FACULTY
OF MATHEMATICS
AND PHYSICS

Charles University

MASTER THESIS

Stanislav Galfy

HelenOS routing and porting of BIRD

Department of Distributed and Dependable Systems

Supervisor of the master thesis: Mgr. Martin Décky, Ph.D.
Study programme: Informatics

Study branch: Software Systems

Prague 2018

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright

Act.

In Prague on 10.05.2018 signature of the author

Title: HelenOS routing and porting of BIRD
Author: Stanislav Galfy
Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Martin Décky, Ph.D., Department of Distributed and Depend-
able Systems

Abstract: Capability to route can be considered as one of the key features of a
modern multipurpose operating system, which HelenOS aims to be. The goal
of this master thesis is to explore current HelenOS routing capabilities, enhance
them and empower HelenOS with BIRD. HelenOS will become a routing oper-
ating system with awareness of its surroundings. It will be capable of dynamic
adaptation to changes in the network and their propagation.

Keywords: HelenOS, BIRD, networking, routing, microkernel

11

I would like to thank my supervisor, Martin Décky, for his guidance throughout
this research. I would like to thank HelenOS developers Jakub Jermar, Jifi Svo-
boda and Vojtech Horky for their work on HelenOS and the time spent on articles
about it. Also, I would like to thank CZ.NIC developers for creating BIRD.

11

Contents

Introduction

1 BIRD
1.1 Version.
1.2 BIRD modules
1.3 Execution flow
1.4 Threads
1.5 System dependent parts
1.6 Protocols

2 HelenOS
2.1 Network stack
2.2 Transport layer
2.3 Network layer
24 Linklayer
2.5 Coastline.

3 Analysis
3.1 Testing environment
3.2 Porting BIRD
3.3 HelenOS socket design
3.4 Sockets requirements
3.5 Additional requirements
3.6 BIRD’s HelenOS system dependent layer

requirements L.

4 Implementation

4.1 Debugging techniques
4.2 Socket implementation prequisities . . .
4.3 Socket POSIX library
4.4 Socket Clibrary
4.5 Socket server upper layer
4.6 Socket server lower layer
4.7 Additional changes
4.8 BIRD’s HelenOS system-dependent layer
5 Evaluation
5.1 Environment setup
5.2 Tests
Conclusion
Bibliography

List of Abbreviations

17
17
18
22
24
25

27

28
28
28
28
29
30
31
36
39

40
40
41

46

47

48

Appendices
A Electronic attachment
B Compiling and running

C Detailed configuration of autonomous systems

49

50

51

53

Introduction

Motivation and goals

This thesis aims to describe the upgrade of HelenOS from an operating system
that can act only as a simple network endpoint to a routing operating system
with some advanced features.

HelenOS is a modern multipurpose operating system mainly used as a plat-
form for academic research. Upgrading it to a routing operating system opens
up multiple possibilities for further research.

BIRD is a routing daemon developed in CZ.NIC research laboratories. It
is, like HelenOS, an open source project. Porting of this application will require
significant improvements of HelenOS network stack, possibly changes in operating
system dependent parts of BIRD and creating a testing environment.

A machine running HelenOS with ported BIRD will become a router capa-
ble of dynamically configuring itself based on information it receives from other
routers in the network.

The improvements made to the network stack will be reusable both by He-
lenOS native applications and future ported POSIX applications.

Content

The first Chapter describes BIRD on UNIX-like systems with emphasis on system
dependent parts.

The second Chapter briefly covers HelenOS parts relevant to this thesis. That
is mostly network stack and libraries related to it.

The third Chapter contains analysis. It describes prerequisites, possible ap-
proaches to porting BIRD and port requirements on the network stack and BIRD.

The fourth Chapter describes the implementation of changes in the HelenOS
network stack, HelenOS libraries and a BIRD system-dependent layer.

The fifth Chapter evaluates the whole work by describing a series of tests in
a virtual environment, proving that implementation is functional.

1. BIRD

BIRD is a routing daemon continually developed in CZ.NIC research laboratories.
Currently, it is ported to Linux and BSD. It is deployed on some of the important
Internet nodes, for example in Moscow, Milan, London.

BIRD’s main role in a routing process is to keep the operating system routing
table or tables updated according to information received from other routers in
the network.

The most important functionalities that BIRD requires from an operating
system to achieve this goal are network interfaces scanning, routing tables scan-
ning, writing entries into routing tables, sending and receiving TCP, UDP and
IP messages.

The following text first briefly describes BIRD’s overall structure, execution
flow, then focuses on OS dependent parts. Relevant protocol implementations
are briefly described at the end of the Chapter.

1.1 Version

A new version of BIRD is released approximately every three to four months. The
version ported to HelenOS is 1.5.0, which was the actual version of BIRD when
work on this thesis started. The whole text of the thesis refers to this version.
Documentation corresponding to it can be found archived at [6] and [7].

1.2 BIRD modules

BIRD splits its functionality into seven main modules. The core of BIRD is imple-
mented in a module called nest. It contains structures and functions for storing
and handling all data collected by BIRD. They can be obtained during synchro-
nization with an OS (e.g. network interfaces information, local OS routes) or by
one of the routing protocols (e.g. routes advertised by other routers, neighbors
information).

The module sysdep contains a system dependent code. A separate Section
1.5 is dedicated to this module.

Routing protocols are implemented in the proto module. Currently, they are
OSPF, RIP, BGP, RADV, static and pipe. Description of protocol implementa-
tions relevant to this thesis can be found in the Section 1.6.

BIRD uses a configuration file to configure routing protocols, kernel proto-
cols, logging, filters and other options. The module conf handles parsing and
interpretation of this file.

Filters are part of a simple, BIRD specific, programming language. They can
be used to apply additional rules when passing routes between protocols and the
core routing table. They are implemented in the filter module.

Helper functions, for example handling BIRD memory management, bit op-
erations, IP address manipulation, checksum calculation are implemented in the
1ib module.

The last to mention is the client module. The BIRD client, which is a
separate binary file, is compiled from this module’s code. The client can be used
for communication with a running instance of BIRD. It can display information
about BIRD status, running protocols, protocol interfaces, routes, etc. It is also
possible to reconfigure BIRD with another configuration file through the client.

1.3 Execution flow

Most of the application runs in a single thread inside the main loop. There is one
exception, covered in the Section 1.4 . The Figure 1.1 shows key points of the
application execution.

Figure 1.1: Bird execution flow.

Handle Handle

Initialize receving transfering

from through
sockets sockets

Initialization

BIRD initializes modules and resources, performs a test for other running in-
stance of BIRD, sets user ID and group ID and daemonizes process by forking it
during this phase. The most important part of this phase is reading and parsing
configuration for the first time. Protocols are initialized according to the config-
uration. Sockets are created and configured, timers for protocol-specific events
are started and receive/transfer hooks are set during the protocol initialization.

Timer handling

The main loop is entered after the initialization phase. Time is updated at
the beginning of the loop. The timers are examined next. Hook functions are
executed on the ones that expired. Most operations are realized at this point. The
operations are synchronization with OS routing tables and interfaces, protocol
message transfer through sockets, rereading of the configuration file, etc. Timers
are mostly recurring, so after executing the hook, they are rescheduled.

Socket reading and writing

BIRD executes select on two sets of sockets when timers are handled. Initially,
the first set contains sockets with receive hooks, the second set contains sockets
with transfer hooks. One socket can belong to both sets. After the select,
the first set contains sockets that are available for reading without blocking, the
second set contains sockets that are available for writing without blocking.

All sockets used by BIRD are configured to be non-blocking during initial-
ization, which means reading a socket that has no available data returns error
immediately.

If available, the data are received through the socket and passed to the receive
hook associated with the socket. The receive hook processes the data according
to the protocol and retrieved information is propagated to the core and possibly
to other running protocols.

The data can be, for example, a protocol-specific message from a remote
router, a message with a route or an interface information from OS.

The result of processing can be a new route in BIRD core, a new interface
core structure, etc.

Protocols are sending messages in predefined intervals (timers are used). Only
TCP sockets are checked for writing availability to determine if a socket is con-
nected.

1.4 Threads

The BIRD documentation [6] is slightly inconsistent on this topic.

The design goals Chapter and the task documentation Chapter are stating
that BIRD is a single threaded application. The main reason given by the docu-
mentation for choosing this approach is the complexity of locking mechanisms of
a multi-threaded application. Custom scheduling mechanism is implemented to
make BIRD responsive in real time. Bigger tasks are split into smaller parts and
linked together with events and timers.

On the contrary, BFD Chapter states the protocol uses a separate thread.
The protocol uses it to avoid being blocked by some of the bigger events for too
long. The separate thread is only needed for the core part of the protocol. The
rest of it runs in the main thread.

After examining the source code, it can be concluded that BIRD runs in a
single thread with the exception of BFD protocol. This protocol uses POSIX
thread library. Usage of this library is not separated into the system dependent
module. It is used directly in the BFD protocol code.

1.5 System dependent parts

BIRD tries to isolate all system dependent parts of the code into the sysdep
module. There are some exceptions, for example, the BFD protocol. The module
is further split into two layers.

e the upper layer, called UNIX, is a code common for all UNIX-like systems

e the lower layer is the OS family specific code. The implementation is chosen
based on the target OS. It is configured before compiling. There are two
implementations of the lower layer.

— linux - The Linux OS family specific code.
— BSD - The BSD OS family specific code.

The Figure 1.2 shows the most relevant exchanges between the OS and BIRD.

6

Figure 1.2: BIRD OS communication.

get routes
create/delete route

A

get network interfaces

A

_receive messages over P
send messages over IP

BIRD Qs

_receive messages over UDP
send messages over UDP

_receive messages over TCP
send messages over TCP

1.5.1 UNIX

This layer implements the main function and the main loop described in the Sec-
tion 1.3. Also, functions for handling sockets, files, timers and the synchronization
with the OS are implemented here.

Network sockets are used to provide routing protocols with means to send and
receive messages over [P, UDP and TCP. UNIX sockets on this layer are used to
check for an already running instance of BIRD and for communication with the
BIRD client.

The code dealing with an OS synchronization is implemented by two protocols,
proto_unix kernel and proto_unix_iface. The first is for the routing table
synchronization and the second is for the interface synchronization. They are
represented by the same structures with hooks for events like a protocol start,
reconfiguration, pre-configuration, post-configuration, shutdown, etc., as routing
protocols.

The OS synchronization code here does not actually use any OS library. It
only uses the lower layer (Linux or BSD). It expects functions for the interface
scanning, routing table scanning and route replacement from the lower layer.
Their implementation for Linux is described in 1.5.2 and for BSD in 1.5.3. All
the calls to the lower layer are handled by timers created during the initialization
or the reconfiguration of the two protocols.

Time updates can be handled in two ways. The monotonic clock implementa-
tion is used if provided by the OS. Otherwise, BIRD’s internal clock implemen-
tation is used.

1.5.2 Linux

The Linux layer implements the synchronization with the OS using kernel sock-
ets. These sockets, called RTNETLINK, have PF_NETLINK domain, SOCK_RAW
type and

NETLINK_ROUTE protocol. RTNETLINK sockets are specific for Linux. Three of
them are opened during initialization. One for scanning interfaces and routes,
one for sending requests (deleting routes) and the last for an asynchronous com-
munication with the OS.

Four most important functions used by the upper layer for handling the syn-
chronization with the OS are described next.

e void kif do_scan(struct kif proto *p UNUSED) - Interface scanning.
A message requesting an interface dump is sent to RTNETLINK socket.
The socket is then read for messages until a special message denoting the
end of data is returned. Each returned message contains information about
one network link.

Attributes, like interface index, name, MTU, flags are parsed from the mes-
sages for each link. This information is passed to BIRD’s core, using a
function for interface update.

e void krt._do_scan(struct krt_proto *p UNUSED) - Routing table scan-
ning. The same principle as with the interface scanning is used. A request
is sent to the socket and then messages containing routes information are
read until the end of data.

Route attributes like a destination network, a mask, a gateway, an origin
(for example an user added route, a route added during boot, a BIRD added
route) are parsed from received messages and passed to the BIRD’s core.

e void krt replace rte(struct krt_proto *p, net *n, rte *new,
rte *old, struct ea_list *eattrs) - Route replacement. Two routes
are passed to this function. The old route is deleted from the OS routing
table and the new route is added to it. If the old route is null, only the
new route is created. Likewise, if the new route is null, only the old route is
deleted. Routes are created and deleted by sending a message with specific
route attributes to RTNETLINK socket.

e nl _async_hook(sock *sk, int size UNUSED) - asynchronous hook to
RTNETLINK socket. The hook is called when kernel sends data to RT-
NETLINK socket without a previous request. This can happen, for exam-
ple, when a user creates or deletes a route. The kernel sends a message
containing an information about the route then. A separate RTNETLINK
socket is used for receiving these messages.

Other functions implemented here worth mentioning are functions for setting
socket options like MTU, multicast, MD5 authentication and parsing of structures
containing messages and ancillary data from sockets.

1.5.3 BSD

The BSD system dependent layer utilizes sysctl system calls and one kernel
socket with PF_ROUTE domain , SOCK_RAW type and AF_UNSPEC protocol to syn-
chronize with the OS.

e void kif do_scan(struct kif proto *p UNUSED) - An interface
scanning.
Uses the sysctl system call. Management information base (array of inte-
gers) with six values is passed as first parameter. Values of this array are set
from the top level (index zero) to the bottom level (index five) to CTL_NET,
PF_ROUTE, 0, AF_INET, NET_RT_IFLIST, 0. The sysctl is called twice. The
first call acquires the size of an output buffer. The buffer is allocated and
passed to the next call. After the call, the buffer contains messages with
information about all interfaces. The messages are parsed and the retrieved
data are propagated to the BIRD core.

e void krt do_scan(struct krt proto *p UNUSED) - A routing table scan-
ning. Uses sysctl utility similarly to interface scanning. The difference is
in the fifth value of passed management information base, which is set to
NET_RT_DUMP. The output buffer will now contain messages with route in-
formation.

e void krt replace rte(struct krt_proto *p, net *n, rte *new,
rte *old, struct ea_list *eattrs) - A route replacement. The func-
tion sends a message with a route to the kernel socket. All attributes
needed to create or delete route are stored in rt_msghdr structure. At-
tribute rtm_type of this structure is set to RTM_ADD or RTM_DELETE.

e krt sock hook(sock *sk, int size UNUSED) - The kernel socket asyn-
chronous hook. Kernel sends to it information about deleted/created routes,
same as on Linux.

1.6 Protocols

The Section describes protocols that are functional on HelenOS after the port.
Overview of all three of them can be found both in BIRD documentation [7] and
respective Wikipedia pages [14], [15], [16].

1.6.1 Border Gateway Protocol

The protocol is designed to be used between routers representing autonomous
systems. The underlying protocol of BGP is TCP.

BIRD creates one BGP instance for each BGP connection. There are initially
created two sockets for each instance - a passive TCP listener socket and a socket
for initiating connection. The socket initiating connection is periodically recre-
ated afterwards. The TCP connection can be established by either of them, in
which case, the listener is closed and connection is stopped from being reinitiated.

The BGP exchange starts with sending and receiving an open packet. Routes
are sent in update packets. Other packets used by BGP are notification, route
refresh and close. Received routes are propagated to BIRD’s core.

1.6.2 Open Shortest Path First

OSPF is implemented directly over IP. The only additions to OSPF packet are IP
and Ethernet headers. BIRD uses sockets with AF_INET domain, SOCK_RAW
type and protocol 89 (OSPF protocol number according to Internet Assigned
Numbers Authority [1]) to send and receive OSPF packets. When BIRD is con-
figured to use OSPF protocol on a network interface, it creates one raw socket
for each of the interface addresses (if there are multiple addresses assigned to one
interface, one socket is created for each).

The protocol is initialized when a hello packet is received and eventually the
two routers exchange their graph representations of the network. Each makes
necessary updates based on received information. Network graphs should be
identical on both routers at this point.

BIRD recalculates routes from the updated network graph using Dijkstra’s
algorithm and sends updates to the core.

If one router does not hear from the other for a configured period of time, it
expects that the neighbor is dead. In this case, the protocol state is set to down
(the protocol is restarted) and the graph is updated.

1.6.3 Routing Information Protocol

RIP is implemented over UDP. BIRD uses sockets with AF_INET domain,
SOCK_DGRAM type and protocol IPPROTO_UDP to send and receive data
of this protocol. It creates one socket on each configured interface, then listens
and periodically sends RIP packets. Implementation in ported version of BIRD
does not start communication by request message as it should. Instead it starts
directly advertising its routing table. This may lead to problems covered in the
evaluation Chapter 5.

10

2. HelenOS

HelenOS is an OS with microkernel architecture. All the functionality, including
network stack, is provided to the user space applications by separate modules
called servers. An API for convenient usage of the services can be found in He-
lenOS libraries. It was not one of the design goals to make this API POSIX
compliant. Despite of it, some parts of the API are kept in compliance. Unfor-
tunately, the network stack is not one of them.

The network stack is an essential component of HelenOS for this thesis. There-
fore, this Chapter is dedicated to it. The HelenOS coastline is mentioned at end
of the Chapter.

2.1 Network stack

The HelenOS network stack consists of multiple servers. Servers communicate
between themselves and with other applications through IPC messages. Upper
layer servers are acting as clients of lower layer servers. Each server exposes one
or more services for handling client IPC requests. Set of library functions for
issuing these request, passing parameters and acquiring return values is prepared
for each service.

Services are usually registered during the server initialization. Service IDs
can be looked up by a name or a category. When a service ID is acquired, the
client starts the IPC communication and obtains a session by connecting to the
service. A callback is registered next. Servers use callbacks to pass IPC messages
to clients asynchronously. Network stack servers use it to pass received network
messages, making the whole receiving part of the network stack asynchronous.

Figure 2.1: HelenOS network stack.

UDP TCP
INET lib ¢ INET lib ¢
v 1 v 1
INETSRV
[mersrv || mwercre |
| SROUTE || ApDrROBI |
[meT unk |
[PunKibe |
v 1
IPLINK_SRV lib ¢
ETHIP
REMOTE_NIC lib drv
v 1
NIC_DRIVER lib nic
RTL8139

11

The Figure 2.1 shows network stack servers and relations between them. Only
servers relevant to BIRD port are displayed. The servers are displayed in yellow
color. White boxes attached to them are most relevant libraries used for commu-
nication with other servers or applications.

Network interfaces are referred to as links in HelenOS network stack code.
The text in this Chapter will refer to network interfaces as links in some cases
for this reason. Following Sections describe the stack top to bottom.

There are described unmet requirements for IPv4 routers by the particular
layer at the end of each Section. The requirements are specified in RFC 1812 [5]
directly or indirectly by reference to another RFC document. The indirect refer-
ences can be found in the previous document. The network stack from mainline
with routing implementation from [3] and no further modifications is considered.
It is needed to mention that HelenOS meets only very few of the requirements.

2.2 Transport layer

There is one server for each of the two transport layer protocols, UDP and TCP.

2.2.1 TCP server and library

A client starts using the TCP server by creating a TCP instance. The server
creates a callback for the instance during the call. The client can now use the
instance to create a TCP connection or a TCP listener.

A client can create a new connection by specifying an Internet endpoint pair
(a local address, a local port, a local link, a remote address, a remote port) and a
set of functions invoked by the callback when an event related to the connection
occurs. The local address and the port can be omitted, in which case they will
be assigned automatically. The functions are for handling following events: a
connection established, a connection failed, a connection reset, data available,
urgent data. A structure representing the connection is created both on the
server and the client.

The TCP listener is created by specifying an Internet endpoint (a local address
and a port to listen on for new connections), a function handling new connections
and a set of functions for each connection as described in the previous paragraph.

Notice that when the client creates the connection, it must be closed explicitly.
The life cycle of an incoming connection is handled by the callback. When the
function handling a new connection returns, the connection is destroyed.

Data can be sent and received in a standard way (specifying pointer to a buffer
and its size) once the connection is established.

2.2.2 UDP server and library

The UDP initialization is very similar to the TCP initialization. The client creates
a UDP instance and the server creates a callback. A UDP association needs to be
created next. The association is uniquely identified by an Internet endpoint pair.
Also, a structure with three functions for handling callback events is added to each
UDP association. The events are: a message received, an error message received,

12

a link state change. Both the server and the client are keeping a structure for
each association.

The client can start sending and receiving messages when the association is
created. Data, data length and possibly remote endpoint pair are passed to
UDP server when a message is sent. The server creates PDU based on passed
parameters and the association Internet endpoint pair. The source address, the
source port and the link are given by the association. The destination address and
port are given by a remote endpoint from the argument. If the passed endpoint
is NULL, they are also given by the association. Finally, the UDP server converts
the PDU into a datagram and passes it to the inetsrv server.

The UDP implementation allows only an asynchronous reading. When a
datagram is received from the inetsrv, it is converted into a PDU. The client
that receives the data is determined by the link, the local address, the local port,
the remote address and the remote port. The clients association must match all
these parameters in order to receive the PDU. The registered callback function
on the client side receives only information about the message. It is up to the
implementation of this function to retrieve message data from the server or ignore
it.

2.2.3 RFC compatibility

There were not found any critical violations of basic RFC specification in UDP
and TCP implementations. Additional requirements are however not met, mostly
due to lack of support from the network layer. No IP options can be specified.
TTL is not configurable. There is no interface to configure keep-alive behavior.
TOS cannot be specified. There is no reaction to ICMP errors.

2.3 Network layer

Implemented by the intesrv server. This server contains most of the network
stack logic. The logic is split into three services: the default service, the config-
uration service and the ping service. The default and configuration services are
discussed next.

2.3.1 Default service

The service handles sending and receiving network messages. It is also responsible
for routing. The service decides if a received message is passed to an upper layer,
discarded or routed (re-sent using a lower layer).

A connection between a client and the default service must be initialized
first. A client passes a protocol number to the service during initialization. It
will receive all datagrams unpacked from IP packets with this number in IP
header afterwards. This protocol number will be also assigned to the IP header
of messages sent by the client.

The inetsrv server expects only one client per protocol, which limits the net-
work stack. Subscription of multiple clients to the same protocol is not explicitly
prohibited but results in a non-functional network stack.

13

Currently, there are two upper layer servers (TCP and UDP) connected to
intesrv server. If some other server or application chooses to use inetsrv for
TCP or UDP communication, it will either make the respective server not receive
any datagrams or will not receive any datagrams itself.

When a client wants to send data, it passes a datagram to the inetsrv server.
Datagram consists of a link service ID, a source address, a destination address,
a type of service, a pointer to data and a data size. If the link service ID is
specified, the datagram is sent directly to that link, regardless of the source or
the destination address. Otherwise, the destination address is used to determine
the link. It is compared to a list of interface network addresses first. If a match
is not found, the routing table is consulted. In case a router (gateway) address
for the given destination is found, it still needs to be resolved into an interface.
Therefore, it is compared to list of interface network addresses. If the link is
determined by this process, the datagram is packed into a packet and passed to
the ethip service.

The default service provides a lookup of an interface address based on a des-
tination address. An interface, through which the destination address can be
reached, is looked up based on interface addresses and static routes. An address
of this interface is returned.

2.3.2 Configuration service

The service is used to get and change the network configuration. The user space
application inet provides command line interface to this service. The HelenOS
network configuration is given by following parameters.

e Network interfaces (links) - the service holds a structure for each link. At-
tributes of the structure are a service ID, a service name, a session, a pointer
to IP link, a default MTU, a MAC address and a MAC address validity
flag. Links are discovered by the nconfsrv server as services of ethip
and loopip servers on the network layer. When a link is discovered, the
nconfsrv passes its service ID to the configuration service. At this point,
inetsrv acquires a session with the ethip service, using the passed ID,
and gets all other attributes of the link from it. Links cannot be added or
deleted by a user.

e Network interface addresses - attributes of each are an ID, a network address
(IPv4 or IPv6 address plus prefix), a pointer to a link and a name.

When a client creates a network interface address, it is associated with a
link according to the passed name. The service ID of the link is used to
pass the address to the ethip server (link layer).

When a client deletes a network interface address, it is only removed from
the list in the inetsrv server. The address remains assigned on the link
layer. This behavior is most likely not intentional. It affects the ARP
protocol, which will respond with a MAC address even when asked about
an address that was previously deleted on the network layer.

e Static routes - represented by structures with following attributes: a desti-
nation network address, a router (gateway) address, a name.

14

Interfaces, interface addresses and static routes are stored in linked lists. All
three lists are handled the same way. A new link, a link address or a static route
is always appended at the end of the respective list. When a client wants to delete
a link address or a static route, it passes its ID. The list is iterated and if the
ID is found, the item is deleted. Listing links, link addresses and static routes is
described next. A client must obtain a list of IDs from the respective linked list
first. The ID list is used to acquire items from the service one by one. It needs
to be taken into consideration that the list is not locked on the server between
getting IDs and getting individual items.

2.3.3 RFC compatibility

There were not found any critical violations of RFC requirements on basic IP
implementation. The extensions are however not implemented. There is no sup-
port for subnetting and classless interdomain routing (CIDR). Broadcast and
multicast addresses are treated same as standard addresses, both when deliv-
ered locally and when forwarded (the only exception is broadcast to all hosts,
255.255.255.255, treated as a local address). There is no path MTU discovery
implemented. ICMP protocol sends/receives only ICMP echo request/response
messages, meaning no other query (i.e. timestamp, address mask ...) and error
(i.e. destination unreachable, redirect ...) messages can be sent or processed.
IGMP protocol is not implemented. All IP header options are ignored on both
incoming and outgoing packets. The destination of forwarded packets is decided
based on packet destination address only, everything else is ignored (TOS, metric,
IP header options, ...). The forwarding algorithm always selects the first route
from the routing table, that prefix-matches the destination of a packet. The al-
gorithm satisfies the basic rule on forwarding algorithms but violates the longest
match rule. The packet filter is missing. The precedence field of the IP header is
not processed in any way.

2.4 Link layer

The link layer in HelenoOS consists of NIC drivers and the ethip server.

Drivers for multiple NIC models are implemented in HelenOS (The Figure 2.1
shows the RTL8139 driver but it can be any of the implemented drivers). All
of them are accessed through the same API. The API is defined in nic library.
Drivers handle the communication between a hardware and the rest of the network
stack. The driver can enable or disable multicast for its NIC, which is important
for porting BIRD. Multicast is disabled by default.

The ethip server is responsible for a NIC discovery and passing messages
between the network layer and drivers of discovered NICs. Additionally, ARP
protocol is implemented here. The translation of multicast addresses by the
ARP protocol is relevant for this thesis.

2.4.1 RFC compatibility

There is no mechanism to flush out-of-date cache entries neither a mechanism to
prevent ARP flooding. HelenOS accepts broadcast and multicast addresses as

15

ARP replies. Interface MTU is not configurable. Link control protocol (LCP) is
not implemented.

2.5 Coastline

HelenOS coastline is a tool for installing POSIX applications into HelenOS. It is
stored in a separate repository. Its central part is the hsct.sh script. The usage
is as follows. A build directory needs to be initialized first. The initialization
includes copying of HelenOS header files and libraries. A HARBOUR file must
be created for the application next. Most commonly, the HARBOUR file specifies
an URL with sources of the ported application, files for patching and scripts to
configure, make and package the application. The application is ready to be
installed when build directory is initialized and HARBOUR file is created, .

16

3. Analysis

The Chapter describes overall approach to porting BIRD. A subset of BIRD func-
tionality to achieve in HelenOS is proposed based on the dependencies, current
HelenOS state and testing environment capabilities. Changes in HelenOS and
BIRD required to achieve proposed functionality are analyzed afterwards.

3.1 Testing environment

The very first goal during the work on this thesis was to get familiar with BIRD.
The next step after going through the official documentation and briefly examin-
ing the source code was to get a hands-on experience with a running instance.

It is possible to compile and run BIRD on a local machine but without a
network with other participants there is not much to observe.

3.1.1 Virtual vs real hardware environment

There were two possible approaches on how to put BIRD into context - a real
hardware network and a virtual network. The virtual environment was an obvious
choice here. Real hardware does not provide any significant advantages.

Advantages of the virtual environment are, for example, great scalability (sim-
ple adding and removing of network nodes and connections), clean environment
on each rerun and it is much more cost-effective, faster to set up, accessible.

3.1.2 Choice of software for network simulation

It was expected that there already existed a virtual environment created during
the BIRD development. Surprisingly this was not the case. The environment had
to be created from scratch.

Possibilities of graphical software for network simulation (GNS3, CORE, Mar-
ionnet, etc.) were examined first. The chosen tool will be used throughout the
whole development process. Key requirements for the software are listed next.

e Capability to connect QEMU VM’s running both UNIX and HelenOS.
e Provide means to simulate other network components, at least switches.

e A fast environment startup, stable during execution.

Unfortunately, none of the tested tools met all the requirements. Most of
them became unstable/slow after HelenOS was plugged in. For example, GNS3
expects OS to be installed on hard drive. When a workaround was used to pass a
QEMU instance with an OS booted from an image, the network stopped working.

This led to VDE be the tool for virtualizing the network. VDE meets all the
requirements. The only downside is no graphical representation of the network.
Use of this tool was inspired by the thesis HelenOS packet filter [3].

17

3.1.3 Virtual network participants

It was decided that the network will be comprised of VMs running BIRD only.
Use of different routing software would complicate the development process un-
necessarily. It is much simpler to follow a debug output and to debug routing
protocols on multiple machines simultaneously when all routers in the network
are running BIRD. There is no need to get familiar with another routing software.

An OS running on VMs was needed to be chosen next. BIRD was ported to
BSD and Linux systems, so the task was to choose a flavor from one of them.

The Core distribution of Linux in its most basic version with only command
line seemed to be the perfect fit. It is one of the smallest distributions available.
Reasons behind this choice were as follows.

e fast to boot - this is important because rebooting will be happening very
often during the testing.

e a small installation size - the smaller installation, the easier it is to manage
in a version control system.

e whole OS runs in memory - all changes, including network settings and file
system changes, are lost on reboot unless explicitly saved. It ensures the
same starting state for testing on each rerun.

3.1.4 Running BIRD

The first virtual environment consisted of two Cores connected with the VDE.
They were able to communicate when the network was configured.

At this point, it was simple to configure different protocols with different
options and observe the behavior of BIRD on both machines by following a debug
output and the content of routing tables.

Virtual environment was easy to extend for later stages by copying core with
BIRD, changing configuration and connecting it to the network using VDE.

A long-term strategy was to achieve a state in which one of the Cores would
be swapped for HelenOS with BIRD. The behavior of the network should remain
the same considering the routing.

3.2 Porting BIRD

A coastline build revealed all missing OS dependencies in HelenOS because BIRD
was compiled and linked against HelenOS header files and libraries. BIRD was
configured for a cross-compilation. The target OS was configured to be Linux, so
the Linux system-dependent layer was used during the compilation.

3.2.1 Missing dependencies

Header files not found by BIRD during compilation are listed next. Almost all
functions, macros and structures required by BIRD but missing in HelenOS were
declared /defined in these header files. A brief description of them is included.

18

linux/if.h - network interface flags. Used to parse messages containing inter-
face information from netlink sockets.

linux/netlink.h - netlink socket address structure, netlink message and error
message structures, macros handling netlink messages. The structures are passed

to socket API to exchange information about routes and interfaces between BIRD
and an OS.

linux/rtnetlink.h - macros and flags for parsing interfaces and routes received
from the kernel through netlink sockets.

net/if.h - structure for interface names. Passed when binding socket to inter-
face.

netinet/in.h - socket address and packet information structures, protocol enu-
meration and macros defining socket options. The packet information structure
is one of socket control messages.

netinet/tcp.h - a socket option level macro for TCP.
netinet/udp.h - actually not used, redundant dependency.
netinet/icmp6.h - macros and structures for ICMP over IPv6 filtering.

sys/socket.h - the most essential header containing socket API, macros defining
socket option layers, socket option names, socket domains and socket types. The
important structures defined here are common socket address structure, socket
address storage structure, control message structure and socket message struc-
ture.

sys/select.h - select function and macros for manipulating sets. Used to deter-
mine socket read/write availability.

sys/time.h - time types, already defined by HelenOS in time.h.

sys/uio.h - input/output vector structure. An array of vectors is a part of a
socket message.

sys/un.h - UNIX socket address structure. Used to create a kernel socket with
specific address checked when BIRD is started to ensure only one instance of
BIRD is running.

alloca.h - alloca function.
glob.h - glob function, structure and macros this function operates with.

grp.h - setsid, setgid, chown and getgrname functions and group structure for
chown function. Used during BIRD initialization on UNIX.

libgen.h - dirname function.

termios.h - tcgetattr, tcsetattr functions, termios structure and macros used by
these functions. Only included by BIRD client.
BIRD has other OS dependencies (stdio.h, stdlib.h, unistd.h, etc.) already

present in HelenOS. These will not be covered here.

3.2.2 Mocking

Two possible approaches could have been taken from here.
The first one was to decide which dependencies will be implemented in He-
lenOS and which will be replaced by HelenOS alternatives right away.

19

Another approach was to create mockups of all the dependencies and then
replace or implement them continually one by one.

The second approach was taken. The advantage was that BIRD could have
been compiled and installed into HelenOS quickly. A downside was that some
time would be spent on the creation of mocks and header files, that could be
potentially deleted later.

Almost all mocked macros and structures are related to mocked functions.
Structures are passed as parameters and macros are used for preparing an input
or parsing an output. Missing functions that needed to be mocked are listed in
Figures 3.1 and 3.2. This shows that all the networking and OS synchronization
logic is hidden behind socket API.

Figure 3.1: Socket API.

int socket(int, int, int);
int setsockopt(int sockfd, int level, int optname,
const void *optval, socklen_t optlen)
int bind(int, const struct sockaddr *, socklen_t);
ssize t recvmsg(int, struct msghdr *, int);
ssize_t sendto(int, const void *, size_t, int,
const struct sockaddr *, socklen_t);
int connect(int, const struct sockaddr *, socklen_t);
ssize_t sendmsg(int, const struct msghdr *, int);
int listen(int, int);
int getsockname(int, struct sockaddr *, socklen t *);
int accept(int, struct sockaddr *, socklen t *);

Figure 3.2: Other APL.

int select(int, fd_set *, fd_set *, fd_set *, struct timeval *);

void *alloca(size_t);

int glob(const char *, int, int (*errfunc) (const char *, int),
glob t *);

void globfree(glob t *);

3.2.3 BIRD features to be ported

Each protocol and each feature has its own set of requirements on sockets and
other OS-specific functionality. Implementing all of them is beyond scope of this
thesis, so a reasonable subset had to be chosen. Reasoning behind choices of
implemented features follows. Features functional with mocked dependencies are
not mentioned (e.g. configuration file parsing).

e Kernel and device - protocols responsible for synchronization between BIRD
and OS. No other protocols can function without device and kernel proto-
cols. Support is essential.

e OSPF - the most popular interior gateway protocol. Porting and testing of
this protocol is prioritised.

20

e RIP - even though usage of the RIP protocol in networks nowadays is rare,
it does not require any network unrelated dependencies. The protocol will
be included in ported features.

e BGP - a protocol for exchanging routing information between autonomous
systems. The protocol will allow HelenOS to act as a backbone router.
Protocol will be supported.

e BFD - not a routing protocol by itself. BFD enhances routing protocols
by detecting neighbors upstates. Detection is much faster than the one
implemented by routing protocols themselves. Protocol requires POSIX
threads, which are not implemented in HelenOS mainline. It will not be
supported.

e [Pv6 support - there are multiple reasons why supporting IPv6 would be
difficult. The HelenOS network stack does not support sending IPv6 mes-
sages directly into a specified link, which is essential for BIRD. As stated
in [13], the IPv6 implementation support for routing and multiple NICs
is very limited. HelenOS is not ready to be used as a router in an IPv6
environment with the current IPv6 implementation.

e BIRD client - an administrative tool that can be used to reconfigure running
BIRD or print information about its state. There are two versions of this
tool. The more advanced version requires the readline library which is
missing in HelenOS. The lightweight version will be ported.

3.2.4 POSIX dependencies to be implemented

BIRD will have to be able to synchronize itself with HelenOS in a similar way
it synchronizes with Linux or BSD to achieve the proposed functionality. Also,
it must be able to use HelenOS network stack to send and receive messages over
IP, UDP and TCP to support OSPF, RIP and BGP.

One way to fulfill the requirement is to implement mocked dependencies in
HelenOS. Another way is to replace Linux and Unix dependencies with HelenOS
native functionality in BIRD. It was necessary to decide which dependencies to
replace and which to implement. Dependencies of unsupported functionalities
will remain mocked.

Three main options presented themselves due to BIRD’s design of system
dependent parts.

e replace all BIRD system dependent parts with HelenOS native support.

e replace the lower system-dependent layer (Linux) with HelenOS native sup-
port and implement dependencies from the higher system-dependent layer
(UNIX) in HelenOS.

e implement all dependencies in HelenOS.

The UNIX system-dependent layer counts around 4000 lines of code. The
only dependency needed to make it functional in HelenOS are network sockets.

21

Moreover, BIRD’s single-threaded design would not allow direct usage of He-
lenOS asynchronous network API which would have to be synchronized either in
BIRD or in HelenOS. Since the synchronization is unavoidable, it can as well be
implemented behind the socket API. Implementing sockets in HelenOS is a much
simpler solution than rewriting the UNIX layer.

The Linux system-dependent layer requires RTNETLINK sockets. HelenOS
already provides an API for getting interface information, getting routing table
information, adding routes and deleting routes. The HelenOS API can be consid-
ered even more comprehensible and user-friendly than the RTNETLINK socket
API. There is no need to convert the API from an asynchronous to a synchronous,
unlike the network socket API. Conveniently, all the RTNETLINK socket func-
tionality is isolated in BIRD’s Linux layer. Additionally, the layer is much smaller
than the UNIX layer and there is not much functionality that can be reused in
HelenOS.

The final decision was to implement network sockets in HelenOS and create
a new lower system-dependent layer for HelenOS in BIRD.

The Figure 3.3 shows BIRD system-dependent layer organization after this
decision. The UNIX layer calls one of the lower layers (depends on the platform
BIRD is compiled for). It also calls the rest of BIRD from the main loop.

Figure 3.3: BIRD layers regarding OS dependence.

Rest of BIRD

liru | | bsd | | helenos

3.3 HelenOS socket design

Multiple sources pointed to the fact that sockets were implemented in HelenOS in
the past but were removed before work on this thesis started. The idea was to find
a revision before their removal and see, what can be salvaged from there. After
looking up the revision and examining the socket related code, the conclusion was
that it was removed for a good reason and it is not salvageable due to its overall
low quality. Sockets had to be designed from scratch.

The initial design was to implement sockets purely inside POSIX library. The
POSIX socket library would use C library network stack API as shown in the
Figure 3.4.

Soon enough, the code base inside the library became too big and the design
did not conform to HelenOS microkernel multiserver architecture. Handling of
socket file descriptors and resource locking inside library became problematic.
This design would result in a library only usable by BIRD.

Socket logic had to be moved into a new server. The server would be accessed
through a C socket library. POSIX socket library would be presented to BIRD

22

Figure 3.4: Initial socket design and its incorporation into network stack.

BIRD
SOCKET posix
UDP lib ¢ || Tceibe | [INETINETCFG lib
v 1 vy 1
UDP TCP
INET lib ¢ INET lib ¢
v 1 v T
INETSRV
| nETsRV || INETCFG | fe——
| SRoutE || ~AbDROBI |
| mET_Lmnk |

like before. The Figure 3.5 shows the final design and its incorporation into the
network stack.

Figure 3.5: Final socket design and its incorporation into the network stack.

BIRD
SOCKET lib posix
SOCKET lib ¢
vy T
SOCKET
UDP lib ¢ || TcPibe | [INET/ANETCFG lib ¢
v 1 vy T
uDP TCP
INET lib ¢ INET lib ¢
v 1 vy T
INETSRV
| mnersrv || NETCFG | fe—
| SRoutE || ~ADDrROBI |
| meT unk |

3.3.1 Design goals

Sockets are used for multiple purposes and can be configured and adjusted in
many ways on UNIX systems. Socket implementation equivalent to UNIX sockets
was neither realistic nor needed. With this in mind, following goals were set.

23

e sockets will be usable both by POSIX applications installed from coastline
and HelenOS native applications.

e there will be no need to patch BIRD, except for the lowest system dependent
layer and the BIRD client.

e only functionality needed by BIRD will be implemented but sockets will be
easily extensible.

The first goal will be met by implementing socket API in C library and ex-
tending it into POSIX library. The C library will handle passing data between
the user of the library and the socket server, no more logic will be implemented
here.

The second goal will be achieved by emulating all the BIRD required func-
tionality by the socket server.

To achieve the third goal, the design will follow this rule. All parameters
passed to socket API will be sent to the socket server without any alteration,
regardless of if they are used or not. The server will always have exact copies of
passed parameters, including complex structures.

When all the data arrive to the server, it will be decided if a implementation
of a function for that particular combination of received parameters exists. If it
does, it will be called and all expected values will be returned. If not, it will
notify the library about a missing implementation.

3.4 Sockets requirements

The mocked API from the Figure 3.1 had to be implemented. Each network
socket used by BGP, OSPF or RIP is bound to an interface right after it is
created. It is done by setting a socket option where an interface name is passed
as a parameter. Sockets used by BGP and RIP are bound to a port additionally.
It must be possible to bind sockets this way.

Reception of network messages for OSPF and RIP must be converted to syn-
chronous. TCP receiving for BGP is already synchronous for BGP but the TCP
connection initialization must be synchronized.

BGP is sending and receiving network messages by writing to a socket and
reading a socket in a standard way. RIP and OSPF are using the msghdr structure
both for sending and receiving network messages. Understanding of the structure
is crucial to understand how the two protocols use OS to communicate with other
network participants.

It consist of three complex parts plus int msg flags. Flags are not used by
any implemented protocol. The complex parts are described next. The structure
is also illustrated by the Figure 3.6.

e void *msg name - a buffer of size msg namelen. Usually contains socket
address describing message destination when sending or message source
when receiving.

e struct iovec *msg_iov - a pointer to array of input/output vectors. The
msg_iovlen denotes number of vectors in array. Each vector contains buffer

24

Figure 3.6: Message header structure.

msg->msg_controllen

i i

. msg->msg_iov[0].iov_len _,
.

msghdr *msg

msg->msg_name
msg->msg_control
msg-=msg_iov

msg-=msg_iov[0].iov_base
msg-=msg_iov[1].iov_base

msg->
msg_iovlen

msg->msg_iov[msg_iovlen
-1].iov_base

e
1 1

void *iov_base and its size iov_len. The buffers either contain data to
send or are filled with received data.

e msg_control - a buffer of size msg_controllen. It can be filled by a user
with one or more control messages to further configure message sending.
When receiving, it is filled by socket implementation and contains control
messages with additional information about receiving.

The sending and the receiving will have to deal with translation between
msghdr structure and form suitable for HelenOS network stack. The translation
must respect the socket setup. This task will be handled by the socket server.

Only a non-blocking implementation of receiving messages and accepting con-
nections is needed by BIRD. The select function and macros related to it must
be functional for sockets. In particular, it must be able to create a subset of sock-
ets with data available for reading from the read set. The read set can contain
any mix of TCP, UDP, UNIX and raw sockets. The write set is used only for
TCP sockets through which is initiated TCP connection. The select must be able
to create a subset of sockets with established TCP connection from the write set.
The exception set is not used.

3.5 Additional requirements

There are three main categories of additional requirements. Multiple require-
ments were found on lower network stack layers needed by sockets. Other changes
in the network stack were needed for the routing. The last category of require-
ments is on BIRD itself. All the requirements are listed next.

25

Multicast

It must be possible to enable a multicast on a NIC associated with a particular
link layer name due to both OSPF and RIP using muticast addresses. At the time,
it was not possible to programmatically pair a link name (e.g. net/eth1) with
NIC driver service (e.g. devices/\hw\pci0\00:03.0\port0) at the application
layer.

The ARP protocol lacked support for multicast addresses so at least the ones
used by BIRD must be properly translated by this protocol.

Deleted interface addresses and routes, route origin

BIRD scans for deleted routes and interfaces during synchronization. HelenOS
must be able to keep track of interfaces and routes even when they are deleted.
Routes are treated differently based on their origin. They can be installed on
Linux by an administrator, during boot, by the system (when interface addresses
are configured), by BIRD, etc. Route information must include the route origin.

Routing

There was an already existing implementation of routing created in the HelenOS
packet filter thesis [3]. The thesis was never merged into the mainline repository,
so the relevant parts must be imported. It was found out the imported routing
mechanism can route only one hop. The routing must be functional for any
number of hops.

3.5.1 Routing table data structure

The routing table is implemented as a linked list. The list must be replaced with
a more suitable data structure. Except for linked list, the only data structure
implemented in HelenOS user space is a hash table. An AVL tree and a B+ tree
can be found in kernel code. None of the mentioned data structures is suitable
for a routing table. The data structure must allow a prefix search in a reasonable
time. UNIX systems are using a binary trie or one of its modification as a data
structure for the routing table. A binary trie will be implemented in HelenOS.

3.5.2 Source address of outgoing UDP messages

If UDP association is created without a specified local address (in the local end-
point of the endpoint pair), the source address of messages sent through this
association is null. BIRD only specifies a link through which the messages are
sent and received. If an interface address is used as a local association address,
the association receives only messages destined to that address (messages des-
tined to multicast addresses are filtered out). Following setup must be possible
for a UDP association. Messages destined to all addresses from a given link are
received through the association and at the same time a local address is added
to all outgoing messages.

26

3.5.3 Network stack bug fix

The network stack is failing when HelenOS is connected to Core UNIX through
VDE. It happens every time HelenOS network is configured first and Core net-
work second. When configuration happens in reversed order, failure occurs only
occasionally. BIRD cannot be tested under such circumstances. The bug must
be located and fixed. An initial version of the bug is filed under [8]. A version
with a detailed description and a solution is filed under [9].

3.5.4 BIRD client

The client expects that the console is the standard input and uses the select
function to wait for commands. HelenOS does not support select for VFS. The
client needs to be redesigned slightly.

3.6 BIRD’s HelenOS system dependent layer
requirements

The four functions covered in 1.5 must be reimplemented using HelenOS native
support. A route origin and a storing of deleted interface addresses and routes
are prerequisites for the implementation. The layer must also define hooks like a
reconfiguration, a start and a shutdown. The hooks are defined for compatibility
reasons and will remain empty or contain just a very simple logic.

27

4. Implementation

This Chapter describes the implementation from the point when BIRD is com-
piled into HelenOS with mocked dependencies and HelenOS is running inside a
virtual environment connected to a Core UNIX VM.

4.1 Debugging techniques

The only effective debugging techniques proved to be logs for servers and console
outputs for libraries and BIRD. At the early stages, GDB was tried but turned out
to be ineffective. Compilation time is multiple times longer when line debugging
information is included. Values of user space registers EIP, ESP and EBP need
to be found out and set in GDB to avoid collisions. An address of the .text
section must be manually loaded to add symbol information. This process must
be repeated on each restart of the testing environment.

Fortunately, this is only true for HelenOS. GDB can be installed and used to
debug BIRD inside virtualized OS when it is running on the Core UNIX. The
behavior of BIRD running on Core and incoming traffic from HelenOS can be
observed this way.

Additionally, tcpdump utility was used in Core UNIX to monitor traffic coming
from HelenOS.

4.2 Socket implementation prequisities

Only the final implementation is described. The phase in which logic resided
inside the POSIX library is skipped. The implementation was continually tested
using BIRD. When a socket of a certain type was under development, a protocol
using this type was configured in BIRD.

There was no need to create redundant applications on HelenOS and Core for
testing sockets. BIRD already did what was expected from such application - cre-
ate and configure sockets, then start continually sending and receiving messages
through them. An interference from the rest of the application did not impose
any issues.

Network sockets were implemented first. BIRD cannot use sockets if the OS
synchronization is missing, so the functions scanning interfaces and routing table
were mocked to return predefined values. The values were matching the real state
of HelenOS network configuration. Writing received routes into routing table was
not needed to be functional to test sockets. This way, synchronization with OS
was simulated and development could focus on sockets.

4.3 Socket POSIX library

The POSIX library contains only external references to the socket API in the C
library. There are three exceptions.

Functions close, read and write are shared between VFS and sockets. The
highest possible VF'S file descriptor is 127. Sockets will use only higher file de-

28

scriptors. The POSIX library API can determine if the file descriptor belongs
to a VFS file or a socket and call its C library implementation. The original
C library close, read and write functions are called for VFS files and newly
created sockclose, sockwrite and sockread functions are called for sockets.

4.4 Socket C library

The only socket logic implemented in the C library deals with passing and re-
ceiving data between the user of the library and the socket server through IPC.
Also, the socket API documentation can be found here.

Before the client can start communicating with the server a session must
be created. This is usually hidden behind some initialization library call. The
standard approach is that client holds one session per server throughout its life
cycle, even though it is possible to create multiple sessions with one server.

Socket library implementation uses one session to handle all sockets. This
session is initialized when the first socket is created and is used for all subsequent
calls.

Another option was to create one session for each socket, which would create
an unnecessary overhead. Moreover, the sessions would have to be tied to socket
file descriptors, meaning these descriptors would have to be implemented inside
the library, which is undesirable.

4.4.1 Header files

The defined socket related structures and macros must be visible to the socket
server, the C library and the POSIX library. Structures and macros related to
unsupported functionality (mostly IPv6) are an exception. They can remain in
the POSIX library as mocks.

All the header files containing at least one structure or macro used by the C
library or the socket server are placed inside the C library. Header files with func-
tion declarations are split into a function header and a macro/structure header.
Header files containing only macros and structure definitions are placed under
types folder. They can be included from both libraries and servers.

Macro/structure headers are grouped under the socket folder (subfolder of
types), even though POSIX applications expects them scattered in different places
(e.g. netinet/in.h, net/if.h). The problem is solved by adding the same set of
headers properly placed in the POSIX library. Each POSIX header includes its
counterpart in types.

The Figure 4.1 shows source tree of most important POSIX and C library
socket header files and their relations. Arrows mean inclusions.

The C library socket API is declared in sys/socket.h, same as on UNIX.

4.4.2 C library socket API implementation

Most of the socket functions are able to pass all the parameters in arguments of
an initial IPC call plus in one or two more calls for passing large data. If any
of the calls fail at some point, -1 is returned and errno is set to an appropriate

29

Figure 4.1: Hierarchical structure of socket related libraries.

error code. There are two functions that take msghdr structure as a parameter
and therefore the communication is more complex.

The first is ssize_t sendmsg(int sockfd, const struct msghdr *msg,
int flags). It sends a socket file descriptor, a number of input/output vectors
and flags in the initial IPC call. All parts of the message header are sent as large
data in separate calls. The socket address is sent first. Input/output vectors
follow, each in one call. The control message is sent is last.

The second is ssize_t recvmsg(int sockfd, struct msghdr *msg,
int flags). Parameters are same as for the sendmsg function, but here the data
from the msghdr structure are not sent to the server. It is filled with data from
the server instead. The server only needs to know dimensions of the structure so
it does not send more data than the allocated space allows. A socket file descrip-
tor, a socket address length, a number of input/output vectors, a control message
length and flags are sent in the initial IPC call. A length of each input/output
vector is sent in a separate call afterwards. The server has all the required in-
formation at this point, so the function continues with receiving data. All parts
of the message are received using IPC calls for reading large data. The socket
address is received first. Data into input/output vectors are next, each in one
call. Finally, the control message is received. After receiving a return value from
the server, a total size of received data is retrieved as an IPC argument from the
answer.

4.5 Socket server upper layer

Also called a service layer. The socket server uses the service layer to handle client
connections, same as other servers. When a connection is established, it waits
for client requests in an infinite loop until the client hangs up. In comparison
to other network stack servers, the socket server handles all the communication
in the loop. There are no callbacks to a client because all the communication
is synchronous. Each IPC request is handled by one function. Possible requests
are: create, bind, connect, set options, send a message, receive a message, read,

30

write, close and select.

Most of the functions handling IPC requests only need to retrieve arguments
from the IPC call and one or two blocks of large data. Same as in the C library,
the only complex parts are sending and receiving messages.

4.5.1 Sending messages

When the server is asked to send a message, it retrieves a socket file descriptor,
a number of input/output vectors and flags as arguments of the IPC call. Next,
a msghdr structure is allocated. Parts of the structure are allocated and filled
as the server continues receiving data from the client. An array of vectors is
allocated based on the size received as an IPC argument. The message name
(socket address), input/output vectors (each separately) and control data are
received as large data. All of them are received in three parts. The size of
the data is first, then appropriate part of the msghdr is allocated, and data are
received into it. At this point, the msghdr structure on the server is an exact copy
of the one passed to the library. The socket is looked up by the file descriptor
and an implementation of sending a message is looked up by the socket type. If
both exist, the implementation is called with the socket, the msghdr structure
and flags as parameters. A return value of the call is sent to the client.

4.5.2 Receiving messages

A socket file descriptor, a message name length, a number of input/output vectors,
a control data length and flags are retrieved as arguments of the IPC call. A
msghdr structure and all its parts are allocated based on the arguments. The
only missing dimensions are sizes of input-output vectors. There can be many
input/output vectors, so their sizes cannot be passed through IPC call arguments,
even though they fit into the sysarg t type. Each size is received as large data
and corresponding input/output vector is allocated accordingly. A socket and
an implementation of receiving a message are looked up. The implementation
is called with the socket, the msghdr structure and flags as parameters and is
expected to fill the structure with data. Contents of the msghdr structure are
sent back to the client as large data after the call. Message name first, followed by
input/ output vectors and control data. An asynchronous answer with a return
value and a total size of received data is sent to the client as an IPC argument.

4.6 Socket server lower layer

The layer implements stream TCP, raw OSPF and datagram UDP sockets. It
handles the communication between the upper layer and lower network stack
servers. Also, UNIX sockets are emulated here.

All sockets are stored in one linked list. The list should be a sufficient data
structure since there are not many socket connections expected. Many other net-
works stack structures (UDP associations, TCP connections, links, link addresses,
etc.) are also kept in linked lists, so the overall complexity is not impaired. The
list is always locked before any of the lower layer functions accesses sockets.

31

Each socket type is represented by a structure. At the beginning of the type-
specific structure is a structure with attributes common to all sockets, making
casting between sockets possible.

One of the common attributes is a socket ID. Socket IDs are generated by the
socket server. The highest socket ID ever assigned and a stack of freed IDs are
kept. Top of the stack is returned when there is a need for a new ID. The highest
ID is incremented and returned as a new socket ID if the stack is empty. The
highest ID starts at 128. The number is chosen to avoid collisions with VFS file
descriptors. The highest possible VFS file descriptor is 127.

Each type of socket implements a function that returns true if there are data
available for reading and false otherwise. UDP or raw socket is available for
reading if its message is not empty. TCP socket is available for reading if its
connection is established and there are data available on it. TCP sockets also
implement a function determining if a socket is available for writing. The function
returns true if the connection is established, false otherwise.

The select iterates through all sockets and if the socket is in the read set
it calls the function determining a read availability. If the function returns true,
the socket is added into the result read set. Write set is processed accordingly.

4.6.1 Raw sockets

Raw sockets are used to send and receive IP packets of higher protocols on UNIX.
The higher protocol is specified by a number passed as the last argument when a
socket is created. The number is compared with the protocol number in IP header
when an IP packet is received. The packet is passed to all sockets matching the
number. It is also passed to a higher layer of the network stack. This means that
one packet can be received by multiple applications and kernel simultaneously.
HelenOS network stack has limitations in this regard. They are discussed in
HelenOS Chapter, Section 2.3.

Initialization

BIRD only needs raw sockets for sending and receiving OSPF packets, and there
is no other server or an application that connects to the inetsrv in order to use
the protocol.

The socket server connects to inetrv during the initialization, passing 89
(OSPF) as protocol number and a callback function for receiving OSPF packets.
A session with inetsrv is created during the process.

BIRD always binds a socket to an interface right after it is created. A name of
an interface is used to bind the socket, for example net/ethl. On UNIX, interface
indexes are used to uniquely identify interfaces. When a new network interface
is discovered by the ethip server in HelenOS, a new service for the interface is
created. The service is assigned a unique ID and is added to the IP link service
category. The service ID can be looked up by an interface name. A socket in
HelenOS is bound to an interface by setting IP link service ID as attribute of
socket structure.

32

Sending messages

The function for sending messages handles a parsing of the msghrd structure into
datagram suitable for the inetsrv server. Datagram’s IP link is given by the IP
link service ID. BIRD adds always exactly one input/output vector to msghdr
with all data. The pointer to datagram data is set to the base of the vector.
The size of the data is set to the size of the vector. The destination address is
retrieved from the msghdr socket address, and the version is set to [Pv4. The
source address of the datagram is more difficult to set properly because the IP link
service ID is used to determine an interface. When a datagram is sent directly to
IP link, none of the lower layer servers fills the source address of the IP packet
generated from the datagram. In this case, source address does not matter to the
sender but it is crucial to the receiver. The receiver cannot determine a packet
origin without it. The solution is to set the source address to sockets IP link [Pv4
address. The inetcfg service is used to find the IP link address. One link can
have multiple addresses, so the first one returned by the inetcfg service is used.
Datagram is passed to inet_send when all attributes are set.

Receiving messages

The implementation of receiving messages is split into two parts. A callback
invoked by inetsrv and a function handling the client request.

The two parts collaborate through queues. Each socket has its own queue.
The callback function iterates through all sockets whenever it is invoked. The
datagram passed to the callback has assigned a link it was received from. A
copy of the datagram is added to the socket queue if the socket link matches
the datagram link. If there is no socket bound to the link, or there is no more
memory to create a copy, the datagram is discarded.

The client request handler dequeues first message from socket’s queue when
called. The message is parsed into a msghdr structure. All raw sockets are non-
blocking, so if there is no message in queue, an error code is returned. The socket
address is parsed first. The source address is set to the datagram source, the port
is set to zero, and the address family is set to AF_INET.

Actual data are parsed next. This part is a bit tricky because sending and
receiving messages through raw sockets on UNIX is slightly asymmetric. Sent
data does not include an IP header on UNIX. An IP header can be specified
by one of the control messages optionally. Received data always contain an IP
header. The inetsrv server is, on the other hand, symmetric and an IP header
is never part of the data. Luckily, BIRD only uses the first byte of the header
to determine the packet IP version and the length of the IP header. These two
attributes can be reconstructed without the an actual header. They are set in
the first byte. The remaining 19 bytes of the reconstructed header are nulled.
The header and datagram’s data are concatenated into the first input/output
vector of the msghdr structure (BIRD always passes the msghdr with exactly one
vector).

Additional information are last to be filled. BIRD expects one control message
here. The message type is expected to be packet information and the socket
option level to be IP. Data of the message is another structure with actual packet
information. The structure contains two attributes - destination address of the

33

packet and an index of the interface, the packet was received through. The index
is used to check that the packet was received through the expected interface. The
destination address is used to distinguish between different interface addresses,
multicast addresses and broadcast addresses. BIRD’s protocols process packets
differently, based on the address they were destined to. The interface index is set
to the datagram IP link service ID. The destination address is retrieved from the
datagram last.

4.6.2 UDP sockets

Implementation of UDP sockets is similar to RAW sockets in many ways, but
there are some significant differences. The socket server obtains UDP reference
during the initial connection. The reference cannot be directly used to send and
receive messages. UDP associations must be created first.

Inititalization

Each UDP socket used by RIP is bound to a port and to an interface. UDP
sockets are bound to links the same way as raw sockets. The UDP association is
created when the bind is called by the client. The association takes an endpoint
and a callback function as parameters. The binding is determined by the endpoint
(an IP link, a local address, a local port). The IP link is set to the socket link.
An address and a port are parsed from parameters of the bind function. One
association is created for each UDP socket.

Sending messages

The msghdr structure must be converted into four separate parameters suitable
for HelenoOS UDP API. They are a local address, a remote endpoint, data and
data size. A local address is acquired in the same way as a local address for a
datagram sent through a raw socket. A remote endpoint address and a port are
retrieved from the msghdr socket address. Data are set to the base of the first
input/output vector and their size to the size of the vector.

Receiving messages

The callback function and the function for receiving messages cooperate similarly
as in the raw socket implementation. The callback is adding UDP messages to
socket queues, and the receive function is consuming them. The difference is that
UDP message can be received only by one socket. The callback does not have
to iterate through all sockets to find it. It is configured during the association
creation to receive the socket as a parameter.

Dequeued messages must be converted into the msghdr structure. The socket
address is filled with a remote endpoint address and a port. The remote endpoint
is a part of the dequeued message. The first input/output vector is filled with
message data and its size is set to the message size.

There are no control messages expected by BIRD when receiving from UDP
sockets, so the control message part is left unchanged.

34

4.6.3 TCP sockets

A TCP reference is obtained during the initialization. It is used to create TCP
listeners and TCP connections. The socket server distinguishes between listener
and non-listener TCP sockets internally.

When a listener is created, incoming connections are handled by a callback
function, each in one fibril. A connection is destroyed when the function returns.
The callback is adding incoming connections into the listener socket queue. The
socket is determined by callback parameter. Each incoming connection is associ-
ated with a condition variable that prevents the callback function from returning.
All condition variables of connections in the queue are released when a listener
socket is closed.

A user can accept connections through the listener socket. A new socket is
created and the first connection from the listener socket queue is assigned to it.
The connection is removed from the queue. The condition variable held by the
connection will be released when the newly created socket is closed. An ID of the
socket and the remote endpoint of the connection are returned to the user.

A connection can be initiated by calling connect on a non-listener TCP socket.
A remote address and a port are parsed from the parameter, and a new connection
is created using HelenOS TCP API. The connection is added to the socket. The
lifecycle of the connection is not handled by a callback function. It is destroyed
when the socket is closed.

Reading and writing is trivial once the connection is established.

UNIX sockets

UNIX sockets are needed by BIRD client. They are used in the same way as TCP
sockets. The only difference is that the sockaddr argument of bind and connect
is sockaddr_un (unix socket path) instead of sockaddr_in (socket address plus
port). UNIX sockets are emulated with localhost TCP sockets. Each UNIX
socket has a TCP socket assigned to it on the server side. When any of the
functions (bind, listen, connect, accept, write, read) is called on UNIX socket,
the call is delegated to the TCP socket. Additionally, bind assigns a local port
to the path (for example, 9000 is assigned to ”bird.ct]”) and passes it to TCP
socket bind along with localhost address (127.0.0.1). Listen adds the path-port
pair into the list of paths that is being listened on. The connect looks up the
port in the list according to the path it wants to connect to. If found, it binds it
self to another port and calls connect on the TCP socket. Accept creates a new
UNIX and assigns it the TCP socket from the TCP accept call.

Here is an example of a server and a client communicating over ”bird.ctl”
path. There is a TCP socket listening on 127.0.0.1:9000 mapped to ”bird.ctl”
path by UNIX socket. The client uses a UNIX socket with TCP socket bound to
127.0.0.1:9001. The server uses another UNIX socket obtained from accept with
a TCP socket bound to 127.0.0.1:9002.

35

4.7 Additional changes

The Section describes an implementation of requirements from 3.5. It was tried
to implement the requirements in a least invasive way possible.

4.7.1 Multicast

A driver service ID is added to the network layer link information. BIRD can
now use the driver API to enable or disable the multicast on an interface given by
the ID. Link information is accessed through the inetcfg service of the inetsrv
server. The server acquires a driver service ID from the ethip server in a separate
IPC call during a link opening (same as other information like an MTU, a MAC
address, etc.).

Translations of two multicast addresses are added to ethip ARP protocol.
They are OSPF and RIP multicast addresses, specified by RFC [12] and [10],
respectively. Both are translated to Ethernet addresses according to rules of
multicast address translation, described in RFC [4], Section 6.4. Additionally,
network layer was made aware of them. Server inetsrv now treats packets des-
tined to these two multicast addresses as packets destined to one of the local
addresses.

4.7.2 Deleted interface addresses and routes, route origin

A list of deleted interface addresses is added. Interface addresses are moved from
the list of active addresses into the list of deleted addresses instead of being
deleted. A new interface address is added to the list of active addresses. Ad-
ditionally, it is looked up in the list of deleted addresses. If a match is found,
the old deleted address is removed and deallocated. Matching criteria include all
attributes except for the name.

The library API for listing routes and interface addresses is changed as well.
The API now takes an interface address status as a parameter. The status can
be active or deleted. When IPC request arrives to the server, implementation
will return addresses from the appropriate list.

Deleted routes and the route origin are described in the Section 4.7.4.

4.7.3 Routing

The integrated implementation of the routing from the thesis Packet filtering [3]
takes advantage of the fact that HelenOS packets with local origin were already
routed. The inetsrv is deciding if a packet is destined to one of the local ad-
dresses. If not, it is routed the same way as packets with local origin instead of
being discarded.

There was one problem with the implementation. Packets were forwarded only
if their destination address matched network address of one of the interfaces. It
caused HelenOS to route only one hop. Removal of the unnecessary check fixed
the issue.

36

4.7.4 Routing table data structure

A binary trie data structure with no further modifications is added to the C
library. Implemented operations are insert, find longest match and find exact.
Delete is not implemented because routes are never really deleted, only marked
as such. The data can be inserted and looked up under keys with different bit
lengths.

The intesrv server uses two separate tries as routing tables for IPv4 and
IPv6 routes. The destination address type of a route is deciding which trie is
used. A path in the trie corresponds to a destination address. The path ends
with a node containing a pointer to a list of routes (there can be multiple paths
to one destination).

Following steps are executed when a new route is created. A path in the trie
is found according to the destination address and prefix. If the node at the end
of the path already contains a list of routes, the new route is prepended to the
list. Otherwise, a new list is created, the route is inserted into it and the list is
inserted into the trie.

A route is looked up by a destination address, a prefix length and a router
address when it is being deleted. A list is looked up by a destination address and
a prefix in the trie. If the list is found, it is searched for a route matching the
router address. The route is moved from its current position to the end of the
list and its status is changed to inactive.

A packet destination address may match multiple entries in a routing table.
For example, address 1.1.1.1 matches both 1.0.0.0/8 and 1.1.1.0/24. The longest
prefix match must be chosen. A trie function is implemented for this purpose. A
list of routes with longest destination address prefix match is looked up when a
packet needs to be routed. The first route from the list is used, if it is active. The
maximum depth of the trie is 32 for IPv4 addresses. The complexity of searching
longest prefix routes is not impaired by the lists. Only deleting and adding new
routes routes can have increased complexity (the route is additionally searched
in the list), and that is only if there are multiple routes to the same destination.

Routes are allocated in blocks, since they are newer really deleted. One block
has space for 1024 routes. A new block is allocated whenever the space is depleted.
The blocks are kept in a list. It is used for listing all routes (there is no need to
convert the trie into an array or a list). The size of a block is slightly smaller
than the maximum IPC transfer size. Each block from the list is sent to a client
in a separate IPC call for transferring large data.

Two route attributes were removed during the routing table data structure
reimplementation - a route ID and a route name. It does not make much sense to
look up routes by any of the two attributes when routes are stored in a trie under
destination addresses. An attribute determining route origin was added. It is up
to a user of the library to fill the attribute properly during route creation.

4.7.5 Source address of sent UDP messages

A parameter specifying source address was added to function for sending messages
through UDP association in the C library. It is passed to the server with other
parameters. The server handles the source address parameter similarly to the
remote endpoint parameter. If the passed local address is null, the local address

37

specified by the association local endpoint is used (it can still be null, in which
case the source address of the message will be also null). Otherwise, the passed
address is used as the source address of the message.

The link can be the only endpoint pair attribute specified during the associa-
tion creation. The source address can be supplied with each message. The case,
in which the link address changes, is also covered.

4.7.6 Network stack bug fix

The following text discusses the fix of the bug described in the analysis Chap-
ter, Section 3.5.3. The bug did not occur when the latest official stable release
of HelenOS was used instead of the image compiled from the latest repository
version. This meant the bug was introduced in one of the revisions between the
latest release and the current revision. It turned out to be the revision, where
the transport layer was redesigned (sockets were replaced with TCP and UDP
servers). The conclusion was that the bug was caused by one of the servers.

There was found a typo error in an assert in the UDP server. When the
server received UDP packet, it tried to look up a destination association. The
association is most commonly looked up by a port. When the association was
not found, the server crashed. The correct behavior is to discard the packet.

The bug was discovered because the other network participants were broad-
casting some UDP packets and there was no consumer for them in HelenOS. It
was easily removed by fixing the typo in the assert. The implication of the bug is
that a failure in one of the high layer servers caused a harm to the whole network
stack. A possible cause is error propagation in the network stack. The UDP
server crash led to the EHANGUP error code propagation as a return value of each
callback invocation. The EHANGUP was returned all the way down to the driver
as illustrated by the Figure 4.2.

Figure 4.2: Hangup propagation.

Assertion

[ubP ¢ | bug

EHANGUP ¢ ;r Callback invocation

[metsrv |
EHANGUP ¢ T Callback invocation

| ETHIP |
EHANGUP ¢ T Callback invocation

[wic pbrver |

The driver failed to invoke callback of the ethip for all subsequently received
messages. The network stack remained functional only for sending.

38

4.8 BIRD’s HelenOS system-dependent layer

The layer is implemented in HelenOS coastline and is added to BIRD during the
coastline build process. The inetcfg library is used to implement the synchro-
nization with HelenOS.

4.8.1 Interface scanning

IDs of all links are listed first. A link information is retrieved for each link ID.
Following attributes are extracted from the link information: an interface name,
a link service ID and an MTU. Link service ID is used as an interface index.
Temporary BIRD interface structure with these attributes is created and passed
to the core. Active and deleted interface addresses are acquired next. Following
attributes are extracted from each interface address information: an interface
address, an interface address prefix length and a link service ID as an interface
index. Other attributes (e.g. a scope, a broadcast address, a network address) are
calculated next. A core address update is called for each active address. Deleted
addresses are deleted from the core.

4.8.2 Routing table scanning

The HelenOS API for getting routes was rewritten. All the routes are loaded
in one call. A destination address, a destination address prefix length, a router
(gateway) address and a route origin are acquired from each route information.
On Linux, deleted routes are handled by reading the RTNETLINK kernel socket
and invoking a hook as described in the Section 1.5. This is substituted in
HelenOS by storing deleted routes and processing them during the route scan.
Deleted routes, unlike deleted interface addresses, are not stored on Linux.

4.8.3 Creating and deleting routes

A BIRD internal structure for a routing table entry is passed to the function for
creating or deleting routes. A destination address, a destination address prefix
length and a router (gateway) address of the structure are used. A route matching
these attributes is looked up in HelenOS routing table. If a match is not found
and the route is being created, a new route with these attributes is added to the
routing table. A matching route is looked up to avoid duplicates. If a route is
being deleted and a match is found, the route is deleted from the HelenOS routing
table.

4.8.4 BIRD client

On UNIX, the client’s main loop is blocked by select until either an input is
available or data from the server arrived. The loop is redesigned as follows. It
is blocked by waiting for input (fgets). When the input is typed in, waiting for
response from server starts. After the response is processed, waiting for another
input starts. There is an issue with displaying the typed input, which is printed
only once submitted. The HelenOS console does not display the input when
another application is running in it, so the commands must be typed in blindly.

39

5. Evaluation

The following Chapter describes evaluation of the implementation in a virtual
environment. The same environment was used to perform all the tests except.

5.1 Environment setup

The implementation was tested in the virtual environment proposed in 3.1. The
Appendix B contains description how to run the testing environment. The topol-
ogy consists of nine routers. Six of them are instances of HelenOS and three of
them are instances of Core UNIX. A script is prepared for each instance to config-
ure the network and run BIRD. The configuration results in a network displayed
by Figures 5.1, C.1, C.2 and C.3. The Figure 5.1 shows a high level view. A more
detailed view of autonomous systems is displayed in the Appendix C by Figures
C.1, C.2 and C.3.

Figure 5.1: Overall topology

AS A AS B

OSPF QSPF HelenosB1

HelenosAl

elenosA CoreB

\ o
3 |

AS C

5.1.1 BIRD configuration

The configuration file is passed as an argument when BIRD is started by one of
the scripts. The nodes connecting ”AS”s (HelenOS_A, Core_B and HelenOS_C)
have configured BGP on interfaces between them. There are two instances of the

40

BGP protocol configured on each of the nodes. The BGP instances are configured
to import and export all routes. OSPF is configured on the interfaces connected
to inner nodes.

The inner nodes (HelenOS_A1l, HelenOS_A2, HelenOS_B1, Core B2,
HelenOS_C1, Core_C2) have configured OSPF for all interfaces. OSPF config-
uration is the same for all interfaces on all nodes. The protocol imports and
exports all routes. The connection type is set to point to point since each inter-
face is connected to none or exactly one other router. The period for sending hello
packets is set to fifteen seconds, retransmission after not getting an acknowledge-
ment to ten seconds, waiting after the start for an adjacency build to twenty-five
seconds and the number of seconds before a neighbor is proclaimed dead to forty.

The kernel and the device protocols are also configured in a same way on all
nodes. The routing table is scanned every five minutes. Interfaces are scanned
every five seconds.

5.2 Tests

The initial exchange of routing information happens when the network is con-
figured and BIRDs are started. The routing information is collected by OSPF
based on configured network interface addresses within each of the three ” AS”s.
BGP exchanges the information between the ”AS”s.

Each AS contains five destination addresses (they are 10.10.10.0/24,
10.10.20.0/24, 10.10.30.0/24, 10.10.40.0/24, 10.10.50.0/24 in AS A). This means
nodes connecting ” AS”s should have installed thirteen routes by BIRD after the
initial exchange is over (fifteen destinations minus two destinations given by the
interface addresses). The inner nodes should have installed twelve routes each
(three destinations are given by interface addresses). Tables 5.1 and 5.2 show how
should the routing tables look like on HelenOS_A and HelenOS_A1 respectively
(routes can be displayed in arbitrary order).

Table 5.1: HelenOS_A routing table after initial exhange.

Route index | Destination network Gateway(Router)
1. 10.10.30.0/24 10.10.10.2
2. 10.10.40.0/24 10.10.10.2
3. 10.10.50.0/24 10.10.20.2
4. 20.10.10.0/24 1.0.0.2
D. 20.10.20.0/24 1.0.0.2
6. 20.10.30.0/24 1.0.0.2
7. 20.10.40.0/24 1.0.0.2
8. 20.10.50.0/24 1.0.0.2
9. 30.10.10.0/24 2.0.0.2
10. 30.10.20.0/24 2.0.0.2
11. 30.10.30.0/24 2.0.0.2
12. 30.10.40.0/24 2.0.0.2
13. 30.10.50.0/24 2.0.0.2

Table 5.2: HelenOS_A1 routing table after initial exhange.

41

Route index | Destination network Gateway(Router)
1. 10.10.20.0/24 10.10.30.2
2. 10.10.50.0/24 10.10.30.2
3. 20.10.10.0/24 10.10.10.1
4. 20.10.20.0/24 10.10.10.1
5. 20.10.30.0/24 10.10.10.1
6. 20.10.40.0/24 10.10.10.1
7. 20.10.50.0/24 10.10.10.1
8. 30.10.10.0/24 10.10.10.1
9. 30.10.20.0/24 10.10.10.1
10. 30.10.30.0/24 10.10.10.1
11. 30.10.40.0/24 10.10.10.1
12. 30.10.50.0/24 10.10.10.1

5.2.1 OSPF test

The OSPF test is performed in the AS A. Network changes are simulated in this
test by removing and adding interface addresses on involved nodes. Changes in
routing tables are observed to confirm that they match the network state.

When a change is made to the network, some period of time needs to elapse
before BIRDs exchange all the information and update routing tables. Waiting
one minute after each change should be enough for all updates to take place.

All the tests are interactive. After modifying network configuration, and
waiting for approximately one minute, results are verified by examining routing
tables on all routers. Additionally, destinations of changed routes are pinged from
some of the nodes. BIRD clients are used to show state of the OSPF protocol
during the tests.

Labels are introduced on destination addresses and network interface ad-
dresses to simplify the description of the tests.

Table 5.3: Destination network address labels

Label Description
D1 | network between HelenOS_A and HelenOS_A1, 10.10.10.0/24
D2 | network between HelenOS_A and HelenOS_A2, 10.10.20.0/24
D3 | network between HelenOS_A1 and HelenOS_A2, 10.10.30.0/24
D4 network behind HelenOS_A1, 10.10.40.0/24
D5 network behind HelenOS_A2, 10.10.50.0/24

Table 5.4: Network interfaces address labels

Label Description

AI3 | address of net/eth3 interface on HelenOS_A, 10.10.10.1/24
AI4 | address of net/eth4 interface on HelenOS_A, 10.10.20.1/24
A1I1 | address of net/ethl interface on HelenOS_A1, 10.10.10.2/24
A112 | address of net/eth2 interface on HelenOS_A1, 10.10.30.1/24
A2I1 | address of net/ethl interface on HelenOS_A2, 10.10.20.2/24
A212 | address of net/eth2 interface on HelenOS_A2, 10.10.30.2/24

42

The Figure 5.2 shows network states in the AS A during the test. States are
numbered one to nine. Changes between states 2-3-4 and 6-7-8 affect all 7 AS”s.
Changes between other states affect only the AS A.

Figure 5.2: OSPF Test states

04 o4 D4 o4
I:ﬁ“.uu ~ ol IH.’J“.UM - ol %"U“ nl I:ﬁ“.uu nl
1. o I& 2. 0 m I&) 3 m I& 4, m l&
Az [A] Azl [] 212 'l
DI:_I:HH.UIL] nﬁ.uu 2 mD_KH.uu b2 DEEHH.UII 2
DM‘.UI[ol DH.\]II ol DH.UII o]l DH.UII o]l
All . Allz [Al L] Al J
8 m I& 7. m I& * 6. o™ I& 5. m l»
Az [A] Az [A2 l
mD_KH.uu o2 nﬁ.uu 2 DI:_I:HH.UII] mD_KH.uu 02
DM‘.UI[ol
All .
9, m I&
Az
mD_KH.uu n:

Description of test steps follows.

A112 is deleted in the first step (state 2). HelenOS_A changes the gateway of
the route into the D3 from A1I1 to A2I1, if it was A1I1 previously (distance
is the same through both of them). HelenOS_A2 changes the gateway of
routes into D4 and D1 from A1I2 to AI4. HelenOS_A1 changes the gateway
of routes into D5 and D2 from A2I2 to AI3. Additionally, HelenOS_A1l
adds a new route into D3 with AI3 as a gateway. The route was previously
given by the deleted interface address, now it is accessible only through
HelenOS_A. Other autonomous systems are unaffected by this step.

The second step is to delete A1I1 (state 3). HelenOS_A1 becomes separated
from the rest of the network. All routers in all ” AS”s remove the route into
D4. HelenOS_A1 deletes all routes from its routing table.

The A1I2 is restored next (state 4). HelonOS_A1l becomes part of the
network again. The previously removed route is reinstalled by all nodes
and HelenOS_A1 reinstalls routes to all twelve destinations.

The network returns to initial state after A1I1 is restored (state 5). One
route needs to be shortened on both HelenOS_A1 and HelenOS_A2. He-
lenOS_A1 changes the gateway of the route into D5 from AI3 to A2I2.
HelenOS_A2 changes the gateway of route into D4 from Al4 to A112. He-
lenOS_A1 deletes route into D1 (the route is now given by A1ll again).

Deletion of AI3 follows (state 6). HelenOS_A2 changes the gateway of the
route into the D1 from Al4 to A112, if it was Al4 previously. HelenOS_A1

43

changes the gateway of route into D2 from AI3 to A2I2 if necessary. He-
lenOS_A changes the gateway of routes into D4 and D3 from A1I1 to A2I1.
Additionally, HelenOS_A adds a new route into D1 with A2I1 as a gateway.

e HelenOS_A1 and HelenOS_A2 are separated from the rest of the network
by deleting AI4 (state 7). All the other nodes delete routes to all AS A
destinations (D1, D2, D3, D4, D5). HelenOS_A1l and HelenOS_A2 delete
all routes into other ” AS”s but they maintain the routes within AS A.

e AI3 is restored and HelenOS_A1 and HelenOS_A2 are reconnected to the
network (state 8). Each of them reinstall ten routes into other ”AS”s.
Nodes in AS B and AS C reinstall the five routes into AS A. HelenOS_A
adds routes into D2, D3, D4 and D5. The gateway of the routes is A1I1.

e The network returns to initial state again when Al4 is restored. HelenOS_A
deletes route into A1 and changes router of route into D5 from A1I1 to A212.

5.2.2 BGP test

The BGP test follows after the OSPF test is concluded. Bird on Core_B node is
killed. Routes into the AS B are deleted on nodes in the AS A and the AS C.
Remaining nodes in the AS B (HelenOS_B1 and Core_B2) delete routes into the
other two ”AS”s. Bird on Core_B is restarted with the same configuration on
Core_B after all exchanges are over. The routes are reinstalled on all nodes and
the network is its initial state.

5.2.3 Routing performance test

A configuration is changed on the Core_B2 node from bird.conf to birdB2.conf
using the BIRD client. The static protocol in the birdB2.conf configuration file
contains ten thousand randomly generated routes. The routes are spread to all
the nodes. The nodes connecting autonomous systems have 10013 routes and the
inner nodes have 10012 routes added by BIRD. A new command, log-sr is im-
plemented for the inet tool in HelenOS. It prints routes into the file routes.log
and prints their count to the console.

An application called packet-generator is prepared on Core_C2 node. The
application has a hard-coded array of ten thousand destinations. Each destina-
tion corresponds to one of the ten thousand randomly generated routes. The
application generates and sends one thousand packets. A random destination
from the array is picked for each packet. Source code of the application can be
found on CoreB2 image.

It took HelenOS approximately twenty seconds to route one thousand packets
in the current testing environment. Incoming packets are observed on Core B
node with tcpdump. The time is calculated as a difference between timestamps
of the first and the last packet.

The routing table data structure is not a bottleneck for the performance. The
same time is needed to route the packets even if the destination is hard-coded
and the routing table is not even consulted.

44

5.2.4 RIP test

The RIP protocol was tested in a less complex environment. Two issues were
found with this protocol. When routes are deleted on one router, other routers do
not react to this change. When the protocol was tested between three routers, one
of them did not choose the shortest possible routes. Both of these problems are
not HelenOS related because they occurred even when the HelenOS was swapped
for a UNIX Core. The RIP protocol was redesigned in a more recent version of
BIRD, so the issues were not reported. The RIP protocol is not included in the
final testing set for these reasons.

45

Conclusion

Goals of the thesis were partially achieved. HelenOS provides support for BIRD’s
three main routing protocols - OSPF, RIP and BGP. HelenOS can be used as a
routing OS in an [Pv4 environment.

Network sockets were implemented in HelenOS in a scope necessary for the
three protocols. Sockets were implemented in a new server. The socket API was
added to the C and the POSIX libraries. The design respects the HelenOS micro-
kernel multiserver architecture. Even though the created socket implementation
only includes a functionality needed by BIRD, it is easily extensible and ready to
be used by other POSIX and HelenOS native applications.

Several additional changes were made to the HelenOS network stack to make
BIRD functional. A new HelenOS lower system-dependent layer was implemented
in BIRD. HelenOS routing table data structure was upgraded to a trie. The trie
implementation is also reusable.

A virtual network environment was created for testing. Multiple changes were
made to the network configuration while BIRDs were running. All changes were
correctly communicated between all nodes in case of OSPF and BGP protocols.
The RIP protocol was functional only in a static environment. Tests prove that
BIRD’s HelenOS layer and sockets are functional. The environment is also suit-
able for testing other HelenOS networking related features.

Future work

There are BIRD functionalities which are still not supported by HelenOS.

To support IPv6, HelenOS network stack needs multiple IPv6 related up-
grades. Most of them are discussed in thesis IPv6 for HelenOS [13].

Part of another thesis, Port of QEMU to HelenOS [11], dealt with implemen-
tation of POSIX threads. Unfortunately, the implementation is not merged into
the HelenOS trunk. If a merge of this branch into the trunk happens in the
future, it should be simple to support the BED protocol.

New versions of BIRD with new features are released continually. The ported
version can be upgraded, when requirement on some of the latest features arises.
This thesis should have laid enough ground work to make the upgrades relatively
simple.

There are still many unmet RFC requirements on HelenOS both as a host
and as a router that needs to be implemented to achieve compliance.

46

Bibliography

1]

2]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Protocol numbers. URL https://www.iana.org/assignments/
protocol-numbers/protocol-numbers.xhtml. (as of May 1st 2018).

Helenos, January 2015. URL http://www.helenos.org/. (as of May Ist
2018).

Jan Buchar. Helenos packet filter, 2015. URL http://www.helenos.org/
doc/theses/jb-thesis.pdf. (as of May 1lst 2018).

S. Deering. OSPF Version 2. RFC 1112, RFC Editor, August 1989. URL
https://tools.ietf.org/html/rfc1247. (as of May 1st 2018).

Editor F. Baker. Requirements for IP Version 4 Routers. RFC 1716, RFC
Editor, June 1995. URL https://tools.ietf.org/html/rfc1812. (as of
May 1st 2018).

Ondrej Filip, Pavel Machek, Martin Mares, and Ondfej Zajicek. Bird pro-
grammer’s documentation, April 2015. URL ftp://bird.network.cz/pub/
bird/1.5/bird-doc-1.5.0.tar.gz. (as of May 1st 2018).

Ondrej Filip, Pavel Machek, Martin Mares, and Ondiej Zajicek. Bird
user’s guide, April 2015. URL ftp://bird.network.cz/pub/bird/1.5/
bird-doc-1.5.0.tar.gz. (as of May 1st 2018).

Stanislav Galfy. Helenos ticket 667, ping not working, May 2016. URL
http://www.helenos.org/ticket/667#. (as of May 1lst 2018).

Stanislav Gélfy. Helenos ticket 672, udp crashing network stack, February
2017. URL http://www.helenos.org/ticket/672. (as of May 1st 2018).

G. Malkin. RIP Version 2. RFC 1654, RFC Editor, November 1998. URL
https://tools.ietf.org/html/rfc2453. (as of May 1st 2018).

Jan Mares. Port of gemu to helenos, 2015. URL http://www.helenos.org/
doc/theses/jm-thesis.pdf. (as of May 1st 2018).

J. Moy. OSPF Version 2. RFC 1247, RFC Editor, July 1991. URL https:
//tools.ietf.org/html/rfc1247. (as of May 1st 2018).

Antonin Steinhauser. Ipv6 for helenos, 2013. URL http://www.helenos.
org/doc/theses/jb-thesis.pdf. (as of May 1st 2018).

Wikipedia. Border gateway protocol, September 2004. URL https://en.
wikipedia.org/wiki/Border_Gateway_Protocol. (as of May 1st 2018).

Wikipedia. Open shortest path first, June 2005. URL https://en.
wikipedia.org/wiki/Open_Shortest_Path_First. (as of May 1lst 2018).

Wikipedia. Routing information protocol, September 2005. URL https:

//en.wikipedia.org/wiki/Routing_Information_Protocol. (as of May
st 2018).

47

https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
http://www.helenos.org/
http://www.helenos.org/doc/theses/jb-thesis.pdf
http://www.helenos.org/doc/theses/jb-thesis.pdf
https://tools.ietf.org/html/rfc1247
https://tools.ietf.org/html/rfc1812
ftp://bird.network.cz/pub/bird/1.5/bird-doc-1.5.0.tar.gz
ftp://bird.network.cz/pub/bird/1.5/bird-doc-1.5.0.tar.gz
ftp://bird.network.cz/pub/bird/1.5/bird-doc-1.5.0.tar.gz
ftp://bird.network.cz/pub/bird/1.5/bird-doc-1.5.0.tar.gz
http://www.helenos.org/ticket/667#
http://www.helenos.org/ticket/672
https://tools.ietf.org/html/rfc2453
http://www.helenos.org/doc/theses/jm-thesis.pdf
http://www.helenos.org/doc/theses/jm-thesis.pdf
https://tools.ietf.org/html/rfc1247
https://tools.ietf.org/html/rfc1247
http://www.helenos.org/doc/theses/jb-thesis.pdf
http://www.helenos.org/doc/theses/jb-thesis.pdf
https://en.wikipedia.org/wiki/Border_Gateway_Protocol
https://en.wikipedia.org/wiki/Border_Gateway_Protocol
https://en.wikipedia.org/wiki/Open_Shortest_Path_First
https://en.wikipedia.org/wiki/Open_Shortest_Path_First
https://en.wikipedia.org/wiki/Routing_Information_Protocol
https://en.wikipedia.org/wiki/Routing_Information_Protocol

List of Abbreviations

API - Application Programming Interface
AS - Autonomous System

BFD - Bidirectional Forwarding Detection
BGP - Border Gateway Protocol

BIRD - BIRD Internet Routing Daemon
BSD - Berkeley Software Distribution
CPU - Central Processing Unit

GNS3 - Graphical Network Simulator-3
ICMP - Internet Control Message Protocol
IP - Internet Protocol

IPC - Inter Process Communication

[Pv4 - Internet Protocol version 4

IPv6 - Internet Protocol version 6

MAC - Media Access Control

MD5 - Message Digest 5 Algorithm

MTU - Maximum Transmission Unit

NIC - Network Interface Controller

OS - Operating System

OSPF - Open Shortest Path First

PDU - Protocol Data Unit

POSIX - Portable Operating System Interface
RADYV - Router Advertisement Daemon
RIP - Routing Information Protocol

TCP - Transmission Control Protocol
UDP - User Datagram Protocol

VFS - Virtual File System

VM - Virtual Machine

48

Appendices

49

A. Electronic attachment

Content of archive uploaded in Student Information System as electronic attach-
ment of the thesis.

e HelenOS/mainline - clone of repository
https://github.com/StanislavGalfy/helenos.git
branch bird-port-unmerged
- bird port mainline implementation, merged with master on 19.3.2018
(head 973be38). Branch bird-port was merged later, but merge was re-
verted into this branch because of coastline build errors.

e HelenOS/mainline/image.iso - pre-built image of HelenOS.

e HelenOS/coastline - clone of repository
https://github.com/StanislavGalfy/harbours.git
branch bird-port.
- bird port coastline implementation, merged with master head 453d818.

e HelenOS/topology - clone of repository
https://github.com/StanislavGalfy/topology.git
branch master
- Contains testing environment images and scripts.

e Diffs/mainline-status-diff.txt - list of mainline modified/added files.
e Diffs/coastline-status-diff.txt - list of coastline modified/added files.

e Diffs/mainline-diff.txt - full mainline diff, can be also seen in pull request
on github (https://github.com/StanislavGalfy /helenos/pull /2 /files).

e Diffs/coastline-diff.txt - full coastline diff, can be also seen in pull request
on github (https://github.com/StanislavGalfy /harbours/pull/1/files).

50

B. Compiling and running

Prerequisites:

e VDE2

e QEMU - compiled with ——enable-vde option. QEMU is installed without
enabled VDE when package manager is used in some cases. Install QEMU
with script included in HelenOS mainline contrib folder to ensure this
option is enabled.

e GIT - optional, for getting sources from online repositories

All source codes can be found in the electronic version of the thesis or in online
repositories as shown below.

To download repositories, git must be installed. Rest of the text will assume,
all three are cloned into ~/Helen0S/ folder.

mkdir ~/HelenOS

git clone https://github.com/StanislavGalfy/helenos.git
~/Helen0S/mainline

git checkout bird-port-unmerged

git clone https://github.com/StanislavGalfy/harbours.git
~/Helen0S/coastline

git checkout bird-port

git clone https://github.com/StanislavGalfy/topology.git
~/Helen0S/topology

If sources from the electronic version are used, it will be assumed, that the
HelenOS folder is copied into the home folder. The electronic version also contains
a pre-built image of HelenOS, so steps up to the start of the virtual environment
can be skipped.

The next step is to initialize a directory for coastline build, as instructed in
the coastline readme.

cd ~/HelenO0S/build-ia32
~/Helen0S/coastline/hsct.sh init /Helen0S/mainline ia32 build

At this point, BIRD is ready to be installed into HelenOS.
~/Helen0S/coastline/hsct.sh install bird
cd ~/Helen0S/mainline
make

The virtual environment can be started now.

cd ~/Helen0S/topology
./topology.sh

ol

The script uses the image of HelenOS created with previous steps for six of the
nine nodes.

Another script, ./run-birds.sh, is provided to start birds on all nodes. The
script uses QEMU monitor, so it should be used only once all nodes are fully

booted. The script runs all node-specific scripts for configuring network and
starting BIRD.

52

C. Detailed configuration of
autonomous systems

Figure C.1: Network A topology

HelenOS_Al

OSPF

y—/ 10.10.10.2/24
’ y.—/
10.10.40.1/24 ospF""‘*-’
10 10‘3.‘0 1/24 T
S C‘i\SPF
OSPF 10,10.10i!24 HelenOS_A
1.0.0.1/8
E’ e«-»
] U 5o
T " X Network B
OSPF 10.10.20.1/24 2.0.0.1/8
10.10.30.2/24 OSPF BGP
v ¥
oSPE e OSPF E;
&—— e Network C
10.10.50.1/24 e
HelenOS_A2
Figure C.2: Network B topology
HelenOS_B1
20.10.10.2/24 20 10.40. JJ24
—(U e
SePE OSPF
o Spr 20.10. 30 1/24
20.10.10.1/24 OSPF
Network A COre-B
BGP 45’
1.0.0.2/8 L
A
3.0.0.1/8 20,10.%0,1&4 OSPF
BGP OSPF 20.10. 30 2124
OSPF e OSPF ’
Network C 20.10.20.2/24 20.10.50.1/24 -
Core_B2

93

Figure C.3: Network C topology

Text

Network A Network B

BGP BGP
200218 g 300218
30.10.10.1f2~ 30.10.20.1/24
—

5; OSPF &ESF,E?
.

OSPF OSPF

30.10.20.2/24

==

A
30.10.50.1/24

30.10.10.2/24

==

A
30.10.40.1/24

elenOS_C1 Core_C
OSPF OSPF
(—)E(—P

30.10.30.1/24 -’ 30.10.30.2/24

OSPF OSPF
= =
[[

o4

	Introduction
	BIRD
	Version
	BIRD modules
	Execution flow
	Threads
	System dependent parts
	Protocols

	HelenOS
	Network stack
	Transport layer
	Network layer
	Link layer
	Coastline

	Analysis
	Testing environment
	Porting BIRD
	HelenOS socket design
	Sockets requirements
	Additional requirements
	BIRD's HelenOS system dependent layer requirements

	Implementation
	Debugging techniques
	Socket implementation prequisities
	Socket POSIX library
	Socket C library
	Socket server upper layer
	Socket server lower layer
	Additional changes
	BIRD's HelenOS system-dependent layer

	Evaluation
	Environment setup
	Tests

	Conclusion
	Bibliography
	List of Abbreviations
	Appendices
	Electronic attachment
	Compiling and running
	Detailed configuration of autonomous systems

