01 ∩ E01.

3.2 Essential and insensitive operations
As described in Section 1.4, a clone C is non-finitely generated if and only if we
can find an infinite chain of clones, union of which is C. The arity of operations
we add in each step has to gradually increase, since there is only finitely many
operations of a given arity. It would, therefore, be natural to try taking all
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operations of given arity in each step. The problem is that they never form a
clone, because we can always introduce new fictitious variables, and somewhat
artificially increase arity of any operation. So what we are interested in is not
the arity, but essential arity.

Definition 5. Let A be a set and f : An → A an operation. We say that f is
essential in the i-th variable, or that it depends on the i-th variable, if

∃a ∈ An ∃bi ∈ A :
f(a1, . . . , ai−1, ai, ai+1, . . . , an) ̸= f(a1, . . . , ai−1, bi, ai+1, . . . , an),

that is, if the i-th variable is not fictitious.
We say that f is essentially k-ary (the essential arity of f is k, f is k-essential)

if it has exactly k essential variables.
Let C be a clone on A. We define the k-essential part of C as the set of all

essentially at most k-ary operations in C.

Yet another way to formulate that a variable is essential is to say it can
distinguish between some two elements. For sets B ⊊ A we can also introduce
a notion of B-essential variable, which is a stronger property. Not only can the
variable distinguish between a pair of elements, it can distinguish between two
elements from B. The negation of that is the already mentioned B-insensitivity.

Definition 6. Let B ⊆ A be sets and f : An → A an operation. We say that f
is B-insensitive in the i-th variable if

∀a ∈ An ∀bi, b̃i ∈ B :
f(a1, . . . , ai−1, bi, ai+1, . . . , an) = f(a1, . . . , ai−1, b̃i, ai+1, . . . , an),

i.e., if f can not distinguish between different elements of B in the i-th variable.
We say that f is B-insensitive, if it is B-insensitive in all variables.

3.3 B-insensitive operations with image in B

One of the reasons a clone might be non-finitely generated is that its operations
can not be composed to get an operation of higher essential arity. An easy way
to guarantee this is to make sure the operations can not distinguish between the
results they can output.

The following proposition is essentially contained in [7].

Proposition 12. Let B ⊊ A be nonempty finite sets, C̃ be a clone on A and

C =
{
f ∈ C̃ | f is B-insensitive and Im(f) ⊆ B

}
∪ PA.

Then C is a clone, and if it contain operations of arbitrarily high essential arity,
it is non-finitely generated.

Proof. First of all, C is a clone. We know that composing operations from C̃, we
obtain again operations in C̃, so it is enough to prove that composing operations
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from C we get either a projection or a B-insensitive operation with the image in
B. We check this for the four procedures from Definition 2.

It is clear the properties are preserved while permuting the variables or intro-
ducing new fictitious variables. It is also preserved by identification of the first
two variables, since for an n-ary operation f ∈ C which is not a projection we
have

∀a ∈ An ∀b, b̃ ∈ B : f(b, b, a3, . . . , an) = f(b, b̃, a3, . . . , an) = f(b̃, b̃, a3, . . . , an),

so the glued variable is still B-insensitive.
Let now f, g ∈ C and

(f ∗ g)(x1, . . . , xm+n−1) = f(g(x1, . . . , xm), xm+1, . . . , xm+n−1).

If f is a projection, then f ∗ g is either also a projection or it is g with added fic-
titious variables. Assume that f is not a projection. Clearly, Im(f ∗ g) ⊆ B,
and xm+1, . . . , xm+n−1 are B-insensitive. For the first m variables, they are
B-insensitive either because g is B-insensitive, or because f is B-insensitive in
the first variable. Thus, C is a clone.

Let us denote

Ck = {f ∈ C | f is essentialy at most k-ary} .

We assume that C contains an operation of arbitrarily high essential arity, hence
we have an infinite strictly increasing sequence k1, k2, . . . such that there exists an
essentially ki-ary operation in C for every i ∈ N. This yields a strictly increasing
chain

Ck1 ⊊ Ck2 ⊊ · · · ⊊ Cki
⊊ · · · ⊊ C.

Clearly ⋃i∈N Cki
= C. We show that Ck is a clone for every k ∈ N, and hence C is

non-finitely generated.
Let k ∈ N. Projections are essentially unary, so they are in Ck. Neither

permutation and identification of variables, nor introduction of new fictitious
variables increases the essential arity. We only need to check the substitution.

Let f, g ∈ C be essentially at most k-ary, ar(f) = n, ar(g) = m. If either f
or g is a projection, then f ∗ g is still essentially at most k-ary. If they are not
projections, then Im(g) ⊆ B and f is B-insensitive, i.e., f is Im(g)-insensitive.
Therefore, ∀a ∈ Am+n−1 : (f ∗ g)(a) = f(b, am+1, . . . , am+n−1) for some fixed
b ∈ B. Hence, none of the first m variables are essential, and out of the others
at most k are essential, i.e., f ∗ g is essentially at most k-ary.

3.4 Relational description of restricted
essential arity

In this section we describe certain relations and their polymorphisms. We aim to
relationally describe some clones with restricted essential arity. We are looking
for a relation Ek which can “cut off” all the operations of essential arity k or
higher.
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3.4.1 Definition and basic properties of Ek

Given essentially k-ary f , we want to exploit the pairs of tuples ai, a′
i which differ

only at the i-th coordinate and for which f(ai) ̸= f(a′
i). The idea is to define the

relation as tuples of equality and nonequality pairs. For example, the elements
of E3 will consist of 3 pairs, i.e., it will be 6-ary. In the compatibility scheme we
would like to only allow tuples with at most one nonequality on the input side,
and allow all tuples with at least one equality on the output side; we would then
obtain following schemes:

̸= = =
f→ ̸=

= ̸= =
f→ ̸=

= = ̸=

f→ ̸=

∈ ∈ ∈ /∈
Ein

3 Ein
3 Ein

3 Eout
3

̸= =

f→ ̸=

= ̸=

f→ ̸=

= =

f→ =

∈ ∈ ∈

Ein
3 Ein

3 Eout
3

On the left we have essentially ternary operation, so we have a pair of tuples
ai, a′

i (rows), differing only in the i-th variable, such that f(ai) ̸= f(a′
i) for

i = 1, 2, 3. On the right we have essentially binary operation, so we have such
tuples only for two variables.

The problem is how to define the relation so that one part is only relevant
on the input and the other only on the output side. Inspired by the clones of
B-insensitive operations with image in B, we can have the “input tuples” consist
of arbitrary elements, but the “output tuples” consist only of elements from B. If
we take f B-insensitive with Im(f) ⊆ B, it works as desired. The B-insensitivity
allows us to mix “output tuples” into the input, since f can not distinguish
between any of its elements, so it would be equivalent to inputing a constant
tuple. The image in B allows us to restrict the tuples we allow on the output
just to B.

We now define the relations Ek. For a set A, a diagonal on A is a binary
relation given by

∆A = {(a, a) | a ∈ A} .

We say that a pair (a, b) is diagonal if a = b. Otherwise we say it is non-diagonal.
Let B ⊊ A be nonempty finite sets, |B| ≥ 2. For natural k ≥ 2 we define

2k-ary relations Ek as

EA
k =

k⋃

i=1
∆A × · · · ×∆A ×

i

A2 ×∆A × · · · ×∆A  
k

,

EB
k =

k⋃

i=1
B2 × · · · ×B2 ×

i

∆B ×B2 × · · · ×B2
  

k

,

Ek = EA
k ∪ EB

k .

The “A-part”, EA
k , consists of all tuples of k pairs such that at most one pair

is non-diagonal. It is stricter in the number of equalities, but more liberal in the
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elements themselves. The “B-part”, EB
k , consists of all tuples of k pairs in B such

that at least one pair is diagonal. It is more liberal in the number of equalities,
but restricts the elements we can use to B.

The two parts are not disjoint. In the intersection, we have all the tuples of
k pairs in B with at most one non-diagonal pair. Note that for k = 2 we have
E2 = EA

2 .
To clarify the relations in yet another way, let us observe that a /∈ Ek if

and only if either none of the pairs in a is diagonal, or there are (at least) two
non-diagonal pairs in a and ai /∈ B for some i.

We define clones
Ek = Pol(Ek+1, Ek+2, . . . ).

Defined this way, it is clear that Ek ⊆ Ek+1 for all k. It is also clear that
Ek ⊆ Pol(Ek+1). We show later that the other inclusion holds as well for k ≥ 2,
but it is not immediately obvious.

Let us first check that Ek “cuts off” operations of essential arity k.

Lemma 13. Let k ≥ 2. Operations of essential arity k and higher are not
compatible with Ek.

Proof. Assume n ≥ k ≥ 2, f is an n-ary operation on A, and its first k variables
are essential. We show that f /∈ Pol(Ek). Since the first k variables of f are
essential, there exist tuples r1, r′

1, r2, r′
2, . . . , rk, r′

k ∈ An such that ri differs from r′
i

only at the i-th coordinate, and f(ri) ̸= f(r′
i) for all i = 1, . . . , k. Using these 2k

tuples as rows, the following scheme is obtained:

r1 = . . . . . . f↛= = = = = ̸=

r′
1 = . . . . . . f→

r2 = . . . . . . f→= ̸= = = = ̸=

r′
2 = . . . . . . f→

... ... . . . ... ... ... ...
rk = . . . . . . f→= = ̸= = = ̸=

r′
k = . . . . . . f→∈ ∈ ∈ ∈ ∈ /∈

Ek Ek Ek Ek Ek Ek

Hence f /∈ Pol(Ek).

Next, we show the following.

Lemma 14. Let k ∈ N and f be a B-insensitive operation on A with Im(f) ⊆ B.
Then

f ∈ Ek ⇐⇒ f is essentially at most k-ary.

Proof. Let C̃ be a clone and

C =
{
f ∈ C̃ | f is B-insensitive and Im(f) ⊆ B

}
∪ PA.
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We show that Ek ∩ C consists exactly of all at most k-essential operations in C.
The inclusion “⊆” is a corollary of Lemma 13. We need to show the converse
– that every essentially at most k-ary operation in C is compatible with El for
every l ≥ k + 1.

When studying compatibility of Ek and operations in C, we can restrict our-
selves to only inputing tuples from EA

k and only asking if the output is in EB
k ,

that is,

f ∈ Pol(Ek) ⇐⇒ ∀a1, . . . , aar(f) ∈ EA
k : f(a1, . . . , aar(f)) ∈ EB

k . (3.1)

The projections are trivially compatible with every relation and for non-trivial
operations we can do the following. If we input ai ∈ EB

k , we can equivalently take
a constant tuple (b, . . . , b) ∈ EA

k , for any b ∈ B, and the result will be the same,
because f is B-insensitive. Since Im(f) ⊆ B, the resulting tuple will always be
in B2k, and in that case it is in Ek if and only if it is in EB

k .
Let k ≥ 2, f ∈ C be n-ary with essential arity at most k, and l ≥ k + 1. We

will assume all essential variables of f are among the first k. Let a1, . . . , an ∈ EA
l .

We know that there are l > k pairs in each ai and only one can be non-diagonal
in each ai. Thus, there exists i ∈ {1, . . . , l} such that the i-th pair is diagonal in
all a1, a2, . . . , ak. Since all essential variables of f are among the first k, also the
i-th pair of f(a1, . . . , an) is diagonal, hence the tuple is in EB

l . Using (3.1) we
obtain f ∈ Pol(El).

We have proved that

Ek ∩ C = {f ∈ C | f is at essentialy most k-ary} .

This offers an alternative prove of Proposition 12, since Ek, as a set of poly-
morphisms, is a clone, and an intersection of clones is also a clone. This yields a
chain of clones

E1 ∩ C ⊆ E2 ∩ C ⊆ · · · ⊆ Ek ∩ C ⊆ · · · ⊆ C,
which, given C has operations of arbitrarily high essential arity, has infinitely
many strict inclusions. Furthermore, ⋃k∈N Ek ∩ C = C, hence this yields that C is
non-finitely generated.

3.4.2 Polymorphisms of Ek

We know that B-insensitivity and having the image in B are sufficient for an
at most k-essential operation to be in Ek. It is, however, not necessary for the
operation to be B-insensitive in all variables. In this section we show that an
operation can satisfy a different condition in one of the variables. The aim is now
to describe the clone

E =
⋃

k∈N
Ek =

⋃

k∈N
Pol(Ek+1, Ek+2, . . . ).

We will investigate Pol(Ek). For the whole section, we fix nonempty finite sets
B ⊊ A, |B| ≥ 2.

First, we examine essentially at most unary operations. In the following,
we treat essentially at most unary operations as unary; we ignore the fictitious
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variables. There is no loss in generality, since non-essential variables do not
influence compatibility in any way.

Lemma 15. For k ≥ 3 and an essentially at most unary operation u, we have

u ∈ Pol(Ek) ⇐⇒ either u is B-insensitive (i.e., constant on B),
or u(B) ⊆ B.

Proof. Let u(x) be essentially at most unary. If u is neither B-insensitive nor
does it satisfy u(B) ⊆ B, then we have b1, b2, b ∈ B such that u(b1) ̸= u(b2) and
u(b) /∈ B. Let b = (b1, b2, b1, b2, b, b, . . . , b, b) be 2k-ary. Since the third pair is
diagonal and all elements are in B, we have b ∈ Ek. However, in the tuple

u(b) = (u(b1), u(b2), u(b1), u(b2), u(b), u(b), . . . )

we have the first two pairs non-diagonal, therefore u(b) /∈ EA
k , and there is also

u(b) /∈ B, so u(b) /∈ EB
k . We have found b ∈ Ek such that u(b) /∈ Ek.

On the other hand, a unary operation maps diagonal pairs to diagonal pairs,
so trivially u(EA

k ) ⊆ Ek, and we only need to check that u(EB
k ) ⊆ Ek. In the case

u(B) ⊆ B, we get the inclusion using the same argument. If u is B-insensitive,
we have u(EB

k ) = {(a, a, . . . , a)} ⊆ Ek for some a ∈ A.

Note that this description includes projections, which we had to add separately
before. Also, all (essentially) unary operations are compatible with E2 since
E2 = EA

2 and unary mappings preserve diagonals. We will not consider this
degenerate case from now on.

Next, let us look at essentially at least binary operations. We show that the
image in B is a necessary condition for compatibility with Ek, k ≥ 3. Let f be
n-ary with the first two variables essential and a ∈ An be such that f(a) ̸= B.
For i = 1, 2 there exist ri, r′

i ∈ An differing only at the i-th coordinate such that
f(ri) ̸= f(r′

i). The following scheme shows that f is not compatible with Ek for
any k ≥ 3.

u=

r1 = . . . f→ f(r1)̸= = = ̸=

r′
1 = . . . f→ f(r′

1)

r2 = . . . f→ f(r2)= ̸= = ̸=

r′
2 = . . . f→ f(r′

2)

a = . . . f→ f(a) /∈ B= = = =

a = . . . f→ f(a) /∈ B
... ... ... ...∈ ∈ ∈ /∈

Ek Ek Ek Ek

(3.2)

The resulting tuple, say u, is not in Ek, because the first two pairs are non-
diagonal, and hence u /∈ EA

k , and it contains f(a) /∈ B, therefore u /∈ EB
k .
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The B-insensitivity can be weakened. We will show that in one of the variables
the operation can be B-unary instead.

Definition 7. We say an n-ary operation f is B-unary in the i-th variable if

∀a, a′ ∀b ∈ B : f(a1 . . . , ai−1, b, ai+1, . . . , an) = f(a′
1 . . . , a′

i−1, b, a′
i+1, . . . , a′

n).

The definition says that if we plug in an element from B to the i-th variable,
the operation only depends on that variable.

We show that if f ∈ Pol(Ek), then it is either B-unary or B-insensitive in every
variable. Assume that f is an n-ary operation, which is neither B-insensitive nor
B-unary in the first variable. Then there exist tuples b, b′ ∈ An which only differ
at the first coordinate, and b1, b′

1 ∈ B, such that f(b) ̸= f(b′). There also exist
tuples c, c′ ∈ An such that c := c1 = c′

1 ∈ B and f(c) ̸= f(c′). The following
scheme shows that f is not compatible with Ek for any k ≥ 3.

c = c . . . f→ f(c)= ̸= ̸= ̸=

c′ = c . . . f→ f(c′)

b = b1 . . . f→ f(b)̸= = = ̸=

b′ = b′
1 . . . f→ f(b′)
... ... ... ...

b = b1 . . . f→ f(b)̸= = = ̸=

b′ = b′
1 . . . f→ f(b′)∈ ∈ ∈ /∈

EB
k EA

k EA
k Ek

(3.3)

Note that there can be less inequalities among the pairs ci,c′
i; we can even make

sure there is only one, by changing the elements in each coordinate one by one,
until the inequality for the results occurs. We observed that f ∈ Pol(Ek), k ≥ 3,
implies that f is in each variable either B-insensitive or B-unary.

Moreover, if f satisfies this property, then it can have at most one variable,
which is not B-insensitive. If two variables were not B-insensitive, let us say the
first two, then they would both have to be B-unary. For every b, b′ ∈ B, a ∈ An

we would get

f(b, a2, . . . , an) 1st
= f(b, b, a3, . . . , an) 2nd

= f(b′, b, a3, . . . , an) 1st
= f(b′, a2, . . . , an),

where we used that f is B-unary in the first or second variable as indicated
above the equal signs. But that proves the first variable is B-insensitive, which
contradicts our assumption.

Finally, we show that the derived properties are sufficient for membership
in Pol(Ek). Let f be an n-ary operation with essential arity l ≥ 2 such that
Im(f) ⊆ B and f is B-insensitive in all variables with possible exception of one
variable, which is then B-unary. Let k > l.
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If f is B-insensitive in all variables, then f ∈ Pol(Ek) by Lemma 14. If not,
then one variable is B-unary instead. Let us assume it is the first one. In the
proof of Lemma 14 we used insensitivity for the fact that we only needed to
check the compatibility on the tuples from EA

k . We can still use the proof to
get f(EA

k , Ek, . . . , Ek) ⊆ Ek. It only remains to check that we can not spoil the
compatibility when having a tuple from EB

k at the first coordinate.
Let b ∈ EB

k and a2, . . . , an ∈ Ek. There exists j such that the j-th pair of b is
diagonal. Since f is B-unary in the first variable, necessarily also the j-th pair of
the resulting tuple u = f(b, a2, . . . , an) is diagonal. The elements of the tuple u
are also all in B, hence u ∈ EB

k ⊆ Ek. Therefore, f ∈ Pol(Ek).
All together we have proved the following.

Proposition 16. Let k ≥ 2. Then Pol(Ek+1) consists exactly of

• u essentially at most unary such that u is either B-insensitive or u(B) ⊆ B,

• f at most k-essential such that Im(f) ⊆ B and f is B-insensitive in all
variables with possible exception of one variable, which is then B-unary.

This yields several corollaries. First, for every k ≥ 3, we have the inclusion
Pol(Ek) ⊆ Pol(Ek+1), and hence Ek−1 = Pol(Ek).

Secondly, E consists exactly of the operations described in Proposition 16
without the restriction of essential arity.

Lastly, Ek’s are the k-essential parts of E , and hence E is non-finitely generated.
Note that Ek+1 /∈ Inv(E) and Ek+1 ∈ Inv(E (k)), since if Ek+1 is compatible with
essentially at most k-ary operations in E , then it is in particular compatible with
at most k-ary operations in E . Therefore, the relations Ek+1 are as in Lemma 9
for the clone E .

Moreover, we show in Chapter 4 that the clones Ek are maximal clones of
essentially at most k-ary operations, in the sense that for any f /∈ Ek, the clone
Clo(Ek ∪ {f}) contains an operation of essential arity at least k + 1.
Remark. The polymorphisms of “A-part” or “B-part” of Ek alone are not too in-
teresting. For every k ≥ 3, Pol(EA

k ) is the clone of all essentially unary operations
on A, and Pol(EB

k ) is the clone of all operations f such that f(B, . . . , B) ⊆ B
and its restriction to B is an essentially unary operation on B.

3.4.3 Modifications and possible generalizations
In this section we will look at several ways how the relations Ek could be modified.

Replacing ∆A with ∆B

Let us replace ∆B in the “B-part” with ∆A, but not only at the one coordinate
where we explicitly write “∆B” in the definition, but at all places. That is, let
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Ẽk be a 2k-ary relation given by

ẼA
k =

k⋃

i=1
∆A × · · · ×∆A ×

i

A2 ×∆A × · · · ×∆A,

ẼB
k =

k⋃

i=1
(B2 ∪∆A)× · · · × (B2 ∪∆A)×

i

∆A × (B2 ∪∆A)× · · · × (B2 ∪∆A),

Ẽk = ẼA
k ∪ ẼB

k .

We have added new tuples in the relations. For the compatibility that means we
have more liberty in the result, but we can also use more tuples as the input. The
tuples a /∈ Ẽk are exactly such that either all pairs are non-diagonal or there are
(at least) two pairs non-diagonal and ai /∈ B for some ai in a non-diagonal pair.
The requirement of ai /∈ B being in one of the non-diagonal pairs is the difference
compared to Ek.

What changes for the compatible operations is that we no longer allow the
one variable which might not be B-insensitive.

Proposition 17. For k ≥ 3, Pol(Ẽk+1) consists exactly of

• u essentially at most unary such that u is either B-insensitive or u(B) ⊆ B,

• f at most k-essential such that Im(f) ⊆ B and f is B-insensitive.

Proof. The proof will be similar to the case of Ek. We will point out the differ-
ences. Let k ≥ 3 be fixed.

Lemma 13 works the same for Ẽk. For the unary operations, the proof of
Lemma 15 works if we realize that given b1, b2, b ∈ B such that u(b1) ̸= u(b2)
and u(b) ̸= B, we can actually assume that b ∈ {b1, b2}, since necessarily either
u(b1) ̸= u(b) or u(b2) ̸= u(b).

Now for the essentially at least binary operations. Let f be n-ary for n ≥ 2
and for convenience let all the variables of f be essential. Again, the non-essential
variables do not influence compatibility in any way.

We show that Im(f) ⊆ B is a necessary condition for f ∈ Pol(Ẽk). Let
a ∈ An be such that f(a) ̸= B. In the previous, we have constructed scheme
(3.2) in which the resulting tuple had the first two pairs non-diagonal and the
elements of the third pair were not in B. Now we need one of the elements in
the first two pairs not to be in B. However, for some i ∈ {1, . . . , n} there must
be ri, r′

i ∈ An differing only at the i-th coordinate such that f(ri) ̸= f(r′
i), and

moreover, f(ri) /∈ B. To find it, let c ∈ An be such that f(a) ̸= f(c). Then there
must be an inequality in the following chain

f(a1, . . . , an) ?= f(c1, a2, . . . , an) ?= f(c1, c2, a3, . . . , an) ?= . . .
?= f(c1, . . . , cn).

Since f(a) /∈ B, the first inequality that occurs yields the desired tuples. Then
we can use scheme (3.2).

The necessity of f being B-insensitive can be seen easily. We use scheme (3.3),
where b, b′ ∈ An are, as before, such that they only differ at the first coordinate,
b1, b′

1 ∈ B and f(b) ̸= f(b′), but in the place of c, c′ we can now take any two
tuples witnessing that the second variable is essential. We can do this, because
now we can have c1 ∈ A.
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On the other hand, given f at most k-essential, B-insensitive, with Im(f) ⊆ B,
we have equivalence analogous to (3.1), since B-insensitivity tells us we only need
to check tuples from ẼA

k+1 as the input, and the image in B tells us we only need
to check if there is at least one diagonal pair in the result. Therefore we show
f ∈ Pol(Ẽk+1) exactly as in the proof of Lemma 14 for Ek+1.

Replacing inequalities with a different relation

A natural modification of the relations is to require that the non-diagonal pairs
are in some other relation; for example, we might require that the first element in
non-diagonal pairs is greater then the second, with respect to some partial order.

We show that for certain relations R, the polymorphisms of modified relations
Ẽk, that we get this way, are the operations described in Proposition 16 which are,
moreover, also compatible with R. As R we use the edges of a weakly connected
graph on A with loops in all vertices, such that, furthermore, B is a weakly
connected component.

We say that a binary relation R on A is reflexive, if (a, a) ∈ R for every a ∈ A.
Two elements a, a′ ∈ A are said to be weakly connected in R via c0, . . . , cn ∈ A, if
c0 = a, cn = a′ and either (ci, ci+1) ∈ R or (ci+1, ci) ∈ R for all i = 0, 1, . . . , n− 1.
A set C ⊆ A is weakly connected in R, if all c, c′ ∈ C are weakly connected in R
via elements in C. We say that R is weakly connected, if all elements in A are
weakly connected in R, i.e., if A is weakly connected in R.

For k ≥ 3 and a reflexive binary relation R, we can define the modified
relations as

ẼA
k =

k⋃

i=1
∆A × · · · ×∆A ×

i

R×∆A × · · · ×∆A,

ẼB
k =

k⋃

i=1
(R ∩B2)× · · · × (R ∩B2)×

i

∆B × (R ∩B2)× · · · × (R ∩B2),

Ẽk = ẼA
k ∪ ẼB

k .

Since R is reflexive, we actually obtain Ẽk = Ek ∩Rk.
In general, for any relations K, L of the same arity, the inclusion

Pol(K) ∩ Pol(L) ⊆ Pol(K ∩ L)

holds. This is easily seen, as if we take f compatible with both K and L, and
tuples t1, . . . , tn ∈ K∩L, then f(t1, . . . , tn) is in both K and L. If K∩L = ∅, we
have OA on the right hand side. It is also trivial to check that Pol(K) = Pol(Km)
for all m ∈ N. Hence

Pol(Ek) ∩ Pol(R) ⊆ Pol(Ek ∩Rk).

We will now look more closely at the other inclusion.

Proposition 18. Let R ⊆ A2 be reflexive, weakly connected relation on A such
that B is also weakly connected in R. Then

Pol(Ek) ∩ Pol(R) = Pol(Ek ∩Rk)

for all k ≥ 3.
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Proof. We already have the inclusion “⊆” and will show the other.
First, let us check that f ∈ Pol(Ek ∩ Rk) implies that f ∈ Pol(R). This

is easy to see. We have R = Proj1,2(Ek ∩ Rk), since for (r, r′) ∈ R we have
(r, r′, a, a, . . . , a) in Ek ∩ Rk for any a ∈ A. An operation compatible with a
relation is also compatible with its projections.

To prove that f ∈ Pol(Ek∩Rk) implies f ∈ Pol(Ek), we need to show that all
the conditions for operations described in Proposition 16 are necessary for f to
be compatible with Ek ∩ Rk. It suffices to make sure we can use all the schemes
we have used to prove this implication in Proposition 16.

We always assumed to have some pair of tuples a, a′ for which f(a) ̸= f(a′).
Moreover we either assumed or could adjust the tuples to only differ at one
coordinate. It was also important that some of the coordinates were in B – if
that was the case, then it held for both tuples for the given coordinate.

It is, therefore, enough to show that for any operation f ∈ Pol(Ek ∩ R)
the following holds. Let a, a′ ∈ An be such tuples that they only differ at
the i-th coordinate, and f(a) ̸= f(a′). Then there exist (r, r′) ∈ R such that
for r = (a1, . . . , ai−1, r, ai+1, . . . , an) and r′ = (a1, . . . , r′, . . . , an) we still have
f(r) ̸= f(r′), and, moreover, if ai, a′

i ∈ B then we can find such r, r′ also in B.
This is a straightforward consequence of the weak connectivity of R. We know

that ai, a′
i are weakly connected in R via some elements c0, c1, . . . , cl. We have

c0 = ai, cl = a′
i and either (cj, cj+1) ∈ R or (cj+1, cj) ∈ R for all i = 0, . . . , l.

Because B is weakly connected in R, if ai, a′
i ∈ B, then also c0, . . . , cl ∈ B. Let

ci = (a1, . . . , ai−1, ci, ai+1, . . . , an). Since f(c0) = f(a) ̸= f(a′) = f(cl), there has
to exist j such that f(cj) ̸= f(cj+1). But now either (cj, cj+1) ∈ R, and we put
r := cj, r′ := cj+1, or (cj+1, cj) ∈ R, and then we put r := cj+1, r′ := cj.

Taking triplets or m-tuples instead of pairs

Another natural modification, especially after seeing the construction with re-
placing the inequalities with a different relation, is to take triplets, or in general
m-tuples, instead of pairs. We show this does not change the polymorphisms.

For a set C and m ≥ 3 we define an m-ary diagonal as

∆m
C = {(c, . . . , c)

  
m

| c ∈ C},

and for k ≥ 3 we define (m · k)-ary relations given by

ẼA
k =

k⋃

i=1
∆m

A × · · · ×∆m
A ×

i

Am ×∆m
A × · · · ×∆m

A  
k

,

ẼB
k =

k⋃

i=1
Bm × · · · ×Bm ×

i

∆m
B ×Bm × · · · ×Bm

  
k

,

Ẽk = ẼA
k ∪ ẼB

k .

For k ≥ 3 and m ≥ 3 we claim that

Pol(Ẽk) = Pol(Ek). (3.4)
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For simplicity, we consider only the case m = 3. The analogy for m > 3 will be
clear. We prove the claim by providing pp-definitions of Ẽk using Ek, and vice
versa.

Let k ≥ 3. First, we pp-define Ẽk using Ek. We will now use notation

x = (x1
1, x1

2, x1
3, x2

1, x2
2, x2

3, . . . , xk
1, xk

2, xk
3).

Let
P̃k(x) :≡

⋀

1≤il<jl≤3
l=1,...,k

Ek(x1
i1 , x1

j1 , x2
i2 , x2

j2 , . . . , xk
ik

, xk
jk

),

i.e., for x to be in P̃k, we choose two elements from each triplet independently
and we want every such tuple to be in Ek.

Claim. P̃k = Ẽk

Proof. Clearly (x, y, z) ∈ ∆3
C ⇐⇒ (x, y), (x, z), (y, z) ∈ ∆2

C . Given x ∈ Ẽk, we
easily see that if we arbitrary choose pairs out of the triplets, it always yields
a tuple in Ek; hence x ∈ P̃k. On the other hand, if x /∈ Ẽk, there are two
possibilities:

(i) none of the triplets is diagonal,

(ii) x contains an element in A \B and there are at least two non-diagonal
triplets.

In (i) we choose two unequal elements from each triplet and get a tuple of k non-
diagonal pairs which is not in Ek, i.e., x /∈ P̃k. In (ii) we chose the non-diagonal
pairs from the non-diagonal triplets and also chose the element not in B – again,
x /∈ P̃k.

To pp-define Ek using Ẽk we can take the projection ProjI(Ẽk), where I are
the indices of the first two coordinates of each triplet, i.e.,

ProjI(Ẽk)(x1
1, x1

2, x2
1, x2

2, . . . , xk
1, xk

2) ≡ ∃x1
3, x2

3, . . . , xk
3 Ẽk(x).

Claim. ProjI(Ẽk) = Ek

Proof. Indeed, if (x1
1, x1

2, x2
1, x2

2, . . . , xk
1, xk

2) ∈ Ek, we set xj
3 := xj

1 for j = 1, . . . , k
and obtain x ∈ Ẽk, hence (x1

1, x1
2, x2

1, x2
2, . . . , xk

1, xk
2) ∈ ProjI(Ẽk).

On the other hand, if (x1
1, x1

2, x2
1, x2

2, . . . , xk
1, xk

2) ∈ ProjI(Ẽk), then there exist
xj

3’s such that x ∈ Ẽk. From the previous we have Ẽk = P̃k, and hence, choosing
i1 = i2 = · · · = ik = 1 and j1 = j2 = · · · = jk = 2 in the definition of P̃k, we
obtain (x1

1, x1
2, x2

1, x2
2, . . . , xk

1, xk
2) ∈ Ek.

We have pp-defined Ek and Ẽk from each other, so (3.4) follows.
We could now do a construction similar to what we did before – restricting the

non-diagonals to some relation. Let R be reflexive m-ary relation and Ẽk be the
m-tuple version of Ek for k ≥ 3. Then we obtain Pol(Ẽk)∩Pol(R) ⊆ Pol(Ẽk∩Rk)
and Pol(Ẽk∩Rk) ⊆ Pol(R) as before. The only question is what should R satisfy
so that Pol(Ẽk ∩Rk) ⊆ Pol(Ẽk) holds.

For operations not satisfying the conditions from Proposition 16, we have
shown they are not compatible with Ek by exploiting tuples a, a′ differing only
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at the i-th coordinate and such that f(a) ̸= f(a′). To carry out the prove the
same way in this case, we would always need to find the tuples such that ai, a′

i

are both contained in a single tuple from R.
We can always find such tuples if R satisfies the following. For every a, a′ ∈ A

there exist c0, . . . , cn such that c0 = a and cn = a′, and for every j = 0, . . . , n− 1
there exists a tuple dj ∈ R such that both cj and cj+1 are in dj.

This way, given a, a′ as before, we can define cj = (a1, ..., ai−1, cj, ai+1, ..., an)
and for some j we obtain f(cj) ̸= f(cj+1). We can then construct the needed
scheme using the tuples (a1, . . . , ai−1, dl, ai+1, . . . , an) as rows for l = 1, . . . , k.

3.5 Unary version of the relations
In Section 3.4.1 we used the binary relations A2, B2, ∆A and ∆B to define Ek.
They satisfy the following inclusions:

A2

B2 ∆A

∆B

⊊ ⊊

⊊ ⊊
̸⊆

In this section we define similar relations, but we replace the binary relations
by sets. Using these relations, we then construct a non-finitely generated clone.

Let A, B, C, D be nonempty finite sets satisfying the inclusions

A

B C

D

⊊ ⊊

⊊ ⊊
̸⊆

.

For k ≥ 3 we define k-ary relations

Fk =
k⋃

i=1
C × · · · × C ×

i

A× C × · · · × C  
k

∪
k⋃

i=1
B × · · · ×B ×

i

D ×B × · · · ×B  
k

,

i.e., a tuple is in Fk if either at most one element is not in C, or all elements are
in B, and at least one is in D. For k ≥ 2 we define clones

Fk = Pol(Fk+1, Fk+2, . . . ).

We have a chain of clones F2 ⊆ · · · ⊆ Fk ⊆ Fk+1 ⊆ · · · .
Proposition 19. The clone F = ⋃

k≥3
Fk is non-finitely generated.

Proof. We fix elements a ∈ A \C, b ∈ B \C, c ∈ C \D and d ∈ D, and for k ≥ 3
define k-ary operations

fk(x) =
⎧
⎨
⎩

b if x = (c, . . . , c,
i
a, c, . . . , c) for i ∈ {1, . . . , k},

d otherwise.
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We show that fk ∈ Pol(Fl) for every l ≥ k + 1, so fk ∈ Fk, but fk /∈ Pol(Fk), and
therefore fk /∈ Fk−1.

Let k ≥ 2. The following scheme shows that fk /∈ Pol(Fk):

a c c . . . c
fk→ b

c a c . . . c
fk→ b

c c a . . . c
fk→ b

... ... ... . . . ... ...
c c c . . . a

fk→ b∈ ∈ ∈ ∈ /∈

Fk Fk Fk Fk Fk

. (3.5)

The tuple (b, . . . , b) is indeed not in Fk, since b /∈ C, hence it is not in the
“AC-part”, and b /∈ D, therefore it is not in the “BD-part”.

Let now l > k and c1, . . . , ck ∈ Fl are columns in a compatibility scheme. We
know that Im(fk) = {b, d}, so the only way we could have f(c1, . . . , ck) /∈ Fl is
if the resulting tuple was (b, . . . , b). For this to happen, there would have to be
the element a in every row. However, we have more rows then columns, so there
would be a column cj with more than one occurrence of a. But then cj /∈ Fl.
Therefore, necessarily f(c1, . . . , ck) ∈ Fl, and we have f ∈ Pol(Fl).

We have shown that for every k ≥ 3 we have Fk−1 ⊊ Fk. Thus, F is
non-finitely generated.

In the proof we have shown that Pol(Fk+1) ̸⊆ Pol(Fk). One difference com-
pared to the relations Ek is that we have also Pol(Fk) ̸⊆ Pol(Fk+1), so we really
need to use clones Fk to define F , not just Pol(Fk). We can show this easily. We
fix b ∈ B \D and d ∈ D and for k ≥ 3 we define

gk(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

b if x = (b, . . . , b,
i

d, b, . . . , b) for i ∈ {1, . . . , k},
b if x = (b, . . . , b),
d otherwise.

Let us fix k ≥ 3.
Now for l ≥ k we take tuples

ci = (b, . . . , b,
i

d, b, . . . , b  
l

) ∈ Fl

for i = 1, . . . , k and we have gk(c1, . . . , ck) = (b, . . . , b) /∈ Fl, so gk /∈ Pol(Fl), in
particular gk /∈ Pol(Fk).

On the other hand, we show gk ∈ Pol(Fk−1). Let c1, . . . , ck ∈ Fk−1. We have
Im(gk) = {b, d}, so gk(c1, . . . , ck) /∈ Fk−1 ⇐⇒ gk(c1, . . . , ck) = (b, . . . , b). For
that to happen, we can have only the elements b and d in the tuples cj. Since
cj ∈ Fk−1, there must be at least one d in each of them. However, if we put cj’s
as columns in a scheme, we have more columns then rows. That means there are
at least two occurrences of d in one of the rows, and that row is then mapped
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by gk to d. This proves that the result is not (b, . . . , b), hence gk ∈ Pol(Fk−1).
Indeed, we have showed that Pol(Fk−1) ̸⊆ Pol(Fk).

It is not trivial to explicitly describe the operations in F . We studied the
clone in detail for the case

{0, 1, 2}

{0, 2} {0, 1}

{0}

⊊ ⊊

⊊ ⊊
,

but were unsuccessful in finding an explicit description of all the operations.

3.6 Relations on a set with three distinct
elements

We used a simple argument to prove that the clone defined in the previous section
is non-finitely generated. In this section we use the same argument in a bit
different setting. We start with relations defined in a particular way on three
elements, which can behave arbitrarily on the other elements, and show they
always yield a non-finitely generated clone.

Let A be a finite set and let {0, 1, 2} ⊆ A. Let {Rk}k≥1 be a sequence of
relations on A such that

(i) Rk is k-ary,

(ii) Rk ∩ ({1, 2}k \ {

⎛
⎜⎜⎝

1
...
1

⎞
⎟⎟⎠}) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2
1
1
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
2
1
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, . . . ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
1
...
1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, i.e., Rk restricted to the

set {1, 2} contains all the tuples with exactly one occurrence of 2, contains
none of the tuples with more occurrences of 2, and might optionally contain
a constant (1, . . . , 1) tuple,

(iii) {0, 2}k \ {(2, . . . , 2)} ⊆ Rk, i.e., Rk contains all 02-tuples except for the
constant (2, . . . , 2) that is ruled out by (ii).

The relations are defined uniquely on {1, 2} and on {0, 2}, up to the optional
(1, . . . , 1) tuple, but can be arbitrary otherwise.

Note that we use the sequence of arities {1,2,3,. . . } for the sake of simplicity
of the notation, but we could use any strictly increasing sequence of natural
numbers.
Proposition 20. Let us define clones

Rk = Pol(Rk+1, Rk+2, . . . ), k ≥ 0,

R =
⋃

k≥0
Rk.

Then R is non-finitely generated.
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Proof. First of all, R is a well-defined clone since Rk ⊆ Rk+1 for all k ≥ 0.
For k ≥ 3 we define k-ary operation

fk(x) =
⎧
⎨
⎩

2 if x = (1, . . . , 1,
i
2, 1, . . . , 1) for some i = 1, . . . , k,

0 otherwise.

Let k ≥ 3. We show fk /∈ Rk−1, but fk ∈ Rk. The first follows from the scheme

2 1 1 . . . 1 fk→ 2
1 2 1 . . . 1 fk→ 2
1 1 2 . . . 1 fk→ 2
... ... ... . . . ... ...
1 1 1 . . . 2 fk→ 2∈ ∈ ∈ ∈ /∈

Rk Rk Rk Rk Rk

,

which shows that fk is not compatible with Rk.
For the second, let l > k. The image of fk is {0, 2}, and the only 02-tuple not in

Rl is the constant tuple (2, . . . , 2). To obtain that as the result in a compatibility
scheme, we would need to use a tuple of the form (1, . . . , 1, 2, 1, . . . , 1) in every
row. Since we have more rows then columns, there would be a 12-tuple with at
least two occurrences of 2 as one of the columns. This column would not be in
Rl, thus it could not be used in the compatibility scheme. Hence, fk ∈ Rl. We
have showed that fk ∈ Rk = Pol(Rk+1, Rk+2, . . . ).

We obtain an infinite chain of strict inclusions

R2 ⊊ R3 ⊊ · · · ⊊ Rk ⊊ · · · ⊊
⋃

k≥0
Rk = R,

thus R is non-finitely generated.

For example, this result allows us to observe that non-finitely generated clones
might have “large finitely generated part”, which can not “interact” enough with
the operations causing the clone to be non-finitely generated. For a finite set A
containing 0, 1, 2, and k ≥ 3, let

Rk = Ak \
{
x ∈ {1, 2}k |x contains at least two 2’s

}
.

We define Rk, R from these relations as above. Then for every k ≥ 3, the clone
Rk contains all the operations which do not have 2 in the image. The set of
all such operations together with the projections is a finitely generated clone, as
shown in Section 2.2. However, even using all these and f3, . . . , fk, we can not
generate fk+1.

The construction can be generalized a bit. We have already mentioned that
we do not need to have Rk for every k. We only need to have relations with the
desired properties for arbitrarily large arities. Another condition we can weaken
is the omitting of the tuples. We omitted all the 12-tuples with at least two
occurrences of the element 2. We might instead fix l ≥ 2 and omit all 12-tuples
with at least l occurrences of 2. Instead of fk being in Rk, we would obtain fk
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necessarily being in R(l−1)·k, because for a compatibility scheme with more than
(l − 1) · k rows there would have to be a column with at least l occurrences of 2
in order to get the resulting tuple (2, . . . , 2).

A different possible variant can be constructed using four elements. For A
containing 0, 1, 2 and 3, we take relations Rk satisfying (i) and (ii) as before, but
instead of (iii) we require

{0, 3}k \ {(3, . . . , 3)} ⊆ Rk and (3, . . . , 3) /∈ Rk.

The only difference in the proof is that we define fk to output 3 instead of 2.
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4. Maximal clones of operations
with restricted essential arity
We have seen in Section 3.3 that in a clone with B-insensitive operations with im-
age in B we can not generate an operation of a given essential arity by composing
operations of lower essential arities. In this chapter we look more closely at what
is needed for operations not to generate another operation of a higher essential
arity. In the first part we study essentially binary operations and construct max-
imal clones of essentially at most binary operations; maximal in the sense that
if we added any other operation, we would be able to generate an essentially at
least ternary operation.

In the second part we generalize a part of the construction for higher arities.
We construct maximal clones of essentially at most k-ary operations. The union
over k ∈ N will then yield non-finitely generated clones.

We will again work with the concept of insensitivity, but we will not require
the operations to be insensitive to the whole image, only to parts of it separately.
We will see that the insensitivity condition might even differ for each variable.

In this chapter we write some operations using a table. Our convention is that
the first variable choses row, the second column.

f(x, y) 0 1 2 . . .
0 f(0, 0) f(0, 1) f(0, 2) . . .
1 f(1, 0) f(1, 1) f(1, 2) . . .
2 f(2, 0) f(2, 1) f(2, 2) . . .
... ... ... ... . . .

For A1, . . . , Ak ⊆ A we write equivalences on A in the form “α = A1|A2| . . . |Ak”.
This means that α is the equivalence with equivalence classes A1, A2, . . . , Ak. We
mostly consider to have A = {0, 1, . . . , l} and use a slight abuse of the notation
to write for example 01|23 as the equivalence with equivalence classes {0, 1} and
{2, 3}.

For a, b ∈ A we write a ∼α b iff (a, b) ∈ α.
For an equivalence α = A1|A2| . . . |Ak we say that an n-ary operation f is

α-insensitive in the i-th variable, if it is Aj-insensitive in the i-th variable for all
j = 1, . . . , k, that is, if

∀a ∈ An ∀a′
i ∈ A :

ai ∼α a′
i =⇒ f(a1, . . . , ai−1, ai, ai+1, . . . , an) = f(a1, . . . , ai−1, a′

i, ai+1, . . . , an).

For an operation f(x, y) on A and an element a ∈ A, we denote

f(–, a) the unary operation given by x ↦→ f(x, a),
f(a, –) the unary operation given by y ↦→ f(a, y).
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4.1 Binary case
4.1.1 Definitions, necessary conditions and examples
We start by analysing some necessary conditions to guarantee that a single binary
operation can not generate an essentially at least ternary operation. Let f be
a binary operation on a finite set A. We want f(f(x, y), z) to be essentially at
most binary, so we want one of the variables x, y or z to be fictitious, and the
same for f(z, f(x, y)).

If f(f(x, y), z) does not depend on z, it means that

∀a1, a2, b, c ∈ A : f(f(a1, a2), b) = f(f(a1, a2), c),

which is equivalent to f being Im(f)-unary in the first variable (see Definition 7
in Section 3.4.2).

If f(f(x, y), z) does not depend on x, then we have

∀a2, a3, b, c ∈ A : f(f(b, a2), a3) = f(f(c, a2), a3).

This is equivalent to

∀a2, a3 ∈ A, ∀b, c ∈ f(A, a2) : f(b, a3) = f(c, a3),

that is, to f being f(A, a)-insensitive in the first variable for all a ∈ A, where we
use the notation f(A, a) = f(A, {a}) = {f(b, a) | b ∈ A}. The situation is similar
if the expression does not depend on y, and we have also symmetric conditions
for f(z, f(x, y)).

All the equivalent conditions for one of the variables being non-essential in
either of the expressions are described in Table 4.1.

does not
depend on f(f(x, y), z) f(z, f(x, y))

x
∀a ∈ A : f is f(A, a)-insensitive

in the 1st variable
∀a ∈ A : f is f(A, a)-insensitive

in the 2nd variable

y
∀a ∈ A : f is f(a, A)-insensitive

in the 1st variable
∀a ∈ A : f is f(a, A)-insensitive

in the 2nd variable

z
f is Im(f)-unary
in the 1st variable

f is Im(f)-unary
in the 2nd variable

Table 4.1: Equivalent conditions for a given variable to be non-essential in the
simplest compositions of a single binary operation.

The sets f(A, a) and f(A, b) can have a nonempty intersection for some a ̸= b.
In that case, given the operation is insensitive to both f(A, a) and f(A, b), it
is even (f(A, a) ∪ f(A, b))-insensitive. This gives rise to a definition of “row
(resp. column) equivalence”, which is the transitive closure of the relation con-
necting elements in the same row (resp. column) in the operation’s table.
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Definition 8. Let f be a binary operation on A. On Im(f) we define equivalence
ι1(f) (resp. ι2(f)) as the transitive closure of the relation

a ∼ b ⇐⇒ ∃x : a, b ∈ f(x, A) (resp. f(A, x)),
i.e., it is the equivalence generated by

{(f(x, a), f(x, b)) | a, b, x ∈ A}
(resp. {(f(a, x), f(b, x)) | a, b, x ∈ A} ).

For example for the operation
f(x, y) 0 1 2 3

0 0 0 0 2
1 0 0 0 2
2 1 1 1 3
3 1 1 1 3

we have ι1(f) = 02|13, ι2(f) = 01|23.
The equivalence is denoted ι, as it is connected to the image of the operation.

We can now reformulate the first two rows of Table 4.1 as in Table 4.2.
Note that the operation from the example above meets the first condition in

the first column, but does not meet any condition from the second column of
Table 4.1.

does not
depend on f(f(x, y), z) f(z, f(x, y))

x
f is ι2(f)-insensitive

in the 1st variable
f is ι2(f)-insensitive
in the 2nd variable

y
f is ι1(f)-insensitive

in the 1st variable
f is ι1(f)-insensitive
in the 2nd variable

Table 4.2: The conditions from Table 4.1 for x and y being non-essential in the
simple compositions equivalently reformulated using the equivalences ι1(f), ι2(f).

We know that if a binary operation f can not generate essentially ternary
operation, then it meets at least one of the conditions in each of the columns
in Table 4.1. The converse implication, however, does not hold; we demonstrate
this in the following example.

Let us suppose we have a binary operation f , and we know that f(f(x, y), z)
does not depend on z and f(z, f(x, y)) does not depend on y. The problem now
might be if we compose f(x1, f(f(x2, x3), x4)), since the only variable guaranteed
to be non-essential by our assumptions is x4. The situation is illustrated below.
The crossed out variables are assumed or guaranteed to be non-essential.

f

f

x y

◁Az

f

z f

x �Sy

f

x1 f

f

x2 x3

��ZZx4
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Indeed, the term on the right will be essentially ternary, if we take f given by
the following table:

f(x, y) 0 1 2 3
0 0 0 0 0
1 2 2 2 2
2 0 0 0 0
3 0 0 1 0

(4.1)

The operation is Im(f)-unary in the first variable, and the row equivalence of
f is ι1(f) = 01|2, so we see that f is ι1(f)-insensitive in the second variable.
Since f(f(x, y), z) is essentially binary, we can perceive it as a binary operation
f̃(x, y) = f(f(x, y), ◁Az). The table of f̃ is:

f̃(x, y) 0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 2 0

The operation f(x1, f̃(x2, x3)) is essentially ternary. The variables x2 and x3 are
essential, because f̃ can switch between the results 0 and 2 in both variables and
f can distinguish between 0 and 2 in the second variable. Put differently, the
operation f is neither ι1(f̃)-insensitive nor ι2(f̃)-insensitive in the second variable.
The variable x1 is obviously essential, since none of the columns in the table of
f is constant.

The reason we were able to obtain f̃ with such properties is that f is able to
generate the unary operation

x 0 1 2 3
u(x) 0 2 0 0 .

We know that f is ι1(f)-insensitive. However, (u(0), u(1)) /∈ ι1(f) even though
(0, 1) ∈ ι1(f), and f is sensitive to {u(0), u(1)}.

Therefore, if we only assume that f is, for instance, ι1(f)-insensitive, and we
want to guarantee that it can not generate an essentially ternary operation, we
need to also assume that every unary operation u, that we can generate, meets
the condition

∀a, b ∈ A : (a, b) ∈ ι1(f) =⇒ (u(a), u(b)) ∈ ι1(f),

i.e., that u is compatible with ι1(f).
Given an essentially binary operation f , which can not generate an essentially

ternary operation, we aim to find a maximal clone of essentially binary operations
containing f . A necessary condition for g to be in such a clone is that none of the
operations f(g(x, y), z), f(z, g(x, y)), g(f(x, y), z) and g(z, f(x, y)) is essentially
ternary. The conditions for that are the same as for composing f alone and are,
for clarity, summarized in Table 4.3.

We need to distinguish several cases. The simplest case is when Im(f) = A
and f is ιi(f)-insensitive for either i = 1 or i = 2 in both variables. The main idea
is then to fix the equivalence α = ιi(f) and consider essentially binary operations
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does not
depend on f(g(x, y), z) f(z, g(x, y))

x
f is ι2(g)-insensitive

in the 1st variable
f is ι2(g)-insensitive
in the 2nd variable

y
f is ι1(g)-insensitive

in the 1st variable
f is ι1(g)-insensitive
in the 2nd variable

z
f is Im(g)-unary
in the 1st variable

f is Im(g)-unary
in the 2nd variable

Table 4.3: Equivalent conditions for a given variable to be non-essential in the
simplest compositions of two binary operations. We refer to f as the “top”
operation and g as the “bottom” operation.

g such that the following two conditions hold. First, either ι1(g) ⊆ α or ι2(g) ⊆ α.
This is to satisfy the conditions in Table 4.3 where g is the “bottom” operation.
Second, g is α-insensitive, which is for the case when g is the “top” operation.

For the more general case, when we also allow Im(f) ⊊ A, so f might also be
Im(f)-unary instead of ιi(f)-insensitive in one of the variables, we fix B = Im(f).
We then also allow operations g which are B-unary instead of α-insensitive in one
of the variables. We will look more closely at this case in Section 4.1.2. Let us
remark that if g is A-unary in one of the variables, then it is essentially unary.

Weaker constraints may be applied for essentially unary operations – we just
need to make sure they do not modify some of the binary operations to violate
the binary conditions. The main idea is, as described after the example above,
to take operations compatible with α.

Another case is when f is insensitive to different equivalences in each of the
variables. Then we fix two equivalences. We examine this case in Section 4.1.3.

Note that if f satisfies at least one of the conditions in each column of Ta-
ble 4.3, then we know that it is insensitive to either ι1(g) or ι2(g) in one of the
variables. This is true, because if it is the third condition that holds in both
columns in Table 4.3, i.e., if f is Im(g)-unary in both variables, then it is con-
stant on Im(g)×A∪A× Im(g), and, therefore, it is trivially also ιi(g)-insensitive
for both i = 1, 2.

4.1.2 The clones with one equivalence
In this section we describe clones of essentially at most binary operations on a
finite set A, defined for a given set B ⊆ A and an equivalence α on A, which
only glues elements in B. We show that the clones are maximal essentially binary
in the sense, that adding any new operation would yield an essentially ternary
operation in the clone.

In this and the next section we slightly abuse the notation, and ignore the
fictitious variables. That is, for an essentially at most binary operation f we
write f = f(x, y), which means that all the essential variables of f are among x
and y. Similarly for essentially at most unary.

Now we introduce assumptions for B, α for this section. Let A = {0, 1, . . . , n},
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B = {0, 1 . . . , k} ⊆ A and α be an equivalence on A with equivalence classes
A1, . . . , As such that all elements not in B are singletons, i.e.,

α = A1| . . . |Ar|Ar+1| . . . |As

= A1| . . . |Ar|k + 1|k + 2| . . . |n.

Furthermore, let 0, 1 ∈ A1, that is, we assume that |B| ≥ 2 and there exist two
elements in B, which we denote 0, 1, such that (0, 1) ∈ α. This will always be
true if α = ιi(f) and B = Im(f) for some essentially binary operation f . Finally,
we assume that A \ A1 ̸= ∅. This also does not involve any loss in generality,
since if f is essentially binary operation such that both ι1(f) and ι2(f) are trivial
equivalences connecting all elements, then it can generate an essentially ternary
operation (see Table 4.1 and 4.2).

For a, b ∈ A we denote a ∼α b iff (a, b) ∈ α.

Definition 9. Let f be an essentially at most binary operation, f = f(x, y). We
define the following conditions:

(im) either ι1(f) ⊆ α or ι2(f) ⊆ α,

(ker) for both variables, f is either α-insensitive or B-unary in this variable,

(comp) f is compatible with α, i.e., ∀i, j ∃l : f(Ai, Aj) ⊆ Al.

Let us remark that (im) is equivalent to a condition

either ∀x ∈ A ∃j : f(x, A) ⊆ Aj

or ∀x ∈ A ∃j : f(A, x) ⊆ Aj,

which is stronger than (comp) in the variable for which this holds. The condition
(comp) is also trivially satisfied for a variable, in which f is α-insensitive. How-
ever, this does not mean that (im) and (ker) would imply (comp), as demonstrated
by the operation (4.1) in the example in the previous section with α = 01|2|3 and
B = {0, 1, 2}.

Both conditions in (ker) state something about equalities of evaluations on
certain tuples, so, as the name suggests, (ker) is a property of Ker(f).

We can now formulate the main claim of this section.

Proposition 21. Let E(α, B) be the set of operations on A given by

E(α, B) =
{f es. at most binary | f satisfies (im), (ker), (comp) and Im(f) ⊆ B}
∪ {u es. at most unary | either u(B) ⊆ B and u is compatible with α

or u is α-insensitive} .

Then E(α, B) is a clone and it is a maximal clone of essentially at most binary
operations in the sense that adding any operation would yield an essentially at
least ternary operation.
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Note the similarity of the conditions with the conditions in Proposition 16 in
Section 3.4.2. If we take α = 1B trivial on B, we actually get E(1B, B) = Pol(E3).

There are all constant operations in E(α, B). If an essentially unary operation
u satisfies the conditions for the essentially binary operations, then we have in
particular Im(u) ⊆ B and (comp), which is stronger than the first condition for
the essentially unary operations.

It is also worth noting that if an operation is α-insensitive, it is trivially
compatible with α. All the operations in E(α, B) are compatible with α, so any
composition of the operations is also compatible with α.

Let us remark that in the case A = B the conditions Im(f) ⊆ B and u(B) ⊆ B
are trivial, and we can also disregard the possibility of f being B-unary in a
variable in the condition (ker), because if f is A-unary in some variable, it is
essentially unary. This said, the following prove still covers this simpler case.

We now prove Proposition 21.

Claim 22. E(α, B) is a clone.

Proof. We prove E(α, B) is closed under the four procedures in Definition 2. It
obviously contains an identity. Since all the conditions are symmetric and concern
only essential variables, E(α, B) is trivially closed under permutation of variables
and introduction of fictitious variables.

Similarly, for identification of variables, we only need to check that if we
identify the two essential variables of an essentially binary operation f(x, y) in
E(α, B), the operation ∆f(x) = f(x, x) satisfies the conditions for essentially at
most unary operations. It clearly satisfies the first condition, since compatibility
with α is preserved by all the procedures, and Im(f) ⊆ B implies ∆f(B) ⊆ B.

For the substitution we separately consider four possible combinations of es-
sential arities of the two operations. Let u, v ∈ E(α, B) be essentially at most
unary. Then (u ∗ v)(x) = u(v(x)) is again essentially at most unary. If v is
α-insensitive, so is the composition. Let v be compatible with α and satisfy
v(B) ⊆ B. Then either the same holds for u, and then it clearly also holds for
the composition, or u is α-insensitive. Then for a ∼α a′ we have v(a) ∼α v(a′),
and so u(v(a)) = u(v(a′)), hence u ∗ v is α-insensitive.

Let u ∈ E(α, B) be again essentially at most unary, and f ∈ E(α, B) be
essentially binary. Both u ∗ f and f ∗ u are essentially at most binary and are
compatible with α.

For the substitution u ∗ f = u(f), assume that ι1(f) ⊆ α. Let first u be
α-insensitive. Then it is also ι1(f)-insensitive, hence for all a, b, c ∈ A we have
u(f(a, b)) = u(f(a, c)), i.e., u∗f is essentially unary. Since f is compatible with α
and u is α-insensitive, we have u(f(a, c)) = u(f(b, c)) whenever a ∼α b, so u ∗ f
is α-insensitive. Hence, u ∗ f ∈ E(α, B).

In the other case we have u(B) ⊆ B, and therefore Im(u ∗ f) ⊆ B. Clearly,
(ker) is preserved. We only need to show (im). We assume that ι1(f) ⊆ α.
Therefore, f(a, b) ∼α f(a, c) for all a, b, c ∈ A. Then, by the compatibility of
u with α, also u(f(a, b)) ∼α u(f(a, c)) for all a, b, c ∈ A, and since ι1(u ∗ f) is
generated by such pairs, we have ι1(u ∗ f) ⊆ α.

For (f ∗ u)(x, y) = f(u(x), y), clearly Im(f ∗ u) ⊆ B. It is easy to observe
that ιi(f ∗ u) ⊆ ιi(f), hence (im) is satisfied. It remains to show (ker). It is easy
to see it is preserved for the second variable, we check it for the first. Let f first
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be α-insensitive in the first variable, and a ∼α b. Then u(a) ∼α u(b), and so
f(u(a), c) = f(u(b), c) for every c ∈ A. Hence, f ∗ u is α-insensitive in the first
variable. Now let f be B-unary in the first variable. The property is preserved,
if u(B) ⊆ B. Otherwise u is α-insensitive, and then f ∗ u is α-insensitive in the
first variable. So f ∗ u satisfies (ker).

Finally, let f, g ∈ E(α, B) be essentially binary and, without loss of generality,
ι1(g) ⊆ α. First, let f be α-insensitive in the first variable. Then the operation
(f ∗ g)(x, y, z) = f(g(x, y), z) does not depend on y. Let a ∈ A and g̃ = g(–, a)
be the essentially unary operation given by fixing a in the second coordinate
of g. Then, up to adding fictitious variables, f ∗ g = f ∗ g̃. By the cases proved
above, g̃ ∈ E(α, B), since all constants are in E(α, B), and, consequently, also
f ∗ g̃ ∈ E(α, B).

Now let f be B-unary in the first coordinate. Then (f ∗ g)(x, y, z) does not
depend on z. Similarly as before, we fix a constant in the second variable of f ,
and get an essentially unary operation f̃ , for which f ∗g = f̃ ∗g ∈ E(α, B) follows
from the cases above.

Claim 23. For any g /∈ E(α, B), Clo(E(α, B) ∪ {g}) contains an essentially at
least ternary operation.

Proof. We first show how to construct an essentially ternary operation, if we
are given an essentially binary g which does not satisfy one of the conditions
Im(g) ⊆ B, (im) or (ker). Then we show that given an essentially unary operation
not in E(α, B), we can construct an essentially binary operation, which does not
satisfy one of the aforementioned conditions.

If an essentially binary operation g does not satisfy (comp), then we have
g(b, a) ̸∼α g(c, a) or g(a, b) ̸∼α g(a, c) for some b ∼α c and a fixed a ∈ A. Using
a constant, we can then generate an essentially unary operation x ↦→ g(x, a) or
y ↦→ g(a, y), which is not compatible with α, i.e., is not in E(α, B).

If we add an operation with essential arity greater then two, the conclusion is
immediately satisfied.

Let g(x, y) be an essentially binary operation, which does not satisfy (ker).
We assume that it does not satisfy (ker) in the first variable. Because g is not
B-unary in the first variable, there exist b ∈ B and c, c′ ∈ A such that

g(b, c) ̸= g(b, c′). (4.2)

It is also not α-insensitive in the first variable, so it can distinguish between two
elements in the same equivalence class of α in the first variable; without loss of
generality, let us assume that

g(0, a) ̸= g(1, a) (4.3)

for some a ∈ A. We define a binary operation f by

f(x, y) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if x ∈ A1, y ∈ A1,
0 if x ∈ A1, y /∈ A1,
b if x /∈ A1.

f(x, y) A1 A2 . . . As

A1 1 0 . . . 0
A2 b b . . . b

... ... ... . . . ...
As b b . . . b
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We defined f on α-blocks, so it is clearly α-insensitive. The image of f is
{0, 1, b} ⊆ B, and ι1(f) = 01|b ⊆ α. Hence, f ∈ E(α, B). We show that
g(f(x, y), z) is essentially ternary. The variable z is essential, because we have
b ∈ Im(f) and (4.2). Since f can “switch between 0 and 1 in the second
variable”, i.e., f(0, 0) = 1 and f(0, d) = 0 for d /∈ A1, the variable y is es-
sential in g(f(x, y), z) by (4.3). Similarly, x is essential, since by (4.3), either
g(1, a) ̸= g(b, a) or g(0, a) ̸= g(b, a).

Let now g(x, y) be an essentially binary operation, which does not satisfy (im).
From ι2(g) ̸⊆ α, there exist c, c′ ∈ A such that c ∼ι2(g) c′, but c ̸∼α c′. By
Definition 8, this means there exist c0, . . . , cl ∈ A and p0, . . . , pl−1 ∈ A such that
c = c0, c′ = cl and ci, ci+1 ∈ g(A, pi) for all i = 0, . . . , l − 1. Since c ̸∼α c′,
necessarily also ci ̸∼α ci+1 for some i, thus we have g(a, pi) ̸∼α g(a′, pi) for some
a, a′ ∈ A. Similarly for ι1(g) ̸⊆ α. Altogether, there exist a, a′, p, b, b′, q ∈ A such
that

c := g(a, p) ̸∼α g(a′, p) =: c′, (4.4)
d := g(q, b) ̸∼α g(q, b′) =: d′. (4.5)

There is no loss in generality assuming that also c ̸∼α d′ and d ̸∼α c′. We define
a binary operation f such that f(c, c) = f(d, c) = 1 and f(c′, c) = f(d′, c) = 0.
This is possible, since c, d ̸∼α c′, d′. We can define it as

f(x, y) =
⎧
⎨
⎩

1 if x ∼α c or x ∼α d, and y ∼α c,
0 otherwise.

It is easy to check that f ∈ E(α, B). Now f(g(x, y), z) is essentially ternary, since

f(g(a, p), c) (4.4)= f(c, c) = 1 ̸= 0 = f(c′, c) (4.4)= f(g(a′, p), c),

f(g(q, b), c) (4.5)= f(d, c) = 1 ̸= 0 = f(d′, c) (4.5)= f(g(q, b′), c),

f(g(a, p), c) = f(c, c) = 1 ̸= 0 = f(c, c′) = f(g(a, p), c′).

Finally, let g(x, y) be an essentially binary operation with Im(g) ̸⊆ B. This
only makes sense for the case B ̸= A. We define f as a projection onto the first
variable on B and a “diagonal” on the rest:

f(x, y) =

⎧
⎪⎪⎨
⎪⎪⎩

x if x ∈ B,
1 if x /∈ B and x = y,
0 otherwise.

f(x, y) 0 1 . . . k k+1 k+2 . . . n
0 0 0 . . . 0 0 0 . . . 0
1 1 1 . . . 1 1 1 . . . 1
... ... ... ... ... ... ...
k k k . . . k k k . . . k

k+1 0 0 . . . 0 1 0 . . . 0
k+2 0 0 . . . 0 0 1 . . . 0

... ... ... ... ... ... . . . ...
n 0 0 . . . 0 0 0 . . . 1

We check that f ∈ E(α, B). It is B-unary in the first variable and α-insensitive
in the second, so it satisfies (ker). Since 0 ∼α 1, we have ι1(f) ⊆ α, and (im) is
also satisfied. It is clearly compatible with α, and Im(f) = B.

50



We show that the operation f(g(x, y), z) is essentially ternary. First of all,
some d /∈ B is in the image of g, and f(d, 0) = 0 ̸= 1 = f(d, d). Thus, z
is essential. The variables x and y are essential, because g is essential in both
variables, and for all a ̸= b there exists c ∈ A such that f(a, c) ̸= f(b, c). We
check this easily. Let a, b ∈ A, a ̸= b. Then

a, b ∈ B =⇒ f(a, 0) = a ̸= b = f(b, 0),
a, b /∈ B =⇒ f(a, b) = 0 ̸= 1 = f(b, b),

a ∈ B \ {1}, b /∈ B =⇒ f(a, b) = a ̸= 1 = f(b, b),
a = 1, b /∈ B =⇒ f(1, 0) = 1 ̸= 0 = f(b, 0).

It remains to show that given an essentially unary operation u(x) /∈ E(α, B),
we can construct an essentially binary operation g, which violates one of the
conditions (ker), (im) or Im(g) ⊆ B.

If u /∈ E(α, B), then one of the following holds:

(a) u is not compatible with α,

(b) u(B) ̸⊆ B, and it is not α-insensitive.

For the case (a), we consider the “diagonal” operation

f(x, y) =
⎧
⎨
⎩

1 if x ∼α y,
0 otherwise.

Clearly, f ∈ E(α, B). We claim that g(x, y) = f(u(x), y) does not satisfy (ker).
By (a) there exist a, a′ ∈ B such that a ∼α a′, but u(a) ̸∼α u(a′). The elements
a, a′ must be in B, otherwise they could not be equivalent in α. Then we have

g(a, u(a)) = f(u(a), u(a)) = 1 ̸= 0 = f(u(a′), u(a)) = g(a′, u(a)),

hence g is not α-insensitive in the first variable. Similarly, we have

g(a, u(a)) = f(u(a), u(a)) = 1 ̸= 0 = f(u(a), u(a′)) = g(a, u(a′)),

and, therefore, g is not B-unary in the first variable. The inequalities also show
that g is essentially binary.

Alternatively, we could define f(x, y) to equal a if x, y ∈ A1, and a′ otherwise.
This is clearly essentially binary operation in E(α, B). The operation u(f(x, y))
is then still essentially binary, but it does not satisfy (im), since u(a) ̸∼α u(a′)
and (u(a), u(a′)) ∈ ι1(f), ι2(f).

In the case (b), there exists b ∈ B such that u(b) /∈ B, and a, a′ ∈ B such that
a ∼α a′ and u(a) ̸= u(a′). We consider an operation

f(x, y) =

⎧
⎪⎪⎨
⎪⎪⎩

a if x ∈ A1, y ∈ A1,
a′ if x ∈ A1, y /∈ A1,
b if x /∈ A1.

f(x, y) A1 A2 . . . As

A1 a a′ . . . a′

A2 b b . . . b
... ... ... . . . ...

As b b . . . b
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Then f is α-insensitive, ι1(f) ⊆ α since a ∼α a′, and Im(f) is in B. Therefore,
f ∈ E(α, B). Let g(x, y) = u(f(x, y)). Then u(b) ∈ Im(g), so Im(g) ̸⊆ B.
Moreover, we show g is essentially binary. We have 0 ∈ A1. Let c ∈ A2. Then

g(0, 0) = u(f(0, 0)) = u(a) ̸= u(a′) = u(f(0, c)) = g(0, c),

and since necessarily either u(a) ̸= u(b) or u(a′) ̸= u(b), we have also either

g(0, 0) = u(f(0, 0)) = u(a) ̸= u(b) = u(f(c, 0)) = g(c, 0),

or
g(0, c) = u(f(0, c)) = u(a′) ̸= u(b) = u(f(c, c)) = g(c, c).

This finishes the proof of Proposition 21.

4.1.3 The clones with two equivalences
In this section we describe similar clones as before, but with two different equiv-
alences. As an example, take an operation f given by

f(x, y) 0 1 2 3
0 0 1 0 1
1 0 1 0 1
2 2 3 2 3
3 2 3 2 3

.

We have ι1(f) = 01|23 and ι2(f) = 02|13. The operation is ι1(f)-insensitive
in the first variable, and ι2(f)-insensitive in the second variable. It is, however,
neither ι1(f)-insensitive in the second variable, nor ι2(f)-insensitive in the first.
Therefore, we can not take α such that f would be in E(α, A). In this section
we show that Clo(f) still contains only essentially at most binary operations, by
finding a maximal clone of essentially at most binary operations, which contains f .

Note that we can describe equivalences ι1(f) and ι2(f) using a scheme

0 1
2 3 ,

where rows are equivalence classes of ι1(f), and columns are equivalence classes
of ι2(f). We will now show that we can construct a similar scheme for every
binary operation on A. Recall that we have defined ιi(f) as an equivalence on
Im(f), not necessarily on the whole A.

Lemma 24. Let f be a binary operation on a finite set A. Let A1, . . . , Am be
equivalence classes of ι1(f), and B1, . . . , Bn be equivalence classes of ι2(f). Then
Ai ∩Bj ̸= ∅ for all i = 1, . . . , m and j = 1, . . . , n, and there exist an m×n table

M = (Mi j)0≤i≤m
0≤j≤n

, Mi j ⊆ Im(f),

such that
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• the equivalence classes of ι1(f) are exactly unions of rows of M , i.e.,

Ai =
⋃

0≤j≤n

Mi j , for all i = 1, . . . , m,

• the equivalence classes of ι2(f) are exactly unions of columns of M , i.e.,

Bj =
⋃

0≤i≤m

Mi j , for all j = 1, . . . , n,

• every element of Im(f) is in exactly one of the sets Mi j,

• Mi j ̸= ∅ for all i = 1, . . . , m, j = 1, . . . , n.

Proof. We set Mi j := Ai ∩ Bj. We show the intersection is always nonempty.
Let i ∈ {1, . . . , m}, j ∈ {1, . . . , n}. Let a ∈ Ai and b ∈ Bj. Then there
exist a1, a2, b1, b2 ∈ A such that a = f(a1, a2) and b = f(b1, b2). By Defini-
tion 8, (f(a1, a2), f(a1, b2)) ∈ ι1(f) and (f(b1, b2), f(a1, b2)) ∈ ι2(f), hence we get
f(a1, b2) ∈ Ai ∩Bj.

Every element of Im(f) is in some equivalence class of both ι1(f) and ι2(f),
so it is also in the intersection of these two classes.

Now we have
⋃

0≤j≤n

Mi j =
⋃

0≤j≤n

(Ai ∩Bj) = Ai ∩
⋃

0≤j≤n

Bj = Ai ∩ Im(f) = Ai,

for all i = 1, . . . , m, and similarly for Bj’s.

Remark. It is not hard to see, that being able to describe two equivalences α, β
by such a scheme is equivalent to commutativity of α and β and α◦β = β◦α = 1.

It is not difficult to see that given a table M as in Lemma 24, we can construct
a binary operation f such that M represents its equivalences ι1(f), ι2(f), and f
is ι1(f)-insensitive in the first variable and ι2(f)-insensitive in the second. If all
the sets Mi j have just one element, we already have the table of the operation –
we set f(x, y) ∈ Mi j whenever x ∈ Ai and y ∈ Bj. Otherwise, we need to take
an operation f on some larger set A. We show just a simple example. Given

012 3
4 56
78 9

we take two more elements 10, 11, and define f on {1, . . . , 11}, for example, by

f(x, y) B1 B2 10 11
A1 0 1 3 3
A2 1 2 3 3
A3 4 4 5 6
10 7 8 9 9
11 7 8 9 9 .

We will need a following simple observation, in which we also demonstrate
how can we use Lemma 24.
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Lemma 25. Let α1 and α2 be equivalences on a set B, for which α1 ◦ α2 =
α2 ◦ α1 = 1, i.e., there exists a table M for α1, α2 as in Lemma 24.

1. Let ∼ be any equivalence on B, and a, a′, b, b′ ∈ B be such that (a, a′) ∈ α1,
(b, b′) ∈ α2, a ̸∼ a′ and b ̸∼ b′. Then there exist c, c′, c′′ ∈ B such that
(c, c′) ∈ α1, (c, c′′) ∈ α2, c ̸∼ c′ and c ̸∼ c′′.

2. Let c, c′, c′′ ∈ B be such that (c, c′) ∈ α1 and (c, c′′) ∈ α2. Then there exists
d ∈ B such that (c′′, d) ∈ α1 and (c′, d) ∈ α2.

c ∼α1 c′

∼α2 ∼α2

c′′ ∼α1 ∃d
(4.6)

Proof. We use just the fact that every equivalence class of α1 has a nonempty
intersection with every class of α2. The second claim is just a reformulation of
that; we take arbitrary d ∈ [c′]α2 ∩ [c′′]α1 , where [e]γ denotes an equivalence class
of γ containing e.

For the first claim, let c ∈ [a]α1 ∩ [b]α2 . Then we have (c, a), (c, a′) ∈ α1
and (c, b), (c, b′) ∈ α2. Since a ̸∼ a′, we have either a ̸∼ c, and set c′ := a, or
a′ ̸∼ c, and then we set c′ := a′. Similarly, either b ̸∼ c or b′ ̸∼ c, and we set c′′

accordingly.

The construction of clones E(α1, α2, B)

We now aim to define the maximal clones of essentially at most binary operations
E(α1, α2, B). Let us fix a finite set A, nonempty subset B ⊆ A and equivalences
α1 and α2 on A such that they only identify elements in B, i.e., all the elements
not in B are singletons in both α1, α2. Moreover, restricted to B, let both α1
and α2 be nontrivial, and satisfy α1 ◦ α2 = α2 ◦ α1 = 1, i.e., the conclusion of
Lemma 24 holds for them. Moreover, let either α1 ∩ α2 be nontrivial, or B = A.
Remark. The case with one of the equivalences connecting all the elements is
covered by Section 4.1.2. If one of the equivalences did not connect any elements,
by the conditions we will define, all the operations would be essentially at most
unary.

We denote a ∼αi
b iff (a, b) ∈ αi, for i ∈ {1, 2}.

We define analogous conditions to (im), (ker) and (comp) from Section 4.1.2.
For the one equivalence case, we had compatibility with α. For a unary operation
u, it means that u(α) ⊆ α. The analogy in the two equivalence case is that for
both i = 1, 2 either α1 or α2 maps into αi:

(comp 2) (u(α1) ⊆ α1 or u(α2) ⊆ α1) and (u(α1) ⊆ α2 or u(α2) ⊆ α2)

For an essentially binary operation f(x, y) we define the following conditions

(im 2) (ι1(f) ⊆ α1 or ι2(f) ⊆ α1) and (ι1(f) ⊆ α2 or ι2(f) ⊆ α2),

(ker 2) for both variables, f is either α1-insensitive, α2-insensitive or B-unary
in the variable,
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(comp 2) for all a ∈ A the essentially unary operations f(–, a), f(a, –) satisfy
the unary version of (comp 2).

As in the case with one equivalence, the condition (comp 2) is only necessary
for B-unary variables, since if an operation u(x) is α1-insensitive or α2-insensitive,
it trivially satisfies (comp 2). If f is B-unary in, let us say, the first variable, then
(comp 2) actually implies even stronger condition – we can change the position
of the quantifier ∀a:

(∀a : f(α1, a) ⊆ α1 or ∀a : f(α2, a) ⊆ α1)
and (∀a : f(α1, a) ⊆ α2 or ∀a : f(α2, a) ⊆ α2),

since f(–, a) restricted to B is the same unary operation for all a ∈ A. Analo-
gously if f is B-unary in the second variable.

Proposition 26. Let E(α1, α2, B) be the set of operations on A given by

E(α1, α2, B) =
{f es. at most binary | f satisfies (im 2), (ker 2), (comp 2) and Im(f)⊆B}
∪ {u es. at most unary | either u(B) ⊆ B and u satisfies (comp 2)

or u is either α1-insensitive or α2-insensitive} .

Then E(α1, α2, B) is a clone and it is a maximal clone of essentially at most binary
operations in the sense that adding any operation would yield an essentially at
least ternary operation.

Claim 27. E(α1, α2, B) is a clone.

Proof. The steps of the proof will be the same as in the proof of Claim 22. Clearly,
E(α1, α2, B) contains the identity, and we show that it is closed under the four
procedures described in Definition 2. It is obviously closed under permutation of
variables and introduction of a new fictitious variable.

Let us first check that identifying the two essential variables of an essentially
binary operation f(x, y) ∈ E(α1, α2, B) yields an operation satisfying the unary
conditions. Since Im(f) ⊆ B, clearly ∆f(B) ⊆ B. We check (comp 2) for ∆f .
Let i ∈ {1, 2}. By (im 2) either ι1(f) ⊆ αi or ι2(f) ⊆ αi. Let us assume the
former. By the property (comp 2) and the remark after the definition, there exists
j ∈ {1, 2}, such that f(αj, a) ⊆ αi for all a ∈ A. Let a, b ∈ A, a ∼αj

b. Then

∆f(a) = f(a, a) (comp 2)∼αi
f(b, a) (im 2)∼αi

f(b, b) = ∆f(b),

hence ∆f(αj) ⊆ ∆f(αi), and ∆f ∈ E(α1, α2, B).
We show that E(α1, α2, B) is closed under substitution. If u, v ∈ E(α1, α2, B)

are essentially at most unary and v is αi-insensitive for i ∈ {1, 2}, then u ∗ v is
also αi-insensitive. If u is αi insensitive and v satisfies (comp 2), then we have
v(αj) ⊆ αi for either j = 1 or j = 2, so (u ∗ v)(αj) = u(v(αj)) ⊆ u(αi) = {a}
for some a ∈ A, i.e., u ∗ v is αj-insensitive. Otherwise, both u and v satisfy
(comp 2) and u(B), v(B) ⊆ B. Clearly (u ∗ v)(B) ⊆ B. Let i ∈ {1, 2}. Then
for some j ∈ {1, 2}, u(αj) ⊆ αi, and for some k ∈ {1, 2}, v(αk) ⊆ αj. Therefore,
(u ∗ v)(αk) = u(v(αk)) ⊆ u(αj) ⊆ αi, i.e., u ∗ v satisfies (comp 2).
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Let u(x) ∈ E(α1, α2, B) be essentially unary, f(x, y) ∈ E(α1, α2, B) be essen-
tially binary. If u is αj-insensitive for some j ∈ {1, 2}, then, by (im 2), we take
i ∈ {1, 2} such that ιi(f) ⊆ αj. Let us assume that ι1(f) ⊆ αj. Then the second
variable in the operation (u∗f)(x, y) is not essential, so u∗f is essentially unary,
and, up to adding fictitious variables, equal to u ∗ v, where v ∈ E(α1, α2, B) is
the essentially unary operation created by substituting a constant to the second
variable of f . Then u ∗ f ∈ E(α1, α2, B) by the previous case.

Otherwise, u satisfies (comp 2) and u(B) ⊆ B. Clearly, u ∗ f satisfies (ker 2)
and Im(u∗f) ⊆ B. Checking (comp 2) is analogous to the case of two essentially
unary operations. We check (im 2). Let i ∈ {1, 2}. By (comp 2) for u, u(αj) ⊆ αi

for some j ∈ {1, 2}, and by (im 2) for f , ιk(f) ⊆ αj for some k ∈ {1, 2}. Then
ιk(u ∗ f) ⊆ u(ιk(f)) ⊆ u(αj) ⊆ αi.

For the substitution f ∗u, we immediately have Im(f ∗u) ⊆ B, and also (im 2),
since ιi(f ∗u) ⊆ ιi(f) for every operation u. The condition (comp 2) follows from
the case of two essentially unary operations, so we only need to check (ker 2). It
is preserved for the second variable, we check it for the first. It is clearly satisfied,
if u is α1-insensitive or α2-insensitive. Otherwise, f is either B-unary in the first
variable, and then f ∗ u is also B-unary in the first variable, since u(B) ⊆ B,
or f is αi-insensitive in the first variable, and then we have u(αj) ⊆ αi for some
i, j ∈ {1, 2}, hence f ∗ u is αj insensitive in the first variable.

Let f, g ∈ E(α1, α2, B) be essentially binary. We show that f ∗ g is essentially
at most binary. Then f ∗ g ∈ E(α1, α2, B) will follow from the previous cases as
in the proof of Claim 22.

If f is αi insensitive in the first variable, i ∈ {1, 2}, then either the first or
the second variable of (f ∗ g)(x, y, z) is not essential, since either ι2(g) ⊆ αi or
ι1(g) ⊆ αi, respectively. If f is B-unary in the first variable, then z is not essential
in (f ∗ g)(x, y, z), since Im(g) ⊆ B.

Claim 28. For any g /∈ E(α1, α2, B), Clo(E(α1, α2, B) ∪ {g}) contains an essen-
tially at least ternary operation.

Proof. As in the proof of Claim 23, we only need to show that given an essentially
binary operation which does not satisfy one of the conditions (ker 2), (im 2) or
Im(f) ⊆ B, we can construct an essentially ternary operation, and given an es-
sentially unary u /∈ E(α1, α2, B), we can construct an essentially binary operation
not satisfying one of the mentioned conditions. If an essentially binary operation
does not satisfy (comp 2), we can generate essentially an unary operation not
satisfying (comp 2), by substituting a constant in one of the variables.

Let g be essentially binary and does not satisfy (ker 2). We assume that it
does not satisfy (ker 2) in the first coordinate. By Lemma 25, if we set a ∼ b
iff g(a, –) = g(b, –), there exist c, c′, c′′ ∈ B such that c ∼α1 c′, c ∼α2 c′′, but
g(c, –) ̸= g(c′, –) and g(c, –) ̸= g(c′′, –). We also have d ∈ B such that c′ ∼α1 d
and c′′ ∼α2 d. We denote A1, . . . , As the equivalent classes of α1, and define

f(x, y) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c if x ∈ A1, y ∈ A1,
c′ if x ∈ A1, y /∈ A1,
c′′ if x /∈ A1, y ∈ A1,
d if x /∈ A1, y /∈ A1.

f(x, y) A1 A2 . . . As

A1 c c′ . . . c′

A2 c′′ d . . . d
... ... ... . . . ...

As c′′ d . . . d

(4.7)
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By the assumptions on c, c′, c′′, d, we have ι1(f)⊆α1, ι2(f)⊆α2 and Im(f)⊆B.
The operation is also obviously α1-insensitive in both variables, hence we have
f ∈ E(α1, α2, B). The operation g(f(x, y), z) now obviously depends on x and
y. It also depends on z, if g(a, –) is not a constant for one of the elements
a ∈ {c, c′, c′′, d}. We show that we can always find elements c, c′, c′′, d such that
they satisfy the conditions above, and, moreover, g(a, –) is not constant for one
of them.

Let g(c, –) be constant. Because g is essentially binary, we know that there
exists b ∈ B such that g(b, –) is not a constant. Using the table from Lemma 24,
we can find e, f, d′, d′′ ∈ B such that we have a following scheme, where elements
in the same row are connected by α1, and in the same column by α2:

c c′ e
c′′ d d′

f d′′ b
(4.8)

If g(e, –) is not constant, then g(c, –) ̸= g(e, –), and we take c, e, c′′, d′ in place of
c, c′, c′′, d, respectively. If g(f, –) is not constant, we can similarly take c, c′, f, d′′.
Otherwise both g(e, –) and g(f, –) are constant, hence g(e, –) ̸= g(b, –) ̸= g(f, –),
and we can take b, e, f, c instead of c, c′, d, d′′.

Let g be essentially binary such that it does not satisfy (im 2); without loss
of generality, let it violate the condition for α1, i.e., ι1(g) ̸⊆ α1 and ι2(g) ̸⊆ α1.
Then there exist a, a′, p, b, b′, q ∈ A such that

g(a, p) := c ̸∼α1 c′ =: g(a′, p),
g(q, b) := d ̸∼α1 d′ =: g(q, b′),

and c ̸∼α1 d′, d ̸∼α1 c′. If α1 ∩ α2 is nontrivial, we can construct essentially
ternary operation the same way as in the proof of Claim 23 (where we would
need (0, 1) ∈ α1 ∩ α2). In general, we need to slightly modify the construction.
We assume that both equivalences are nontrivial on B, so there exist four distinct
elements 0, 1, 2, 3 ∈ B such that

0 ∼α1 1

∼α2 ∼α2

2 ∼α1 3 .

We define f as

f(x, y) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if (x ̸∼α1 c and x ̸∼α1 d) and y ∼α1 c,
2 if (x ∼α1 c or x ∼α1 d) and y ∼α1 c,
1 if (x ̸∼α1 c and x ̸∼α1 d) and y ̸∼α1 c,
3 if (x ∼α1 c or x ∼α1 d) and y ̸∼α1 c.

f [c]α1 . . .
[c′]α1 0 1
[d′]α1 0 1
[c]α1 2 3
[d]α1 2 3

... 0 1

Then f ∈ E(α1, α2, B), and f(g(x, y), z) is essentially ternary.
Let now B ⊊ A and g be essentially binary such that Im(g) ̸⊆ B. In that

case we assume that α1 ∩ α2 is nontrivial. Let 0, 1 ∈ B be such that 0 ∼α1 1 and
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0 ∼α2 1. Let us define f as the projection onto the first variable on B and as
“diagonal” on the rest:

f(x, y) =

⎧
⎪⎪⎨
⎪⎪⎩

x if x ∈ B,
1 if x /∈ B and x = y,
0 if x /∈ B and x ̸= y.

Then f ∈ E(α1, α2, B); note in particular, that ι1(f) ⊆ α1, α2. For all a, b ∈ A,
a ̸= b, we have either f(a, a) ̸= f(b, a) or f(a, b) ̸= f(b, b). Therefore, x and y are
essential in f(g(x, y), z), since g is essentially binary. We assume that there exists
c ∈ Im(g) such that c /∈ B. Since f(c, c) = 1 ̸= 0 = f(c, 0), also z is essential in
f(g(x, y), z).

Finally, let u /∈ E(α1, α2, B) be essentially unary. Then one of the following
holds:

(a) u does not satisfy (comp 2), i.e., there exist i ∈ {1, 2} and elements a, a′, b, b′

such that a ∼α1 a′, b ∼α2 b′, u(a) ̸∼αi
u(a′) and u(b) ̸∼αi

u(b′),

(b) u(B) ̸⊆ B and it is neither α1-insensitive nor α2-insensitive, i.e., there exist
a, a′, b, b′ ∈ A, a ∼α1 a′, d ∼α2 d′, u(a) ̸= u(a′) and u(d) ̸= u(d′).

In the case (a), we use Lemma 25 to obtain c, c′, c′′, d as in (4.6) such that
u(c) ̸∼αi

u(c′), u(c) ̸∼αi
u(c′). We define f as in (4.7) above. Then u(f(x, y)) is

essentially binary, but does not satisfy (im 2).
In the case (b), we also use Lemma 25 to obtain c, c′, c′′, d as in (4.6) such

that u(c) ̸= u(c′), u(c) ̸= u(c′). Again, we define f as in (4.7), and by the same
construction as above, using the scheme (4.8), we can guarantee that u(d) /∈ B.
We then have u(f(x, y)) essentially binary such that Im(f) ̸⊆ B.

4.1.4 Conclusion
We finish the binary case by showing that we have, indeed, found a maximal clone
of essentially at most binary operations for each essentially binary operation which
can not generate an essentially ternary operation.

Theorem 29. Let f be an essentially binary operation on a finite set A such that
Clo(f) only contains essentially at most binary operations. Then there either exist
equivalences α1, α2 on A such that f ∈ E(α1, α2, A), or there exist a set B ⊆ A
and an equivalence α on A such that f ∈ E(α, B).

We now prove Theorem 29. Let f(x, y) be as in the theorem. We have noticed
in Section 4.1.1 that if f cannot generate an essentially ternary operation, then it
necessarily satisfies at least one of the conditions in each column of Table 4.1. Let
f first satisfy insensitivity conditions in both variables. If it is ιi(f)-insensitive
in both variables for the same i ∈ {1, 2}, we set

α = ιi(f) ∪ {(a, a) | a ∈ A \ Im(f)} .

Then we have ιi(f) ⊆ α and f is α-insensitive in both variables, i.e., f ∈ E(α, A).
The clone f ∈ E(α, A) is a maximal clone of essentially at most binary operations
by Proposition 21.
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Similarly, if f is ι1(f)-insensitive in one variable and ι2(f)-insensitive in the
other, we set

α1 = ι1(f) ∪ {(a, a) | a ∈ A \ Im(f)} ,

α2 = ι2(f) ∪ {(a, a) | a ∈ A \ Im(f)} ,

and have f ∈ E(α1, α2, A), which is a maximal clone of essentially at most binary
operations according to Proposition 26.

Instead of A, we could also take any B such that Im(f) ⊆ B ⊆ A as the set in
the definition of the clones. Similarly, instead of the equivalences ιi(f) we might
take any α such that ιi(f) ⊆ α and f is still α-insensitive in the corresponding
variables.

In both mentioned cases, the conditions (comp), (comp 2), respectively, triv-
ially follow from the insensitivity. They are, however, not guaranteed in the re-
maining case. As we have already noticed before, if an operation is Im(f)-unary
in both variables, then it is also Im(f)-insensitive in both variables, so we have
this case already covered.

Let now f be Im(f)-unary in the first variable and either ι1(f)-insensitive or
ι2(f)-insensitive in the second variable. We define an equivalence

κ2(f) =
{
(a, b) ∈ Im(f)2 | ∀c ∈ A : f(c, a) = f(c, b)

}
,

i.e., for a, b ∈ Im(f), a ∼κ2(f) b iff the columns a and b are identical in the table
of f . It is the maximal equivalence on Im(f) to which f is insensitive in the
second variable. The condition that f is ιi(f)-insensitive in the second variable
is equivalent to ιi(f) ⊆ κ2(f).

If f is compatible with κ2(f), then we can set

α = κ2(f) ∪ {(a, a) | a ∈ A \ Im(f)}

and have f ∈ E(α, Im(f)).
Let us assume that f is not compatible with κ2(f). Since f is κ2(f)-insensitive

in the second variable, it is the first variable which violates the compatibility, i.e.,
there exist a, a′, b ∈ A such that f(a, b) ̸∼κ2(f) f(a′, b). This means, in particular,
that we have κ2(f) ⊊ B2 and ι2(f) ̸⊆ κ2(f), since f(a, b) ∼ι2(f) f(a′, b) by the
definition of ι2(f). We have assumed f to be ιi(f)-insensitive in the second
variable for either i = 1 or i = 2, so necessarily ι1(f) ⊆ κ2(f). If f is compatible
with any equivalence β on Im(f) such that ι1(f) ⊆ β ⊆ κ2(f), we set

α = β ∪ {(a, a) | a ∈ A \ Im(f)} ,

and have f ∈ E(α, Im(f)). We show that otherwise f generates an essentially
ternary operation, which will conclude the proof of Theorem 29.

Let us assume that for all equivalences β on Im(f) such that ι1(f)⊆β⊆κ2(f),
f is not compatible with β. We construct an essentially ternary operation simi-
larly as for the operation (4.1) in the example in Section 4.1.1.
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Let us define a unary operation u(x) as a mapping x ↦→ f(x, a) for an arbitrary
fixed a ∈ A. We only need u as an operation on Im(f) and f is Im(f)-unary in
the first variable, so the choice of a does not affect anything. If ι1(f) ⊆ β ⊆ κ2(f)
is an equivalence, then, by our assumption, we have f(β, b) ̸⊆ β for some b ∈ A.
Since β ⊆ Im(f)2 and f is Im(f)-unary, we have even f(β, b) ̸⊆ β for all b ∈ A.
Therefore, also u(β) ̸⊆ β.

For k ∈ N we write uk(x) = u(u(. . . u
  

k

(x))) and u0(x) = x.

Claim 30. There exist (a0, a′
0) ∈ ι1(f) and n ∈ N such that un(a0) ̸∼κ2(f) un(a′

0).

We prove the claim later. Since (a0, a′
0) ∈ ι1(f), there exist c, d, d′ ∈ A such

that f(c, d) = a0 and f(c, d′) = a′
0. Let us define

f̃(y, z) = f(f(. . . f(f
  

n+1

(y, z), x1), . . . , xn), xn+1).

We regard f̃ as binary, since x1, . . . , xn+1 are not essential. We have

f̃(c, d) = un(f(c, d)) = un(a0) ̸∼κ2(f) un(a′
0) = un(f(c, d′)) = f̃(c, d′). (4.9)

Let b ∈ Im(f). The operation f̃(y, z) is still Im(f)-unary in the variable y.
Therefore, we have the following scheme

f̃(b, d) = f̃(b, d′)
?∼ κ2(f) ?∼ κ2(f)

f̃(c, d) ̸∼κ2(f) f̃(c, d′) ,

and, therefore, necessarily for either e = d or e = d′ we have

f̃(b, e) ̸∼κ2(f) f̃(c, e). (4.10)

We show that f(x, f̃(y, z)) is essentially ternary. By the definition of κ2(f), for
every pair p ̸∼κ2(f) q, there exists r ∈ A such that f(r, p) ̸= f(r, q). Therefore,
by (4.9), f(x, f̃(y, z)) depends on z, and by (4.10), it depends on y. It clearly
depends on x, since f(κ2(f), b) ̸⊆ κ2(f) for every b ∈ A.

Indeed, Clo(f) contains an essentially ternary operation. It only remains to
prove Claim 30.
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Proof of Claim 30. For two equivalences α, β we use the standard notation α∨β
to denote the least equivalence containing both α and β. It is the equivalence
generated by the edges in α ∪ β and

a ∼α∨β b ⇐⇒ ∃c0, . . . , ck : a = c0 ∼α c1 ∼β c2 ∼α · · · ∼β ck = b. (4.11)

We assume that u is not compatible with β for every equivalence such that
ι1(f) ⊆ β ⊆ κ2(f).

Let β0 = ι1(f). For i ≥ 0 we define βi+1 := βi ∨ u(βi). For each i ∈ N we
have either ι1(f) ⊆ βi ⊆ κ2(f), and then, by our assumption, u(βi) ̸⊆ βi, hence
βi ⊊ βi+1, or we have βi ̸⊆ κ2(f). Since Im(f) is finite, there is only finitely many
equivalences on Im(f), and, therefore, there exists n ∈ N such that βn ̸⊆ κ2(f).
Let n be the least number such that βn ̸⊆ κ2(f).

We now prove by induction that for all i ∈ {n, n − 1, . . . , 0} there exists
(ai, a′

i) ∈ βi such that
un−i(ai) ̸∼κ2(f) un−i(a′

i).
For n we have βn ̸⊆ κ2(f) by assumption, hence there exists (an, a′

n) ∈ βn

such that an ̸∼κ2(f) a′
n, i.e., u0(an) ̸∼κ2(f) u0(a′

n).
Let 1 ≤ i ≤ n and (ai, a′

i) ∈ βi be such that un−i(ai) ̸∼κ2(f) un−i(a′
i). Then by

(4.11) there exist c0, . . . , ck ∈ Im(f) such that

ai = c0 ∼βi−1 c1 ∼u(βi−1) c2 ∼βi−1 · · · ∼u(βi−1) ck = a′
i.

Since un−i(ai) ̸∼κ2(f) un−i(a′
i), we must have un−i(cj) ̸∼κ2(f) un−i(cj+1) for some

j ∈ {1, . . . , k − 1}. Clearly, un−i(βi−1) ⊆ βn−1, thus for (cj, cj+1) ∈ βi−1 we have

(un−i(cj), un−1(cj+1)) ∈ βn−1 ⊆ κ2(f).

Hence, there necessarily exists a tuple (cj, cj+1) ∈ u(βi−1) such that we have
un−i(cj) ̸∼κ2(f) un−i(cj+1). Thus, we get (ai−1, a′

i−1) ∈ βi−1 such that u(ai−1) = cj,
u(a′

i−1) = cj+1, and, therefore, un−i+1(ai−1) ̸∼κ2(f) un−i+1(a′
i−1).

For i = 0 we have obtained the desired (a0, a′
0) ∈ β0 = ι1(f) such that

un(a0) ̸∼κ2(f) un(a′
0).

This finishes the proof of Theorem 29.
In the theorem we use the clones with two equivalences only for the full set A.

We have, however, proved that E(α1, α2, B) are maximal clones of essentially
binary operations for arbitrary B ⊆ A, |B| ≥ 2, given that α1 ∩ α2 is nontrivial.
This is useful when we seek such a clone containing two different essentially binary
operations which can not generate an essentially ternary operation together. For
example, let us consider the following binary operations:

f 0 1 2 3 4 5
0 0 0 2 0 2 1
1 0 0 2 0 2 1
2 0 0 2 0 2 1
3 3 3 4 3 4 3
4 3 3 4 3 4 3
5 1 1 2 1 2 1

g 0 1 2 3 4 5
0 0 0 0 0 0 0
1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3
4 4 4 4 4 4 4
5 0 0 0 1 1 1

h 0 1 2 3 4 5
0 0 0 0 1 1 1
1 0 0 0 1 1 1
2 0 0 0 1 1 1
3 1 1 1 1 1 1
4 1 1 1 1 1 1
5 5 5 5 5 5 5
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We have ι1(f) = 012|34 and ι2(f) = 013|24, f is ι1(f)-insensitive in the first
variable and ι2(f)-insensitive in the second variable. The clone that we find for
f in the proof of Theorem 29 is

E(012|34|5, 013|24|5, {0, . . . , 5}) =: Ef .

We can easily see, that f, h ∈ Ef . On the other hand, g /∈ Ef , since it is neither
{0, . . . , 5}-unary nor insensitive to any of the equivalences in the first variable.
However, this does not mean that f and g could generate an essentially ternary
operation together. To see that they can not, observe that

f, g ∈ E(012|34|5, 013|24|5, {0, . . . , 4}) =: Eg.

Since 5 ∈ Im(h), it follows that h /∈ Eg.
We have found a maximal clone of essentially at most binary operations for

the pair f, h and for the pair f, g. We cannot put all three operations in such a
clone together, since we can easily see that h, g generate an essentially ternary
operation g(h(x, y), z). It is essentially ternary since

g(h(0, 0), 0) = 0 ̸= 1 = g(h(3, 0), 0),
g(h(0, 0), 0) = 0 ̸= 1 = g(h(0, 3), 0),
g(h(5, 5), 0) = 0 ̸= 1 = g(h(5, 5), 5).

4.2 Generalization for higher arities
In this section we show how the clones E(α, B) with one equivalence can be
generalized to maximal clones of essentially at most k-ary operations. As in
Section 4.1.2, we assume that A is a finite set, B ⊆ A is a subset, |B| ≥ 2,
and α is a nontrivial equivalence on A, which only connects elements in B, i.e.,
the equivalence classes for elements in A \ B are just singletons. We denote
α = A1|A2| . . . |As and assume that 0, 1 ∈ A1.

We use the simplification of notation where we ignore fictitious variables, so if
an operation f is essentially k-ary, we perceive it as k-ary operation f(x1, . . . , xk).

We need to define k-ary variant of the “row” and “column” equivalences.

Definition 10. Let f be a k-ary operation on A. On Im(f) we define equivalence
ιi(f) as the transitive closure of the relation

a ∼ b ⇐⇒ ∃x : a, b ∈ f(A, . . . , A,
i
x, A, . . . , A).

We use analogous conditions to those described in Definition 9. For an essen-
tially k-ary f(x1, . . . , xk), we define:

(im) there exists i ∈ {1, . . . , k} such that ιi(f) ⊆ α,

(ker) for each variable, f is either α-insensitive or B-unary in this variable,

(comp) f is compatible with α.

We prove an analogy of Proposition 21.
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Proposition 31. Let k ≥ 2 and Ek(α, B) be the set of operations on A given by

Ek(α, B) =
{f es. at most k-ary | f satisfies (im), (ker), (comp) and Im(f) ⊆ B}
∪ {u es. at most unary | either u(B) ⊆ B and u is compatible with α

or u is α-insensitive}.

Then Ek(α, B) is a clone and it is a maximal clone of essentially at most k-ary
operations in the sense that adding any operation would yield an essentially at
least (k + 1)-ary operation.

The binary clone from Proposition 21 is a special case of these clones, i.e.,
E2(α, B) = E(α, B).

We clearly have an infinite chain of clones

E2(α, B) ⊊ E3(α, B) ⊊ · · · ⊊ Ek(α, B) ⊊ · · · ⊊
⋃

k≥2
Ek(α, B),

and, therefore, ⋃
k≥2
Ek(α, B) is non-finitely generated.

If B ⊊ A and we set α trivial on B, the condition (ker) says that an operation
is either B-insensitive or B-unary in each variable. Also, compatibility with α is
then always satisfied if Im(f) ⊆ B. Hence, the clones Ek(α, B) are in that case
exactly the clones described in Proposition 16 in Section 3.4.2.

Note that we can not generalize the two equivalence case in such straightfor-
ward manner. The identification of variables becomes a problem for insensitivity.
For example if we have a ternary operation f(x, y, z) which is α1-insensitive in
x, z and α2-insensitive in y, it can happen that for a ∼α1 a′, c ∈ A, we get
f(a, a, c) = f(a′, a, c), but f(a′, a, c) ̸= f(a′, a′, c), hence ∆f(a, c) ̸= ∆f(a′, c).
We did not have this problem in the binary case, since we could only get an
essentially unary operation by identifying essential variables, for which we have
weaker conditions.

Proof of Proposition 31. The arguments are very similar to the proof of Propo-
sition 21. We directly use parts of the previous proof and point out how to
generalize the other parts.

We fix k ≥ 2. Clearly, Ek(α, B) is closed under introduction of fictitious
variables and under permutation of variables. It is closed under identification of
variables, because if f(x1, . . . , xn) ∈ Ek(α, B), n ≥ 2, then either one of the first
two variables is B-unary, and then the first variable ∆f is also B-unary, or they
are both α-insensitive, and then for all a ∈ An−1 and a′

1 ∈ A such that a1 ∼α a′
1

we have

∆f(a1, a2, . . . , an−1) = f(a1, a1, a2, . . . , an−1) =
= f(a1, a′

1, a2, . . . , an−1) = f(a′
1, a′

1, a2, . . . , an−1) = ∆f(a′
1, a2, . . . , an−1),

hence ∆f satisfies (ker). It clearly also satisfies (comp) and Im(∆f) ⊆ B. It
satisfies (im), since ι1(∆f) ⊆ ι1(f), ι2(f) and ιi(∆f) ⊆ ιi+1(f) for i ≥ 2.

Regarding the substitution, the case for two essentially unary operations is
already shown in the proof of Proposition 21, since the essentially unary opera-
tions are the same in El(α, B) for all l ≥ 2. The cases for one essentially unary
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and one essentially n-ary operation, k ≥ n ≥ 2, are proved the same way as in
Proposition 21. The remaining case is also very similar. Let f, g ∈ Ek(α, B) be
essentially n-ary and m-ary, respectively, for k ≥ n, m ≥ 2. We have

(f ∗ g)(x1, x2, . . . , xm+n−1) = f(g(x1, . . . , xm), xm+1, . . . , xm+n−1).

If f is α-insensitive in the first coordinate and ιi(g) ⊆ α, then f ∗ g does not
depend on x1, . . . , xi−1, xi+1, . . . , xm, so it is essentially at most n-ary. If f is
B-unary in the first variable, then f ∗ g does not depend on xm+1, . . . , xm+n−1, so
it is essentially at most m-ary. Moreover, in both cases we can replace either g or
f by a unary operation created by substituting constants to all but one variable,
and then f ∗ g ∈ Ek(α, B) follows form the previous cases.

Now we show the maximality. Essentially unary and binary operations are the
same in En(α, B) for all n ≥ 2. Thus, given an essentially unary operation which
is not in Ek(α, B), we construct an essentially binary operation not in Ek(α, B)
the same way we did in the proof of Proposition 21. Also, if we are given an
essentially n-ary operation g which is not compatible with α, then there exist
i ∈ {1, . . . , n}, a ∈ An and a′

i ∈ A such that ai ∼α a′
i and

g(a1, . . . , ai−1, ai, ai+1, . . . , an) ̸∼α g(a1, . . . , ai−1, a′
i, ai+1, . . . , an),

so we can take essentially unary operation u(x) = g(a1, . . . , ai−1, x, ai+1, . . . , an),
and then u is not compatible with α, hence u /∈ Ek(α, B).

It remains to show how to generate essentially at least (k + 1)-ary operation,
given an n-ary operation, k ≥ n ≥ 2, which does not satisfy one of the conditions
(ker), (im) or Im(g) ⊆ B. For the rest of the proof, g will be an essentially n-ary
operation, k ≥ n ≥ 2.

If g does not satisfy (ker) in the first variable, then it is neither B-unary
nor α-insensitive in the first variable, hence there exist b ∈ A, c, c′ ∈ An−1 and
d, d′ ∈ A, a ∈ An−1 such that d ∼α d′ and

g(b, c) ̸= g(b, c′), (4.12)
g(d, a) ̸= g(d′, a). (4.13)

For simplicity, assume that d = 0, d′ = 1. Let us define k-ary operation

f(x1, x2, . . . , xk) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if x1, x2, . . . , xk ∈ A1,
0 if x1 ∈ A1, xi /∈ A1 for some i ∈ {2, . . . , k},
b if x1 /∈ A1.

We can define such f , since α is nontrivial, hence has at least two equivalence
classes. Clearly, f is α-insensitive. We have ι1(f) = 01|b ⊆ α, so it satisfies (im),
and Im(f) = {0, 1, b} ⊆ B. We show that g ∗ f is essentially at least (k + 1)-ary.
Let e ∈ A2 be arbitrary. Then for all i ∈ {1, . . . , k} we have

g(f(0, . . . , 0,
i
0, 0, . . . , 0), a) = g(0, a)

(4.13)
̸= g(1, a) = g(f(0, . . . , 0,

i
e, 0, . . . , 0), a),

so the first k variables are essential, and

g(f(e, . . . , e), c) = g(b, c)
(4.12)
̸= g(b, c′) = g(f(e, . . . , e), c′),
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so at least one of the other n− 1 variables is essential.
Let us now assume that g does not satisfy (im), that is, ιi(g) ̸⊆ α for all

i = 1, . . . , n. Similarly as in the proof of Proposition 21, this means there ex-
ist ci, c′

i, pi ∈ A such that ci, c′
i ∈ g(A . . . , A, pi, A, . . . , A) and ci ̸∼α c′

i for all
i = 1, . . . , n.

For c1, c′
1 we find ã2, . . . , ãn, ã′

2, . . . , ã′
n ∈ A such that

g(p1, ã2, . . . , ãn) = c1 ̸∼α c′
1 = g(p1, ã′

2, . . . , ã′
n).

By changing ãi for ã′
i one variable at a time, we find tuples a, a′ ∈ An which only

differ in the i-th variable, for some i ∈ {1, . . . , n}, and for which g(a) ̸∼α g(a′).
Similarly, starting with ci, c′

i, we find b, b′ differing only in the j-th variable such
that g(b) ̸∼α g(b′), where j ̸= i, since we had pi at the i-th variable for all
considered tuples. We have

c := g(a) ̸∼α g(a′) =: c′,

d := g(b) ̸∼α g(b′) =: d′.

We may assume that c ̸∼α d′ and d ̸∼α c′. We define a k-ary operation

f(x1, x2, . . . , xk) =
⎧
⎨
⎩

1 if (x1 ∼α c or x1 ∼α d) and xl ∼α c for all l = 2, . . . , k,
0 otherwise.

We can easily check that f ∈ Ek(α, B). The operation (f ∗ g)(x1, . . . , xn+k−1) is
essentially at least (k + 1)-ary. The variables xn+1, . . . , xn+k−1 are essential, since
for all l = n + 1, . . . , n + k − 1 we have

f(g(a), c, . . . , c,
l
c, c, . . . , c) = 1 ̸= 0 = f(g(a), c, . . . , c,

l

c′, c, . . . , c).

The variables xi and xj are essential, since

f(g(a), c, . . . , c) = f(c, c, . . . , c) = 0 ̸= 1 = f(c′, c, . . . , c) = f(g(a′), c, . . . , c),
f(g(b), c, . . . , c) = f(d, c, . . . , c) = 0 ̸= 1 = f(d′, c, . . . , c) = f(g(b′), c, . . . , c).

Finally, let B ̸= A and Im(g) ̸⊆ B, that is, there exists a ∈ An such that
g(a) /∈ B. We define a k-ary operation

f(x1, x2, . . . , xk) =

⎧
⎪⎪⎨
⎪⎪⎩

x1 if x1 ∈ B,
1 if x1 /∈ B and x1 = x2 = · · · = xk,
0 otherwise.

We have ι1(f) ⊆ α, since it only connects 0 and 1. We have f B-unary in the
first variable, and α-insensitive in the other variables, since if x1 is fixed, then
either x1 ∈ B and changing other variables has no effect, or x1 /∈ B and then we
can possibly change the result only by alternating between xi = x1 and xi ̸= x1.
It is clearly compatible with α, and Im(f) ⊆ B, hence f ∈ Ek(α, B).

As the binary version of f in Proposition 21, f has the property, that for every
a, b ∈ A, a ̸= b, there exists c ∈ Ak−1 such that f(a, c) ̸= f(b, c). This holds, for
example because f̃(x, y) = f(x, y, . . . , y) is the binary version of the operation.
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Thus, operation f(g(x1, . . . , xn), xn+1, . . . , xn+k−1) depends on the variables
x1, . . . , xn, which are essential for g. The other variables, xn+1, . . . , xn+k−1, are
also essential, because if we set b := g(a) /∈ B, we have

f(g(a), b, . . . , b,
i

b, b . . . , b) = 1 ̸= 0 = f(g(a), b, . . . , b,
i
0, b, . . . , b),

for all i = n + 1, . . . , n + k − 1. Therefore, f ∗ g is essentially (n + k − 1)-ary.
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Conclusion
We have summarized several tools that are useful for determining whether a
clone is finitely generated or not, presented examples of finitely and non-finitely
generated clones, and found maximal clones of essentially binary operations.

In Chapter 2 we have studied several finitely generated clones. We have
demonstrated how to modify a simple explicit construction with which we can
find generators of the clones, and express all the operations of the clones as
compositions of these generators. We have proved that for finite sets B ⊊ A the
maximal non-finitely related clones and the idempotent reducts, defined in [13]
as C(B, A) and CI(B, A), are finitely generated.

Inspired by the clones used in [7], in Chapter 3 we have defined relations, poly-
morphisms of which have restricted essential arity. It is later proved in Chapter 4
that the clones of polymorphisms of these relations are in fact maximal clones of
operations with essential arity restricted by a chosen k ≥ 2.

We have discussed possible modifications of the relations, replacing A2, B2, ∆A

and ∆B by different relations. As seen in Chapter 4, restricting essential arity
always involves some kind of insensitivity, which is rather limiting. We have
seen, however, that other properties might be restricted to a certain number of
variables – for instance, we have defined relations Fk by replacing A2, B2, ∆A, ∆B

by sets A, B, C, D, such that

A

B C

D

⊊ ⊊

⊊ ⊊
̸⊆

,

and then compatibility of an operation f with the relation Fk implies that the
property

f(C, . . . , C,
i

A, C, . . . , C) ̸⊆ C

can hold for at most k − 1 variables.
Note that the condition “a property P holds for at most k variables” is always

trivially satisfied by at most k-ary operations. In the light of Lemma 9 in Sec-
tion 1.4, the reason why a clone C is non-finitely generated is, in a sense, always
that we have a chain of clones of operations satisfying some property in at most
k variables, and for every k we have an operation in C satisfying the property in
more than k variables.

It would be interesting to look more deeply into what kind of other property
might be restricted to a certain number of variables, if we replaced A2, B2, ∆A, ∆B

by different relations. Also, for Fk, the “unary version” of the relations, the
clones of polymorphisms themselves seem to be worth looking at. Despite a
simple relational description, they appear to be rather problematic to describe
explicitly.

In Chapter 4 we have studied clones of operations with restricted essential
arity in general. For every essentially binary operation f such that Clo(f) con-
tains only essentially at most binary operations, we have found a maximal clone
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of essentially at most binary operations containing f . At the end of Section 4.1.4
we have presented an example which shows that we can also find such a maximal
clone for some pairs of operations such that they can only generate essentially at
most binary operations together. The question is, whether we can do this for any
such pair, or, in general, a larger tuple of operations, and whether there exists
some other maximal clone of essentially at most binary operations on a finite set.

Finally, we have generalized part of the clones to larger arities, obtaining
clones of essentially at most k-ary operations. These generalize the clones we
have relationally described in Chapter 3. We could not, however, generalize the
case with two equivalences, which offers another possibility for further study.
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