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Abstract 

 Transplantation of pancreatic islets (PIs) represents an alternative treatment for type 1 

diabetes mellitus. Post-transplant monitoring of islets by a reliable imaging method may 

contribute to the improvement of the transplantation outcome. In this thesis, novel 

visualization approaches for PIs were tested using magnetic resonance (MR) and optical 

imaging on phantoms and experimental animals, including Chemical Exchange Saturation 

Transfer (CEST) MR, fluorine (
19

F) MR, bioluminescence and fluorescence imaging. 

 MR imaging based on frequency-selective method CEST was performed on islets 

labeled with Eu-/Yb-based chelates. Labeled islets possessed low MR signal in phantoms, 

what would have been unsatisfactory for in vivo applications. Moreover, viability and 

function of labeled islets was impaired reflecting limited applicability of these agents for islet 

labeling and visualization. 

 Genetically modified bioluminescent islets showed suitable properties for longitudinal 

tracking of their post-transplant fate at an artificial transplant site - subcutaneously implanted 

polymeric scaffolds. Using multimodal imaging (MR and bioluminescence), the optimal 

timing for transplantation of islets into the scaffolds was assessed in diabetic rats. Islets 

transplanted into scaffolds using the optimized timing scheme were sufficiently vascularized 

and functional. 

 Finally, we developed a trimodal imaging platform for islets transplanted in scaffolds 

in rats. Bioluminescent islets labeled with multimodal nanoparticles were specifically 

visualized by 
19

F MR and sensitively by fluorescence imaging. A correlation between the 

bioluminescence and the 
19

F MR signals was found indicating the fast clearance                          

of nanoparticles from the transplantation site after cell death. This finding addresses one              

of the major issues with intracellular imaging labels and proved that the proposed imaging 

model is reliable for reflecting the status of transplanted PIs in vivo.  

  

Keywords: magnetic resonance imaging, optical imaging, contrast agents, cell labeling, 

pancreatic islet, transplantation  

 

 

 

 



 
 

Abstrakt 

 Transplantace pankreatických ostrůvků (PIs) představuje alternativní metodu léčby 

diabetu 1. typu. Monitorování transplantovaných PIs pomocí vhodné zobrazovací metody 

může přispět k zlepšení výsledků transplantace. V předkládané disertační práci jsme testovali 

nové způsoby zobrazení PIs pomocí magnetické rezonance (MR) a optického zobrazování, 

konkrétně MR metodu založenou na přenosu saturace magnetizace přes chemickou výměnu 

(Chemical Exchange Saturation Transfer - CEST), fluorovou (
19

F) MR a optické zobrazování. 

 Frekvenčně selektivní CEST metoda byla použita pro zobrazování PIs značených 

pomocí dvou CEST kontrastů. Na MR obrazech jsme detekovali pouze slabý signál                 

ze značených ostrůvků, které byly navíc poškozené. Tyto výsledky ukazují, že tento typ 

kontrastů není vhodný pro značení a zobrazování pankreatických ostrůvků.   

 V druhém experimentu jsme monitorovali geneticky modifikované bioluminiscenční 

ostrůvky transplantované do arteficiálních skeletů implantovaných do podkoží, které 

představují alternativní transplantační místo. Multimodálním zobrazováním (MR                    

a bioluminiscence) jsme určili optimální časování transplantačních kroků. Ostrůvky 

transplantované diabetickým potkanům podle optimalizovaného protokolu byly dostatečně 

prokrvené a funkční.  

  Vyvinuli jsme také nový trimodální zobrazovací model pro PIs transplantované               

ve skeletech. Značené bioluminiscenční ostrůvky byly zobrazené pomocí specifického 
19

F 

MR zobrazování a senzitivního fluorescenčního zobrazování. Důležitým výsledkem je 

korelace 
19

F MR a bioluminiscenčního signálu, která ukazuje, že po destrukci PIs jsou 

nanočástice z transplantačního místa odstraněna a proto nepřispívají k falešně pozitivním 

výsledkům. Experimenty potvrdili, že navrhovaný zobrazovací model je vhodný pro 

sledování transplantovaných ostrůvků in vivo. 

 

Klíčová slova: magnetická rezonance, optické zobrazování, kontrastní látky, buněčné 

značení, pankreatické ostrůvky, transplantace     
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1 Introduction  
 

 Imaging methods have become an important tool for monitoring the outcome              

of cellular therapies such as transplantation of pancreatic islets intended for diabetes 

treatment. Although intrahepatic islet transplantation can restore insulin independence, its 

persistence is limited, the graft can be rejected after certain time and the procedure is often 

associated with partial damage of the liver tissue, blood-mediated inflammation or hypoxia. 

To elucidate the processes related to islet post-transplant fate or to test novel sites for PIs 

transplantation, the use of imaging methods is of a great help. Precise monitoring of islet 

distribution, mass and viability by a reliable method could finally contribute to optimization 

of transplantation protocols and improvement of transplantation outcomes. 

 Visualization of transplanted islets is conditioned by labeling with contrast agents or 

by genetic engineering of islets in order to create contrast between the transplanted islets and 

the host tissue. Each imaging method provides different information and is accompanied         

by various limitations as low spatial resolution (radionuclide imaging), specificity (proton 

(
1
H) magnetic resonance imaging (MRI)), sensitivity (fluorine (

19
F) MRI) or signal 

attenuation (optical methods). More complex information might offer combination of multiple 

imaging methods (multimodal imaging).  

The most widely used and clinically implemented agents for islet labeling are 

superparamagnetic iron oxides nanoparticles (SPIONs), which are suitable for visualization 

by 
1
H MRI. However, highly sensitive SPIONs offer low imaging specificity and only relative 

quantification of islet number. Moreover, clinically approved SPIONs were withdrawn from 

the European market and nowadays, there is no proper agent allowing non-invasive, sensitive 

and specific tracking of transplanted islets. Due to the lack of proper visualization method for 

transplanted PIs, this thesis aimed to test alternative probes and approaches for imaging         

of transplanted PIs. Novel contrast agents for MRI (based on chemical exchange saturation 

transfer (CEST) and fluorine-containing probes for 
19

F MRI) and fluorescence imaging were 

tested, as well as genetically modified cells trackable by bioluminescence imaging.  

 The thesis is divided into the theoretical and experimental part. In the Chapter 3, 

application of current methods for visualization of transplanted islets is reviewed. Alternative 

approaches are introduced as CEST, 
19

F MRI and optical imaging. The Chapter 4 is divided 

into three main subsections that are focused on testing of the particular agents and approaches 

for visualization of pancreatic islets. Each chapter contains description of materials and 
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methods, results, discussion and summary. In the Chapter 4.1, novel frequency-selective 

CEST agents owing the possibility of discrimination between various cell groups were tested;                      

in the Chapter 4.2, genetically modified bioluminescent PIs were implemented in order           

to track viability of islets transplanted at an alternative transplantation site (polymeric 

scaffolds) and in combination with MRI, timing of transplantation steps was optimized;                         

in the Chapter 4.3, multimodal nanoparticles intended for tracking by 
19

F MR and optical 

imaging were tested for longitudinal examination of transplanted PIs in scaffolds. Summary 

and overall conclusions that imply from the data are listed in the Chapter 5.  
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2 Aims 
 

 The aim of the proposed thesis is pre-clinical examination and validation of alternative 

visualization approaches for pancreatic islets by MRI and optical imaging. Feasibility            

of the novel contrast mechanisms is tested in order to improve monitoring of the transplanted 

graft and enhance the transplantation outcome. The specific aims are following: 

 

1) Testing of frequency-selective MR contrast agents based on Chemical Exchange 

Saturation Transfer (CEST) for labeling of pancreatic islets. 

Due to a possibility of simultaneous visualization of various CEST agents in one MR 

experiment, we hypothesized that the transplanted islets of different size or treated                 

by different drugs could be distinguished using MRI, what could help to improve medical 

intervention and increase the transplantation outcome.  

 

2) Visualization of transplanted pancreatic islets bioluminescence imaging. 

The second task of the thesis is to implement bioluminescence for long-term in vivo tracking 

of localization and viability of transplanted islets at an alternative transplant site (polymeric 

scaffolds). The purpose of this study is optimization of the transplantation protocol                

in the scaffolds using a multimodal approach (MRI and bioluminescence). 

 

3) Visualization of pancreatic islets labeled with multimodal nanoparticles using     

19
F MRI and optical imaging. 

The third task is optimization of labeling of pancreatic islets with multimodal nanoparticles 

that are trackable by 
19

F MR and fluorescence imaging. Optimized labeling route should be 

implemented for longitudinal multimodal in vivo visualization (
19

F MRI, fluorescence, 

bioluminescence) of pancreatic islets transplanted in artificial scaffolds. 
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3 Theoretical part  
 

3.1 Diabetes mellitus  
 

 Diabetes mellitus (DM) is a chronic metabolic disease characterized by dysfunction        

of insulin production and glucose homeostasis leading to elevated blood glucose level 

(hyperglycemia) and causing serious health complications including nephropathy, 

retinopathy, vascular and heart pathologies.  

 Insulin is an endocrine hormone secreted by pancreatic islets (PIs) (islets                    

of Langerhans), which promotes glucose utilization in fat, liver and skeletal muscle cells. PIs 

are highly vascularized clusters of several types of cells in the pancreas, which secrete 

hormones: glucagon (alpha cells), insulin (beta cells), somatostatin (delta cells), pancreatic 

polypeptide (gamma or PP cells) and ghrelin (epsilon cells) (Fig. 3.1). In type 1 diabetes 

mellitus (T1DM), beta cells are destroyed or non-functional what leads to impaired insulin 

production. T1DM is caused by an autoimmune T-cell mediated reaction against beta cells 

causing a gradual or absolute insulin deprival (Atkinson et al. 2014). Type 2 diabetes (T2DM) 

is not directly dependent on beta cell mass and insulin production (although beta cells might 

be impaired) as it results from insulin resistance at a receptor level in association with relative 

insulin deficiency (Olokoba et al. 2012).  

 Despite of a tremendous research, there are no approved agents able to stop the 

autoimmune destruction of beta cells (van Belle et al. 2011). The mostly used therapy for both 

T1DM and T2DM is exogenous insulin supplementation by multiple daily injections. 

Although subcutaneous insulin injections can keep glycemia in the physiological range, the 

administered insulin do not mimic physiologic secretion due to a delayed kinetics (sluggish on 

and delayed off) compared with that from pancreatic beta cells (Harlan 2016) and do not 

prevent diabetes-associated complications. An insulin overdose caused by improper 

physiological regulation of exogenously administered insulin may lead to hypoglycemic states 

(Mc Crimmon & Sherwin 2010). Some T1DM patients often suffer on recurrent 

hypoglycemia or impaired awareness of hypoglycemia manifested by loss of consciousness, 

seizures and coma (Fiallo-Scharer et al. 2011), what could be a life-threating issue as it is 

associated with significant morbidity and mortality.  
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 T1DM can be treated not only by insulin supplementation, but also by replacement of 

insulin producing tissue – pancreas or isolated pancreatic islets. Especially in T1DM patients 

prone to hypoglycemia unawareness, transplantation of PIs represents an alternative cure.  

 

Fig. 3.1. Pancreas and pancreatic islets. Pancreas is an internal organ situated below stomach and 

connected to duodenum by a pancreatic duct. Human pancreatic cells are clustered into pancreatic 

islets consisting of approximately 20% of alpha cells, 70% of beta cells, <10% of delta cells, <5% of 

gamma cells and <1% of epsilon cells. Each islet is surrounded by exocrine tissue.  

   

3.2 Transplantation of pancreatic islets 
 

 Transplantation of isolated PIs can restore normal insulin level with physiological 

regulation and thus prevent hypoglycemic episodes (Shapiro et al. 2017). The source of islets 

can be the recipient’s pancreas after total pancreatomy (auto-transplantation) or from the 

cadaver’s pancreas of a donor (allo-transplantation). In clinical practice, PIs are isolated from 

the pancreas in several steps starting by enzymatic digestion followed by several purification 

steps (Fig. 3.2) (Ricordi et al. 1989; Meiringeng et al. 2009). The initial outcomes of Tx PIs 

were low (<10% of normoglycemic patients) (Pyzdrowski et al. 1992; Largiader et al. 1980); 

however after improvements in islet isolation (purification and development of the Ricordi 

chamber) (Ricordi et al. 1989) and implementation of a glucocorticoid-free 

immunosuppressive protocol (known as Edmonton protocol) (Shapiro et al. 2000), insulin 

independence improved to approximately 44 – 70% at 3 years after PIs transplantation 

(Barton et al. 2012; Moassessfar et al. 2015). The outcomes are still not optimal and there is 

scarcity of cadaveric donors; therefore novel approaches for minimization of transplanted 

mass as well as novel transplantation sites that would prolong normoglycemia independence 

are examined.  
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Fig. 3.2. Clinical transplantation of pancreatic islets. Digestion and purification of isolated 

pancreatic islets is followed by intrahepatic islet transplantation by injection through the portal vein. 

The pancreas is firstly infused with collagenase solution through a catheter inserted into the main 

pancreatic duct. Then, the tissue is transferred into the Ricordi chamber, where it is digested at 37 °C 

using metal beads and exocrine tissue is continuously being removed. Then, the islets are collected 

and washed in several steps prior transplantation. Purified islets are usually transplanted by injection 

into the hepatic portal venous system of a recipient through a percutaneous catheter under radiological 

navigation (Rheinheimer et al. 2015). 

 

3.2.1 Transplantation sites for pancreatic islets  
 

 The most common and clinically applicable site for PIs transplantation is the liver      

at the present time. Because transplanted islets microembolize liver vessels, islets become 

highly vascularized what allows them to have good access to nutrients and to detect the blood 

glucose level directly (Shapiro et al. 2000). On the other hand, intrahepatic transplantation can 

be accompanied by various limitations that contribute to immediate or later-term graft loss 

and function impairment. Non-specific inflammation caused by direct contact of the donor 

islets with the blood so called immediate blood-mediated inflammatory reaction (IBMIR) 

(Naziruddin et al. 2014) together with islets hypoxia, drugs and toxins in the portal vein 

blood, lack of nutrients, insufficient vascularization and immune rejection (Korsgren et al. 

2008) contribute to massive immediate destruction of 50 – 70% islets (Delaune et al. 2017).  

A rapid decline of transplanted mass within two post-transplant weeks was reported in both 

animal (Jirák et al. 2009) and human studies (Saudek et al., 2010). Besides the loss of mass 

and function of the transplanted islets, the liver tissue can be also impaired by ischemia 
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(Sakata et al. 2014) and thrombosis (Kawahara et al. 2011). Another drawback of intrahepatic 

PIs transplantation is impossibility of graft biopsy in the case of complications.  

 Because of accompanying obstacles of intrahepatic PIs transplantation, recent research 

has been directed also to search for alternative transplantation sites. An ideal site should 

provide minimal direct contact of the blood with islets to avoid IBMIR reaction, it should be 

highly vascularized, have access to physiological insulin delivery and provide an easy 

accessibility for implantation, further examination or retrieval (Cantarelli & Piemonti 2011). 

Several transplant sites, such as the muscle, kidney capsule, omentum, peritoneal cavity, eye 

chamber, bone marrow and subcutaneous space are being under examination, mostly in 

animal research (Harlan et al. 2009). Wide interest has been paid to the embedding of islets 

into the immunoisolative alginate capsules without need of immunosuppression (Vaithilinqam 

2011; Lim & Sun 1980); however with limited vascularization (Chaikof 1999). One of the 

promising directions is incorporation of islets into the artificial capsules, scaffolds or 

micro/macro-devices as e.g., stainless-steel scaffolds (Pileggi et al. 2006), synthetic polymers 

(Kříž, Greg, et al. 2012; Gala-Lopez et al. 2016), a macrochamber with a semi-permeable 

immune barrier (Ludwig et al. 2012) or a pre-vascularized space created by a removable 

catheter (Pepper, Gala-Lopez, et al. 2015).  

  In the Institute for Clinical and Experimental Medicine (IKEM), scaffolds made from 

a polymeric silon mesh are being tested. Scaffolds can be implanted in the peritoneum or 

subcutaneously allowing an easy access and a possibility of removal. Subcutaneous 

implantation offers minimally invasive surgery and a possibility to monitor the islets easily.  

Visualization of transplanted PIs in the scaffolds by imaging methods is simple because PIs 

are not distributed and scattered in a large volume compared to transplantation into the liver. 

Moreover, optical imaging of PIs in the subcutaneously implanted scaffolds is possible due to 

a short optical path and low attenuation of the optical signal. Moreover, for vascularization 

enhancement, mesenchymal stem cells (MSCs) (Kříž, Greg, et al. 2012; Fabryova et al. 2014) 

that secrete multiple anti-inflammatory, immunomodulatory and trophic factors, including 

vascular endothelial growth factor (VEGF) may be added to the scaffolds (Boomsma & 

Geenen 2012).  
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3.3 Imaging of pancreatic islets  
 

In order to optimize transplantation procedure, the transplanted mass should be 

monitored. The most common clinical tests that evaluate therapeutic interventions and 

improve treatment outcome are measurement of blood glucose level, glycosylated hemoglobin 

Hb1Ac, C-peptide or insulin secretion; however these methods are only indirect and they 

cannot determine whether the graft failure is caused by loss of beta cell mass or its function; 

and they often detect dysfunction after significant loss of islets mass. Another possibility is 

the use of imaging methods. Imaging of tissues/cells on the cellular or molecular level        

(so-called molecular imaging) holds a high potential for improvement and development        

of cellular therapies.  

Visualization of transplanted islets could assess localization, survival and quantitative 

or functional changes of the transplanted mass over time, and thus directly elucidate the 

processes of islet engraftment and rejection. Monitoring of transplanted graft might help to 

assign a proper post-transplant treatment and prevent graft impairment. Moreover, imaging 

methods could also contribute to research of novel transplantation sites and approaches,       

e.g., optimization of a transplantation protocol or testing of different material intended for 

construction of the artificial scaffolds. 

Several non-invasive imaging tools have been proposed for experimental visualization 

of native or transplanted PIs recently: magnetic resonance imaging (MRI), optical imaging, 

positron emission tomography (PET), single photon emission computer tomography 

(SPECT), computer tomography (CT) and ultrasound. Each method holds its own advantages 

and disadvantages in manner of sensitivity, spatial resolution, time consumption, penetration 

depth, or cost (Tab. 3.1).   

Method 
Spatial 
resolution Sensitivity Depth Time Cost 

MRI 10 - 100 μm μM - mM No limit Min - hours $$$ 

CT 50 μm mM No limit Sec $$ 

US <50 μm mM mm Sec $ 

PET/SPECT 1 - 2 mm pM - nM No limit Min $$/$$$ 

Fluorescence 1 - 2 mm pM  < 1 cm Sec - min $ 

Bioluminescence mm < fM cm Min $$ 
 

Tab. 3.1. Overview of small animal imaging methods. Comparison of typical spatial resolution, 

imaging sensitivity, penetration depth, time consumption and costs of several imaging techniques used 

for small animals. $ < 100 K, $$ 100 - 300 K, $$$ > 300 K (Weissleder 2002). 
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3.3.1 Labeling and targeting procedures for pancreatic 

islets  
 

The size of one pancreatic islet is approximately 50 – 500 μm, which is below 

resolution of most of in vivo imaging methods. Signal of native PIs (cells in general) does not 

differ from the surrounding tissue under in vivo conditions. For PIs visualization, contrast 

should be created by cell labeling with contrast agents or genetic manipulation. In general, an 

ideal contrast agent for cellular labeling should 

 be chemically stable and easily synthesized 

 stay internalized in a cell or bounded on the cell surface  

 be non-toxic and with no adverse effect on islet function  

 be highly sensitive and specific 

 allow precise quantification.  

 The aim of PIs labeling is to incorporate a contrast probe into the cells or on the cell 

surface in the highest possible concentration without compromising islet viability and 

functionality. PIs can be labeled both in vitro and in vivo. In vivo labeling represents 

intravenous administration of a probe specific for target cells, e.g., a radiolabeled tracer for 

PET imaging (Sakata et al. 2013).  In vitro cell labeling can be classified as (i) non-specific 

that leads to incorporation of an agent in any cells; (ii) specific that targets only the desired 

cell type. Transplanted PIs can be also visualized by genetic targeting (reporter genes). 

Non-specific labeling 

 Non-specific labeling includes endocytosis, enhanced endocytosis (with transfection 

agents) and physical methods, such as electroporation.  

Endocytosis  

 Endocytosis represents an energy-requiring process (active transport) of internalization 

of ions and biomolecules by cell membrane invaginations. During labeling, a cell membrane 

engulfs a contrast agent from the culture medium within a certain period of time. Labeling 

efficiency depends on the agent size, shape, charge and surface chemistry, as well as cell type, 

incubation time, and amount of a contrast agent in the culture medium. Cell labeling by 

endocytosis is simple and effective for certain agents.  
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 Most of the experimental and clinical studies have implemented endocytosis as a cell 

labeling mechanism, e.g., using superparamagnetic iron oxide nanoparticles (SPION) for PIs 

(Jirák et al. 2004). In general, longer incubation times lead to incorporation of higher amount 

of a contrast agent in the deeper structure of an islet (Berkova et al. 2008). Labeling by 

endocytosis is not specific and all types of cells within an islet could be labeled. 

 There are various types of endocytosis, namely receptor-mediated endocytosis, 

macropinocytosis, phagocytosis and clathrin-/caveloae-independent endocytosis.  

 Receptor-mediated endocytosis is a mechanism of selective intracellular uptake         

of nanoscale materials via receptors. Optimal diameter of probes for receptor-mediated 

endocytosis is approximately 24 - 50 nm (Gao et al. 2005). Nanoparticles are coated with the 

plasma membrane proteins in the culture medium and then internalized via clathrin               

or caveolae. Firstly, a ligand (contrast agent) binds to a receptor, then the complex diffuse 

through the cell membrane and create clathrin-/ caveloae-coated pits that lately form the 

cytoplasmatic vesicles and endosomes. Clathrin is a membrane protein that can be found in 

almost all cell types, while caveolae is less frequent.   

 Macropinocytosis represents absorption of extracellular fluids containing the contrast 

agents smaller than 10 nm through invagination of the cell membrane that creates intracellular 

endosomes. For example, pancreatic islets have been labeled with lanthanide chelates using 

pinocytosis (Biancone et al. 2007). 

 Phagocytosis is an actin-dependent process of uptake of molecules larger than 0.5 μm 

in the phagocytic cells (macrophages, dendritic cells, neutrophils) (Oh & Park 2014). 

 Enhanced endocytosis. Agents with low labeling potential due to negative (or only 

slightly positive) surface charge need to be encapsulated or coated by positively charged 

compounds in order to enhance their binding efficiency to the negatively charged cell 

membrane. For this purpose, various positively charged coatings for the contrast agents have 

been implemented, e.g., poly Lactic-co-Glycolic Acid (PLGA) or phospholipid bilayer 

(Fröhlich 2012; Srinivas, Cruz, et al. 2010). Another approach is to use positively charged 

transfection agents (TAs) that bound preferably on the cell surface and enhance endocytosis. 

The most common TAs for PIs are polyamines (poly-L-lysine), lipid-based agents 

(lipofectamine) or polycationic peptides (protamine sulfate) (Arbab et al. 2004). However cell 

labeling with TAs is effective, the use of TAs ameliorate cell viability and its application in 

clinics is limited.  
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Physical methods 

 Electroporation is based on application of electric pulses to the cells that create the 

reversible pores in the cell membrane. After application of voltage, permeability and 

conductivity of plasmatic membrane is increased allowing higher incorporation of a contrast 

agent in the cells. Electroporation is a fast and effective labeling method; however viability of 

the labeled cells could be affected. Labeling by electroporation was referred to be more 

effective compared to endocytosis because the probes are internalized directly into cytoplasm 

and not to endosomes that can “quench” water exchange (Terreno et al. 2006). Labeling of PIs 

by electroporation has been already performed in several experimental studies using iron 

oxide particles (Tai et al. 2006; Foster et al. 2005).  

 Microporation is a modified electroporation technique that uses higher voltage 

compared to conventional electroporation due to different electrode geometry. The cells are 

placed in a small pipette tip that serves as an electroporation space supplemented with a gold-

coated electrode. An uniform electric field is created vertically with minimal heat production, 

metal ion dissolution or oxide production (Lim et al. 2010).  

 

Hypotonic swelling 

 Cell labeling can be performed also by using a hypotonic shock. Cells that are 

incubated in hypoosmotic medium swell and their cell membranes become leaky (Di Gregorio 

et al. 2013) allowing the inflow of water with a contrast agent directly into cytoplasm. 

Hypotonic swelling has been implemented for labeling of cells by lanthanide chelates          

(Di Gregorio et al. 2013; Ferrauto et al. 2014).  

 

Specific labeling  

 Specific labeling allows labeling of selected cells via attachment of a targeting vector, 

e.g., antibodies, peptides, amino acids, conjugated to the contrast agent to target molecules 

and receptors on the cell surface (Bulte et al. 2004). This labeling approach has high 

specificity and effectiveness (Shapiro et al. 2007); however it depends on expression (density) 

of a target molecule on the cell surface, stability of the ligand-molecule complex, and it can 

often lead to insufficient imaging signal (Kim et al. 2007). PIs were labeled with the magnetic 

beads pre-coated with beta cell specific antibodies (Dynabeads, Dynal Biotech UK) and 

visualized both in vitro and in vivo in an animal model by MRI (Koblas et al. 2005).  
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Specific targeting - reporter genes 

 The cells can be genetically modified to produce a protein or enzyme of interest, 

which can be directly or indirectly tracked by imaging methods. A reporter probe accumulates 

only in the cells in which the inserted gene (called reporter gene) is expressed. The most 

common products of reporter genes for cell tracking are fluorescent proteins (green or red 

fluorescent protein), radiolabeled peptides or bioluminescent enzymes (luciferase). PIs are 

usually transduced with lentiviral or adenoviral vector that carries a required gene under 

control of a promoter, e.g., beta cell specific insulin promoter (Fowler et al. 2005; Chen et al. 

2006). Luciferase expressing PIs are routinely used for visualization by bioluminescence. 

Although reporter genes have an important role in investigation of transplanted islets, the 

method is not applicable in clinics due to genetic manipulation.  

 

3.3.2 Magnetic resonance imaging   
 

 In this thesis, mostly MRI is implemented and therefore its basic principle will be 

briefly described in the following section. Nuclear magnetic resonance (NMR or MR) is an 

outstanding non-invasive analytical and imaging method with a broad range of applications 

ranging from chemistry and biology to advanced medical imaging and molecular imaging. 

Molecular imaging using MR technique possesses the advantages of non-invasiveness, high 

spatial resolution and a possibility of using different contrast mechanisms. The use of 
1
H MR 

contrast agents can also increase contrast and sensitivity; however absolute quantification, 

low specificity and lack of information about the functional status of transplanted cells 

represent a limitation of conventional 
1
H MR.  

 MR phenomenon can be explained by quantum theory and can be found in various 

excellent works (de Graaf 2007). Because the complexity of MR principle is beyond the aim 

of this thesis, only a brief and simplified description will be given to understand the basics        

of MR mostly in connection to the use of contrast agents and specialized techniques, which 

were implemented within this thesis (
19

F MRI, CEST).  

 MR principle is based on interaction of nuclear magnetic moments with external 

radiofrequency (RF) magnetic field. Only the isotopes with non-zero magnetic moment and 

angular momentum (non-zero spin) that contain odd number of protons and/or odd number         

of neutrons, e.g., 
1
H, 

13
C, 

19
F, 

31
P, 

23
Na, are capable of MR interaction.  
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 Hydrogen (proton 
1
H in nucleus) has the highest clinical applicability due to its high 

concentration in organic compounds and especially in water that is abundant in biological 

tissues. Moreover, hydrogen has high MR sensitivity due to its highest gyromagnetic moment. 

On the other hand, fluorine 
19

F has only negligible content in biological tissues, what allows 

specific detection of fluorine contrast agents. MR properties of chosen isotopes are listed      

in Tab. 3.2.  

 

Nuclei 
Magnetic moment 

[5*10-27 A.m2] 
Gyromagnetic ratio 

[MHz/T] 
Biological 

abundance 
1H hydrogen 2.8 42.6 88 M 
23Na sodium 2.2 11.3 80 mM 
31P phosphorus 1.1 17.3 75 mM 
19F fluorine 2.6 40.1 4 μM 

 

Tab. 3.2. MR isotopes. Magnetic moment, gyromagnetic ratio and natural abundance of the most 

common isotopes used for detection by MRI (de Graaf 2007). 

 

 After placing into a static magnetic field, nuclear magnetic moments start to precess at 

Larmor frequency, while the axis of precession is either parallel or antiparallel to the direction 

of B0; however the phase of the rotations is random. Larmor frequency is dependent on 

gyromagnetic ratio and  �⃗⃗� 𝟎 according to the formula 

     �⃗⃗⃗� =  𝛾 ×  �⃗⃗� 𝟎                  (3.1) 

where γ is gyromagnetic ratio, �⃗⃗� 0 – magnetic induction of the static external magnetic field 

and ω is Larmor frequency (for MR nuclei in the range of radio waves [MHz]). 

 The vector of equilibrium magnetization �⃗⃗⃗� 
𝟎 is parallel to �⃗⃗� 𝟎 (longitudinal 

magnetization) and it is not measurable because it is indistinguishable from �⃗⃗� 𝟎.                     

By application of additional magnetic field  �⃗⃗� 𝟏 with the Larmor frequency and perpendicular 

to �⃗⃗� 𝟎, the spins absorb energy causing the vector of magnetization out of  �⃗⃗� 𝟎 direction. When 

the magnetic field �⃗⃗� 𝟏 is switched off, the vector of macroscopic magnetization returns to 

equilibrium in a process called relaxation and the system releases energy into the surrounding 

environment. The return of magnetization into the equilibrium can be detected by a receiver 

coil, where the signal is induced as so-called free induction decay (FID).  
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3.3.2.1 Basics of MRI contrast mechanism 
 

 Relaxation contains two independent processes - longitudinal (T1) and transversal (T2) 

relaxation that are characterized by T1 and T2 (T2*) relaxation time, respectively.                    

T1 (or spin-lattice) longitudinal relaxation represents the recovery of the vector of 

magnetization in the z-axis Mz into the equilibrium (in direction of �⃗⃗� 𝟎) and it can be 

expressed by exponential decay equation with T1 as a first-order time constant:  

𝑀𝑍 = 𝑀0 . (1 − 𝑒−
𝑡

𝑇1)                          (3.2) 

T1 is a longitudinal relaxation time required for Mz to reach 63% of the equilibrium value M0. 

T1 relaxation represents energy exchange between excited spins and the surrounding (lattice) 

spins caused by dipolar interactions of spins with surrounding spins or interaction with 

paramagnetic compounds. Energy emission is stimulated by magnetic fields of another proton 

or electron on the same molecule of a nearby molecule that fluctuate near the Larmor 

frequency. Equilibrium is achieved again after a relatively long time (approximately 5 × T1).  

 Immediately after RF irradiation, the spins are phased coherently and after switching 

off �⃗⃗� 𝟏, the spins starts to dephase and the vector of magnetization in xy-plane is decreasing in 

a process called T2 (or spin-spin) transversal relaxation due to inhomogeneities of the local 

magnetic fields created by the magnetic moments. T2 (transversal) relaxation time represents 

the time when the vector of magnetization in the xy-plane Mxy reaches 37% of the equilibrium 

value. T2 relaxation follows an exponential decay according to: 

𝑀𝑥𝑦 = 𝑀0 . 𝑒
−

𝑡

𝑇2           (3.3) 

Free induction decay is not affected by T1 and T2 relaxation processes only; it strongly 

depends on inhomogeneities of the static magnetic field. An exponential decrease of Mxy 

during free induction decay is then described by a relaxation time T2*, which corresponds to 

both outer non-uniformity of the magnetic field and spin-spin interaction.  

Contrast in MR images is thus generated not only by different proton concentration, 

but mainly by different relaxation times of tissues due to different chemical composition. 

Relaxation times of biological tissues are usually in the range of hundreds ms (T1) or tens ms 

(T2) in dependence on magnetic field strength, temperature, chemical constitution, rotation 

and vibrational movements of molecules, their size etc. 
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3.3.2.2 Conventional 1H MR contrast agents  
 

By application of the RF pulses at specific time points according to the relaxation 

times, the compounds can be distinguished due to their different MR signal. The purpose          

of MR contrast agents (CA) is shortening of relaxation processes of water protons and 

increasing of the difference of MR signal intensities between the tissues. Relaxation rates R1 

or R2 are inverses of T1 and T2 relaxation times respectively, and they represent the “speed” of 

the relaxation process. The ability of CA to affect T1 or T2 is characterized by relaxivity, 

which is defined as a relaxation rate R1 or R2 normalized to the CA concentration. Relaxivity 

is usually expressed in mM
-1

.s
-1

. 

1

𝑇𝑖𝑂𝐵𝑆
= 

1

𝑇𝑖𝑆
+ 𝑟𝑖. [𝐶𝐴]  i=1, 2,                  (3.4) 

where 
1

𝑇𝑖𝑂𝐵𝑆
 is the observed relaxation time in the presence of CA and  

1

𝑇𝑖𝑆
 is the solvent 

(tissue) relaxation time in absence of CA. [CA] refers to the CA concentration. 

Conventional CAs for MRI can either influence the relaxation time (T1, T2) or 

modulate the local magnetic field inhomogeneities (T2*) of the surrounding spins. Depending 

on their predominant effect on relaxation, they can be classified as T1 (positive) or T2 

(negative) MR contrast agents according to the ratio r2/r1. In general, the paramagnetic ions 

facilitate both T1 and T2 relaxation with more dominant impact on T1 relaxation (r2/r1 is up    

to 2), and superparamagnetic agents influence mostly T2/T2* relaxation (r2/r1 can reach 50) 

(Vargas & Chen 2010).  

 

T1 MR contrast agents 

 T1 contrast agents enhance energy exchange between the spins and the surrounding 

and thus shorten T1 relaxation time (increase contrast on T1-weighted MR images).                

A paramagnetic ion (lanthanide, e.g., gadolinium Gd
3+

, or metals, e.g., manganese Mn
2+

) with 

unpaired electrons produces a strong magnetic moment capable of inducing magnetic 

relaxation in nearby nuclei (mostly protons in surrounding water and lipids) as a result          

of dipolar interactions. Lanthanide ions have to be bounded to a ligand (chelate),                    

e.g., tetraazacyclododecane-tetraacetic acid (DOTA) or diethylene triamine pentaacetic acid 

(DTPA), to avoid release of a toxic Gd
3+ 

ion. In such a structure, water molecules in 
1
H MR 

can interact with the magnetic moment of Gd
3+

 by direct interaction in the close proximity of 
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Gd
3+

 ion in a crevice of the ligand (inner sphere relaxation r1
IS

 – 0.25 nm) or indirectly by 

bounding on the second shell (second sphere relaxation r1
SS

 – 0.4 - 0.5 nm) or just diffusing 

by (outer sphere relaxation r1
OS

) (Merbach et al. 2001). The inner-sphere relaxivity has         

the main contribution to relaxivity of the paramagnetic molecules and it depends on CA 

concentration [CA], the number of water molecules coordinated to the paramagnetic centre q, 

the mean residence lifetime τM of the bound water protons and the relaxation time T1M of the 

coordinated protons (Solomon 1955) (Fig. 3.4 A). The relaxivity r1
IS

 is given as 

𝑟1
𝐼𝑆 =  

𝑞∗[𝐶𝐴]

55.5 ∗ (𝑇1𝑀+ 𝜏𝑀)
                             (3.5) 

 At the magnetic field strengths typical for the clinical MRI scanners (0.5 – 1.5 T), T1M 

is dominated by the molecular re-orientation (rotational correlation) time τR. The slower the 

re-orientation (thumbles) of molecule is, the faster the relaxation rate. 

 

T1 contrast agents for PI labeling 

Cells labeled with paramagnetic CAs are visible as hyperintense spots on T1-weighted 

MR images (positive contrast) without distortion of the magnetic field. The main limitation of 

T1 CA is insufficient sensitivity, which is much lower compared to superparamagnetic iron 

oxides nanoparticles. Moreover, lanthanide chelates are small molecules (nm) that easily 

diffuse out of cells after labeling by endocytotis, which may cause loss of signal. The only 

study demonstrating in vivo visualization of PIs labeled with GdHPDO3A was published in 

2007 (Biancone et al. 2007) (Fig. 3.4 C). Although the labeled islets were visualized as the 

hyperintense spots under the kidney capsule and in the liver of mice, sensitivity and 

persistence of visualization was low. For improvement of imaging sensitivity (relaxivity), 

more Gd
3+ 

ions can be incorporated in one molecule, such as in cyclodextrines, that were 

implemented for PIs labeling and in vitro visualization (Kotková et al. 2010) (Fig. 3.4 B). 

Several studies showed MRI visualization of PIs encapsulated with Gd chelates (Arifin et al. 

2013). 

There are also agents that generate contrast due to a response to changes in 

physiologic environment or activity: accessibility to water (relaxivity), proton exchange rate, 

pH or temperature (Moats et al. 1997; Nivorozhkin et al. 2001). Responsive agents have been 

used also for indirect detection of beta cell mass. Because zinc (Zn) is co-released with insulin 

upon glucose stimulation, it can serve as a marker of beta cells or the probes can be targeted 

to zinc transporters. For example, a Zn
2+

-activated gadolinium based agent (chelate with Gd
3+

 



 

27 
 

and activable Zn
2+

) can change its coordination geometry (relaxivity) upon Zn
2+ 

binding and 

thus the probe is trackable by MRI (Major et al. 2007). Similarly, manganese ions Mn
2+ 

enter 

the beta cells through voltage-gated calcium channels upon glucose stimulation so the 

presence of Mn
2+

 measured by manganese enhanced MRI can indirectly reflect beta cell 

function (Antkowiak et al. 2012). 

 

Fig. 3.4. T1 MR contrast agents. A schematic illustration of the relaxometric mechanism for T1 MR 

contrast agents (A). In vitro MRI visualization of PIs labeled with Gd-cyclodextrines (B) (Kotková et 

al. 2010). T1-weighted images of PIs labeled with GdHPDO3A after transplantation into the liver (C); 

the image adapted from (Biancone et al. 2007).  

 

Other approaches using T1 CAs 

Paramagnetic compounds are also useful for examination of neovascularization using 

dynamic contrast enhanced (DCE) MR method. This technique is capable to assess perfusion 

and vessel permeability related to vascularization after intravascular administration               

of a T1 contrast agent. Hathout et al. showed that the MR signal enhancement correlates with 

the number of vessels around transplanted islets (Hathout et al. 2009).  

 

T2/T2* MR contrast agents 

T2/T2* CAs cause shortening of T2/T2* relaxation time and thus decreasing of MR 

signal intensity on T2/T2*-weighted MR images. Most of the T2/ T2* contrast agents contain   

a superparamagnetic particle that induces a large magnetic moment in a static magnetic field, 

which disturbs the local magnetic fields of protons. Therefore, the MR signal is decreased and 

the labeled cells are visible as hypointense spots on T2/T2*-weighted images.  
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T2/T2* CAs have only minor application in clinical practice, although they are broadly 

used in the experiments, including cell labeling. Typically used T2 contrast agents are 

superparamagnetic iron oxide nanoparticles (SPIONs), which consist of crystalline magnetic 

iron oxide core (composite of magnetite (Fe3O4) and maghemite (gamaFe2O3); size between  

4 and 10 nm) and a hydrophilic surface coating that prevents agglomeration, reduces toxicity 

and alters pharmacokinetics and biodistribution (Tsourkas & Josephson 2010). The widely 

used coating for SPIONS is polysaccharide dextran/carboxydextran, which is non-toxic, 

electrically neutral and metabolic inert. There are also other tested coating materials               

as poly-L-lysine, polyvinylpyrrolidone, chitosan, heparin, silica etc. (Pongrac et al. 2016). 

SPIONs have been extensively studied for tracking of various cell types including PIs. 

The most common used SPIONs for labeling of pancreatic islets are ferucarbotran, 

carboxydextran coated ferumoxide particles - Resovist® (size ≈ 60 nm) and dextran-coated 

ferumoxide particles – Feridex®/Endorem® (size ≈ 80-180 nm). 

The first proof of tracking of the SPIO-labeled (Resovist®) islets in vivo was 

performed in 2004 in an animal model of intrahepatic islet transplantation in the Institute for 

Clinical and Experimental Medicine (IKEM) in Prague (Jirák et al. 2004) (Fig. 3.5 A).          

The grafts were tracked for 22 weeks after transplantation and the blood glucose level of 

diabetic rats was normalized. MRI tracking of SPION-labeled PIs revealed also changes                     

of post-transplant PIs mass in syngeneic, allogeneic and xenogeneic animal models (Jirák et 

al. 2009). All transplant groups showed a dramatic signal loss within one week after 

transplantation, while in the second week the groups significantly differed. Moreover, using 

SPIONs for islet labeling, the islet graft impairment can be detected by MRI in advance         

of functional failure (Kříž, Jirák, et al. 2012). Importantly, several studies confirmed that 

SPIONs labeling did not affect islet viability and functionality (Berkova et al. 2008).           

The feasibility and safety of visualization of SPION-labeled transplanted islets was also 

confirmed in the clinical trials with T1DM patients (Saudek et al. 2010; Toso et al. 2008) 

(Fig. 3.5 B).  In 2010, a clinical study with 8 T1DM patients was performed in IKEM, from 

which 5 patients reached insulin independence. Decrease of numbers and area of the 

hypointense spots (early and late graft loss) on the T2-weighted MR images correlated with 

the results obtained in animal experiments (Jirák et al. 2009). 
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Fig. 3.5. T2 contrast agents. Example of MRI visualization of SPION-labeled pancreatic islets               

in vitro (A) (Jirák et al. 2004) and in vivo after intrahepatic transplantation in a patient (B) (Saudek et 

al. 2010) and a rat  (C, D). Application of a T1 contrast agent improves visualization of transplanted 

islets (D) (Herynek et al. 2011). 

Sensitivity of visualization of islets labeled with T2/T2* contrast agents is very high; 

although absolute quantification of the labeled islets is limited due to a disruption of local 

magnetic field beyond the actual size of an islet – so called “blooming artefact” and only 

relative amounts can be estimated. Moreover, it has been shown that SPIONs are taken up      

by macrophages, which may then contribute to false positive results after cell death (Berkova 

et al. 2008). This issue represents a limitation in proper visualization of intracellular imaging 

labels (Terrovitis et al. 2008). Improvement of sensitivity of SPION-labeled islets and 

elimination of imaging artefacts can be accomplished by double contrast approach using          

a T1 contrast agent for liver signal intensity enhancement, while the transplanted islets are 

labeled with a T2/T2* CA (Herynek et al. 2011). Besides above-mentioned SPIONs, novel 

non-commercial agents are tested as magnetoliposomes-based CAs (Ribeiro et al. 2018)       

or conjugates of iron oxides and exendin-4 supplemented with a fluorescent dye Cy5.5 (Wang 

et al. 2014). 
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3.3.2.3 Alternative MR visualization approaches  
 

 There are many novel MR contrast agents based on various principles (e.g., chemical 

exchange, hyperpolarization etc.) or different isotopes than conventional 
1
H (e.g., 

19
F). Within 

this thesis, MR probes based on proton chemical exchange saturation transfer (CEST)         

and probes containing 
19

F isotopes were tested.  

 

3.3.2.3.1 Chemical Exchange Saturation Transfer (CEST)   
 

CEST agents represent a group of paramagnetic agents that can generate contrast due 

to proton exchange after saturation at a specific frequency. CEST has been recently reported 

also as a possible contrast mechanism for cellular imaging (Ferrauto et al. 2013) and therefore 

we investigated this approach for labeling and visualization of PIs.  

 CEST effect is based on frequency selective saturation of labile protons and 

subsequent transfer of the saturation to the water pool due to chemical exchange. There could 

be various forms of exchanges as proton exchange, water-ligand (molecule) exchange, proton 

and molecule exchange, compartment exchange and molecule-mediated compartment 

exchange (Liu et al. 2013). The CEST agents can be classified according their exchange rate 

(chemical shift) as diamagnetic (DIACEST) with the small frequency offset from water       

(up to 5 ppm) and paramagnetic (PARACEST) with the larger chemical shift (tens of ppm). 

There are also other groups as hyperpolarized (HYPERCEST) or liposomal CEST agents 

(LIPOCEST). 

 A CEST agent contains labile (exchangeable) protons that are in a constant chemical 

exchange with the larger water pool and resonate at different frequency from water, which 

allows their selective saturation. Ideally, after application of a saturation RF pulse,               

the Boltzman distribution of spins is altered and the number of spins aligned with and against 

the external static magnetic field is equal, and therefore no vector of magnetization is created. 

Due to chemical exchange, the saturated protons physically move to water pool causing          

a reduction of magnetization in water. Because the water signal intensity is decreased, CEST 

contrast is negative. Since the creation of CEST contrast depends on irradiation at the proper 

frequency, it can be switched on/off and multiple agents with the properly shifted frequency 

offsets can be visualized allowing so called multi-color MRI (Liu et al. 2012).  A scheme of 

CEST principle is shown in Fig. 3.6. 
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Fig. 3.6. A simplified scheme of the principle of CEST. Spin distribution in a system before and 

after saturation by a RF pulse (A) with corresponding MR signal (B). As a result, a difference image 

can be created by subtraction of the images acquired before (Saturation OFF) and after application                    

of a saturation pulse (Saturation ON) (C). The phantom contains tubes with various concentrations           

of a CEST contrast agent (CA) and water (C). The numbers represent concentration of a CEST agent 

in mM. 

 

 CEST effect can be characterized by two-pool exchange model and described by the 

modified Bloch (Bloch-McConnel) equations considering saturation and chemical exchange 

(no back exchange of saturated protons) (Liu et al. 2012; Zhou et al. 2004). In this model, two 

non-equivalent spin pools (a larger water pool and a smaller solute pool) are in a constant 

chemical exchange characterized by an exchange rate constant kEX [Hz], which is a composite 

of kSW [Hz] (exchange rate from solute to water) and kWS [Hz] (exchange rate from water to 

solute). Since the water pool is much larger (110M) compared to the solute pool (μM ─ mM), 

the rate constant can be expressed as kEX = kSW + kWS ≈ kSW. The exchange rates can be then 
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determined from the mass balance kSW / kWS = M0W / M0S, where M0W and M0S are equilibrium 

magnetizations of water and the CEST agent, respectively (Liu et al. 2013). The CEST effect 

is proportional to the fractional concentration of the solute protons XS, the saturation 

efficiency α, the exchange rate kSW and relaxation rate R1 (van Zijl & Yadav 2011). The two-

pool model can provides a solution in the form of a proton transfer ratio (PTR): 

𝑃𝑇𝑅 = 𝑋𝑠. 𝛼. 𝑘𝑆𝑊 . 𝑇1 (1 − 𝑒
−

𝑡𝑠𝑎𝑡

𝑇1𝑊)    (3.6)  

 The exchange rate constant kEX depends on the frequency offset of the agent (Δω). 

CEST effect is only visible if the exchange is slow on the timescale of NMR measurement so 

kex << Δω. This slow or intermediate exchange leads to separation of spectral lines necessary 

for efficient detection of decrease in the water signal and indirect observation of the CEST 

agent, which is not detectable by the standard MR techniques due to low concentration. 

Because the chemical exchange “compete” with relaxation, its rate should be also faster than 

T1 relaxation to detect sufficient signal, so R1<<kex<< Δω.   

 Another type of saturation transfer (except CEST) is magnetization transfer (MT) 

effect that occurs between bulk water and solid or semi-solid substances e.g., cell membranes 

or macromolecules through dipolar cross-relaxation (van Zijl & Yadav 2011)                      

and/or combination of cross-relaxation and chemical exchange (Kingsley & Monahan 2000; 

Liu et al. 2013). In contrast to CEST, the lineshapes of the MT pool are symmetric to water 

and can be eliminated by asymmetric analysis by calculation of asymmetric magnetic transfer 

ration (MTRASYM). In biological tissues, both MT and CEST effects occur often at the same 

time and should be differentiated for proper quantification.  

 

Quantification of CEST effect    

 For identification of the CEST peaks of an agent, water signal intensity is measured   

at several frequency offsets after saturation with a saturation pulse. A plot of the saturated 

water signal intensity normalized to the signal without saturation is called the Z-spectrum 

(Grad & Bryant 1990) and it is specific for each CEST agent. Usually, the Z-spectra are 

acquired using a variable sampling steps either within the whole spectrum (necessary for 

DIACEST agents) or only around the known irradiation offsets (satisfactory for 

PARACEST). Then, the measured data points are interpolated (e.g., using the smoothing-

splines) or fitted by the modified Bloch equations for chemical exchange between two pools. 

The CEST effect for each offset is quantified as a percentage of signal intensity decrease in 

comparison to signal intensity measured without saturation (S0). PTR is also a very 
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straightforward quantification metric; however improper in the presence of MT and direct 

saturation (DS) of water (Liu et al. 2013). In the simplest way, the CEST effect can be 

calculated as a percentage of water signal intensity decrease: 

𝐶𝐸𝑆𝑇 =  
𝑆𝑆𝐴𝑇(𝛥𝜔)−𝑆𝑆𝐴𝑇(−𝛥𝜔)

𝑆𝑆𝐴𝑇(−𝛥𝜔)
∗ 100%   (3.7) 

To separate CEST from MT and DS, CEST can be calculated as MTRASYM, which is defined 

as:  

𝑀𝑇𝑅𝐴𝑆𝑌𝑀 = 
𝑆𝑆𝐴𝑇(𝛥𝜔)−𝑆𝑆𝐴𝑇(−𝛥𝜔)

𝑆0
∗ 100%                                 (3.8) 

or 

    𝑀𝑇𝑅𝐴𝑆𝑌𝑀 = 
𝑆𝑆𝐴𝑇(𝛥𝜔)

𝑆𝑆𝐴𝑇(−𝛥𝜔)
∗ 100%,                (3.9) 

where SSAT(Δω) and SSAT(–Δω) are water signal intensity after saturation at the frequency 

offsets Δω and –Δω, respectively and S0 is water signal intensity without saturation.  

 CEST effect can be calculated from the Z-spectra, or from the MR images within           

a region or interest (ROI), or on the pixel-wise basis (e.g., MTRASYM maps). For visualization           

of CEST in an image, a difference image is usually reconstructed by subtraction of the image 

acquired by saturation at Δω and –Δω (or average of several offsets around Δω/-Δω).  

 

Practical consideration of CEST approach 

 Higher magnetic field strengths increase sensitivity of CEST signal. Usually long 

saturation periods using a rectangular pulse (duration > 2-3 s) are implemented; however 

specific absorption rate (SAR) should be taken into account and differently shaped pulses are 

preferred in some applications (e.g., Gaussian, Fermi) (Dixon et al. 2010). To suppress the 

SAR effect, multiple shorter pulses (range of ms) so called pulsed-CEST are often 

implemented; however their optimization is more complicated compared to rectangular pulses 

due to wiggles generation in the Z-spectrum (Liu et al. 2013). Higher pulse power generates 

higher CEST signal; although the Z-spectrum gets broader what complicates quantification. 

Usually, pulses with power in the range of several μT are used. 

 CEST effect is also very sensitive to �⃗⃗� 𝟎 and �⃗⃗� 𝟏 inhomogeneites that should be 

minimized for a proper quantification. The most common and useful method for �⃗⃗� 𝟎 

correction in a CEST experiment is acquisition of a fine-resolved Z-spectrum around the 

water peak using a weak pre-saturation pulse is so called WAter Saturation Shift Referencing 

(WASSR) (Kim et al. 2009). By using the WASSR approach, a �⃗⃗� 𝟎 map is generated by 

finding the shift of the water peak from zero in each voxel and then the inhomogeneity is 
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corrected by moving it to zero. Other B0 correction methods include the gradient-echo based 

maps (Sun et al. 2007) or a more recent fitting of the spectra by a Lorentz lineshape (Liu et al. 

2010).  

 

Applications of CEST  

 Conventional paramagnetic (Gd
3+

) contrast agents do not serve as CEST agents due to 

fast chemical exchange; however lanthanide chelates with other central atoms as                 

e.g., Eu
3+

/Yb
3+

-DO3A (HPDO3A) can provide CEST effect (Krchová et al. 2013; Aime et al. 

2005). CEST approach can be used for estimation of metabolite concentration (Schleich et al. 

2016; Kogan et al. 2014; Wang et al. 2016; Haris et al. 2011; Cai et al. 2012) or pH in 

biological tissues (Delli Castelli et al. 2014). 

CEST was also proposed as a contrast mechanism for cells labeled with exogenous 

agents (Wang, 2009). The first report of in vitro visualization of the cells labeled with the 

CEST agents (Eu
3+

- and Tb
3+

-DOTAM-Gly) was published in 2005 (Aime et al. 2005); 

however further translation was hampered by insufficient biocompatibility of the agents and 

large chemical shift resulting in high irradiation field strength. In 2013, the same group 

reported an in vivo differentiation of two different cell populations (macrophages and 

melanoma cells) labeled with Eu- and Yb-HPDO3A using the CEST approach (Ferrauto et al. 

2013). Ferrauto at el. also utilized CEST effect for labeling of the red blood cells by 

lanthanide liposomes that act as the shift reagents with the aim to assess the blood volume in  

a tumor upon release of liposomes manifested by the change of the CEST contrast (Ferrauto et 

al. 2014). In 2015, simultaneous visualization of neural stem cells and endothelial cells in       

a mouse model of stroke was also reported (Nicholls et al. 2015). Although the study reported 

a nice proof-of-principle and the experiments were supported by a strong simulation 

background, the authors encountered also with low sensitivity of the method. The difference 

in CEST signal between labeled and unlabeled cells was only 3.27% under in vivo condition. 

 There was no study focused on visualization of pancreatic islets by CEST approach, 

therefore in this thesis, we examined two PARACEST agents (Eu- and Yb-DO3A chelates)  

as alternative contrast agents for labeling of PIs.  
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3.3.2.3.2 Fluorine 19F MRI  
 

 The main advantage of using 
19

F isotopes in comparison to 
1
H is their negligible 

content in the tissues allowing high specificity of visualization. 
19

F resonates at frequency 

close to 
1
H (94% of 

1
H); therefore same MR hardware with minor modifications (special RF 

coils) can be used as for 
1
H MRI. Usually, the RF coils are constructed as dual-tuned for both 

1
H/

19
F and 

19
F MR signal is visualized as “hot spot” signal overlaid on 

1
H MR anatomical 

reference (Fig. 3.7).  

 The number of 
19

F nuclei is proportional to their 
19

F MR signal allowing absolute 

quantification of 
19

F atoms, which enables estimation of the number of labeled cells.             

The drawback of 
19

F MR cell imaging is low sensitivity due to low amount of 
19

F per                

a molecule of  synthetized agents. Usually, concentration of 
19

F atoms in a contrast agent is in 

milimolar range (water has 100M), therefore the agents containing high amount of 
19

F atoms 

are necessary for sufficient visualization by 
19

F MR. Another important factor for their 

visualization is chemical equivalency of 
19

F atoms in the molecule leading to a good resolved 

single spectral peak. In case of multiple peaks, chemical shift artefacts are presented in the 

MR images.  

 
19

F MR probes has been already implemented in various medical applications ranging 

from drug development (Wolf et al. 2000), assessment of lung ventilation (Wolf 2006) to cell 

labeling (Ahrens & Bulte 2013). The mostly used 
19

F agents for MRI are perfluorocarbons 

(PFCs) e.g., perfluorodecalin (C10F18), perfluorohexane (C5F14), perfluorooctane (C8F18), 

perfluoro-15-crown-ether (PFCE) (C10F20O5) or perfluorobromide (PFOB) (C8BrF17).          

The majority of labels are emulsions, which need to be coated with a suitable surfactant as 

lipids, phospholipids and poloxamers (Srinivas et al. 2012). One of the examples are the 

freezable non-toxic PFCs encapsulated into a PLGA polymer, which allow incorporation of 

various compounds on the surface or inside such as dyes allowing the use of other imaging 

modality (Srinivas, Cruz, et al. 2010). Size (200 - 2000 nm), coating (antibody), content 

(imaging agent, fluorescent dye, drug) and surface charge (-40 to 30 mV) of these agents can 

be customized to reach specific requirements (Srinivas et al., 2010). These nanoparticles were 

used for visualization of PIs in this thesis. 
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Fig. 3.7. Multimodal imaging of islets labeled with PLGA-based nanoparticles containing PFCE. 

Fluorescence image (FLI), 
1
H MR anatomical image, 

19
F MR image and a merged 

1
H/

19
F MR image  

of the phantoms with 50, 100 and 300 islets (from left to right) labeled with 12.5 mg/mL                          

of nanoparticles. 

 

Practical consideration using 19F MRI  

 To increase detection sensitivity of 
19

F MR, novel acquisition or post-processing 

approaches are tested. Liang et al. implemented acquisition of sparse sampled data 

(compressed sensing) for acquisition time decrease and increase of SNR (Liang et al. 2017). 

The dual-tuned coils (
1
H/

19
F) are implemented for co-registration of 

19
F signal on anatomical 

1
H reference (e.g., transplanted labeled cells in the organ/body). Most of the studies dealing 

with 
19

F MR were performed using surface coils due to their easier construction and higher 

SNR, although non-uniform excitation and loss of signal in dependence on distance from             

a coil complicate quantification (Ruiz-Cabello et al. 2010). 

The main advantage of 
19

F MR over other MR techniques is absolute quantification, 

which can be performed from both 
19

F MR images and spectra, if a reference tube with           

a known number of 
19

F atoms is present (Srinivas et al. 2007). Fluorine content in labeled 

islets (FPI) can be calculated from the 
19

F MR images by comparison of the signal of labeled 

islets SPI to the signal of a reference SREF1 (containing a known number of 
19

F atoms FREF1 in 

the voxel). The agent uptake can be calculated according to the formula: 

𝐹𝑃𝐼 =  
𝑆𝑃𝐼

𝑆𝑅𝐸𝐹1∗𝑁
∗ 𝐹𝑅𝐸𝐹1,     (3.10) 

where N represents number of PIs in the sample. 
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The number of engrafted islets NTxPI can be quantified from in vivo 
19

F MR images by 

comparison of the signal of transplanted islets STxPI to the signal of the reference SREF2 and by 

taking into account amount of 
19

F atoms in the reference FREF2 and the agent uptake per one 

islet FPI estimated in the in vitro study. The amount of islets can be then calculated as 

𝑁𝑇𝑥𝑃𝐼 =

𝑆𝑇𝑥𝑃𝐼
𝑆𝑅𝐸𝐹2

∗𝐹𝑅𝐸𝐹2

𝐹𝑃𝐼
 .       (3.11) 

 Intracellular 
19

F content (after non-specific labeling by endocytosis) usually ranges 

between 10
11 

- 10
13

 
19

F atoms/cell (Srinivas et al. 2012; Srinivas et al. 2007) and the minimum 

amount of cells for sufficient detection was reported to be 2000 cells/voxel at 7 T in vitro 

(Helfer et al. 2010) and 7500 cells/voxel at 11.7 T in vivo (Srinivas et al. 2007). 

  

Application of 19F MR for cell labeling 

 Several studies reported short-term in vivo tracking (days or weeks) of labeled cells by 

19
F MRI in various animal models (Srinivas et al. 2007; Bonetto et al. 2012; Gaudet et al. 

2015; Ahrens & Bulte 2013). For instance, a group of Böhm-Sturm implemented                    

a multimodality platform to study transplanted progenitor cells in the stroke-damaged brain 

for 4 weeks (Böhm-Sturm et al. 2014). 
19

F labeled dendritic cells were also tested for 

immunotherapy of colorectal cancer in humans and other clinical trials are ongoing (Ahrens et 

al. 2014).  

 Despite a broad application of 
19

F labels for cellular labeling, there is only one in vivo 

study focused on tracking of PIs labeled with multimodal PFOB (for 
19

F MRI, CT and 

ultrasound) (Brad P; Barnett et al. 2011). Detection sensitivity in this study is relatively low, 

2000 islets were visualized ex vivo and as much as 10 000 islets were visualized under the 

kidney capsule of rabbits. Moreover, transplanted islets were measured only at one time point 

post transplantation without long-term information about the transplanted graft. Due to lack  

of evidence about labeled PIs by specific 
19

F-containing probes, we used PFCE nanoparticles 

coated with PLGA and containing a fluorescent dye indocyanine green (ICG) for multimodal 

tracking of transplanted PIs in an animal model. 
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3.3.3 Optical imaging 
 

 Optical imaging (OI) is a non-invasive imaging modality capable of detection of light 

originating from the living subjects. The subtle photon emission from either the exogenous 

optical probes or from the genetically-modified cells with expression of the reporter genes for 

luminescent enzymes can be detected by a highly sensitive charge-coupled device (CCD).         

OI is advantageous over other imaging methods due to outstanding sensitivity below 10
-12

 M, 

short acquisition times (seconds to minutes), lower cost, easy operation and the possibility          

of measurements of multiple animals in one experiment. On the other hand, the major 

obstacle of OI is limited light penetration as a consequence of attenuation, reflection and 

scattering of optical signal in biological tissues.  

 Absorption of light is mainly affected by the presence of hemoglobin, which absorbs 

strongly in the blue-green part of spectrum of visible light (VIS) (Rice et al. 2001). 

Attenuation of light is prominent in the visible range of spectrum (400 – 650 nm), while in the 

near-infrared (NIR) spectrum (650 – 900 nm) is lower and therefore NIR is preferable for         

in vivo applications. Above 900 nm, water absorption in the tissues takes place and it prevents 

deep penetration of the light. Scattering originates mostly due to changes in relative refractive 

index at organs, cell membranes and organelles leading to the effective length for scattering 

about 0.05 cm in biological tissues. The photons can be detected from maximum depth             

of 1  or 2 cm; the optical signal is attenuated by approximately 100× for wavelengths at ≈ 650 

nm at the depth of 1 cm (Rice et al. 2001).  

 Propagation of photons from the light source to the CCD aperture in a homogenous 

tissue can be described by a diffusion model (Ishimaru 1978). Under the assumption that the 

scattering is dominant over absorption in most tissues (scattering coefficient µS >> absorption 

coefficient µA) (Ntziachristos 2010), the photon fluence Φ (W/cm
2
) can be described as 

exponential decay dependent on the distance from the source (r), power of source (P), 

diffusion coefficient (D) and the effective attenuation coefficient μeff  [cm
-1

] (reflects both  

absorption and scattering) (Rice et al. 2001). In the majority of the small animal optical 

imaging systems, the radiance L [W/cm
2
/sr] along a unit vector s is measured                           

as a combination of the photon fluence (number of photons) and the flux (the rate                   

of propagating photons): 

𝐿(𝑟, 𝑠) =  
1

4𝜋[𝜙(𝑟)+3𝑗(𝑟).𝑠]
                        (3.12) 

where j(r) is the photon flux (Farrell et al. 1992). Using this model, the radiance on the animal 
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surface can be calculated and the resulted image is diffuse one (Fig. 3.8).  

 Light emission can be generated in the living subjects by two main processes: 

fluorescence (FLI) and bioluminescence (BLI). Photon emission by fluorophores is dependent 

on excitation light in contrast to bioluminescence that occurs upon a chemical reaction 

without the need for external light irradiation. In most of the optical systems for small animal 

imaging, radiance is estimated from a photon counts on a CCD chip within certain time 

[seconds] originating from a pixel [cm
2
] under a spatial angle θ [sr]; therefore the units          

are photons/seconds/cm
2
/sr. In case of fluorescence, the signal is normalized to the excitation 

light (because of inhomogeneous excitation) and the final signal can be expressed as radiance 

efficiency in units ([photons/seconds/cm
2
/sr]/[µW.cm

2
]. 

 

Fig. 3.8. Small animal optical imaging. The optical signal originates from a light source:                    

(i) a fluorophore produces light after excitation, (ii) light is created in a biochemical bioluminescence 

reaction (A). The resulted image on the animal surface is diffuse because of scattering and absorption 

of light in the tissue (A). Radiance is estimated from a photon counts on a CCD chip within certain 

time originating from a pixel (blue color) under a spatial angle θ (B).  

 

Bioluminescence  

 Bioluminescence represents a self-emission of photons in the enzymatic reaction, 

which involves a light-emitting molecule (generally called luciferin) and an enzyme (called 

luciferase). Luciferins and luciferases may differ in different species. In eukaryotic cells,        

a gene for luciferase isolated for example from a firefly beetle (Photinus pyralis), coral 

(Renilla reniformis), yelly fish (Aequorea victoria) or bacteria (Photorhabdus luminescens) is 

incorporated in their DNA. The most common luciferase for biological applications is firefly 

luciferase that catalyzes a biochemical reaction of oxygenation of D-luciferin with one of the 
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products being light with broad spectrum (peak at approximately 560 nm). The reaction is 

dependent on the presence of oxygen and adenosine triphosphate (ATP), therefore only viable 

cells can be detected (Fig. 3.9). Renilla and Gaussia luciferases catalyze reactions with 

different substrate – coelentrazine, which produces blue light (peak at 480 nm) (Luker & 

Luker 2008). Bioluminescence exhibits high signal-to-noise ratios due to negligible 

background and acquisition times ranging from seconds to minutes. Bioluminescence has          

an important role in pre-clinical developments; although it is not suitable for human 

application due to genetic manipulation. 

 

Fig. 3.9. Bioluminescence in experimental transplantation research. In a bioluminescence reaction, 

conversion of D-luciferin into oxyluciferin is catalyzed by luciferase (e.g. Firefly Luciferase).             

The created light is measured by a CCD chip (A). When the cells isolated from a bioluminescent rat 

(LUC+) are transplanted into a non-bioluminescent animal (LUC-), only transplanted cells produce 

light after D-luciferin administration (B). 
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Fluorescence  

 For generation of fluorescence, an external light with a specific wavelength (λEX) is 

needed to excite the electrons of a fluorophore to the higher energy level. Within a short time 

period, the electrons come back to the ground energy level and photons are released with        

a longer wavelength (λEM > λEX). The difference between the peak of excitation and emission 

light (Stokes shift) is around tens of nanometers. Fluorescence efficiency is defined by the 

fluorescence quantum yield Q that represents the ratio of photons absorbed (NABS) to photons 

emitted (NEM): 

𝑄 = 
𝑁𝐸𝑀

𝑁𝐴𝐵𝑆
       (3.13) 

 The source of fluorescence in mammalian cells can be natural endogenous molecules 

(e.g., hemoglobin, flavins etc.), fluorescent proteins created by the genetically manipulated 

genes or exogenously administered fluorescent probes. Fluorescent proteins created upon 

expression of the reporter genes as e.g,. green (GFP) or red (RFP) fluorescent protein (DsRed) 

are widely used in molecular biology to target and visualize some specific cell structures.         

Up to now, a variety of fluorescent dyes have been synthetized including nanosized crystals 

called quantum dots, which excitation/emission wavelengths can be adjusted by their size 

(Mutavdžic et al. 2011). For in vivo applications, the NIR probes as e.g., cyanines (Cy5.5 or 

ICG) are preferred due to low absorption in the biological tissues. 

 Because of autofluorescence of natural fluorophores as nicotinamide, flavins, collagen 

and elastin (Bornhop et al. 2001) in the biological tissues, localization of the original light 

source can be hampered, what should be taken into account in an experiment. In some cases, 

tissue autofluorescence can be subtracted by conducting an additional experiment                        

at the blue-shifted wavelengths or for the certain application; it can be suppressed by using      

a non-fluorescent food for animals.    

 

Practical considerations and quantification of optical signal 

  

 The detected optical signal is influenced by measurement parameters: exposure time, 

lens aperture and binning. Optical signal is directly proportional to exposure time. Lens 

aperture controls the amount of the received light - by choosing a small aperture, less light is 

gathered but with higher image resolution. Fluorescence images are acquired with smaller 

aperture, while bioluminescence images with the open aperture. Binning refers to the         
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post-processing grouping of the pixels into a larger one (2 × 2, 4 × 4), what results in higher 

sensitivity and SNR and lower image resolution. To minimize influence of attenuation and 

scattering on the animal’s surface, the fur should be removed. The animals with white fur 

(lower absorption by pigments) or naked ones are preferable for optical imaging. 

 

Application of optical imaging for PIs tracking 

 For bioluminescence imaging of the transplanted PIs, isolated PIs are usually 

transduced in vitro by a virus vector (adenovirus, lentivirus) that expresses a luciferase gene 

under   a control of a promoter as e.g., cytomegalovirus (Lu et al. 2004). Beta cell mass has 

been non-invasively visualized using a mouse insulin I promoter (MIP) (Park et al. 2005).        

In 2004, Lu at al. monitored virus-transduced rodent and human PIs transplanted under           

a kidney capsule in mice for 140 days (Lu et al. 2004). Localization of bioluminescent PIs 

transplanted in the liver and under the kidney capsule (Fowler et al. 2005) and the changes in 

PIs mass upon different diet in mice have been already reported (Chen et al. 2006). 

Bioluminescence has also helped to predict graft rejection in mice (Chen & Kaufman 2009).

 Another way is the use of the transgenic animals that have expression for luciferase in 

all cells, what is a very advantageous approach for monitoring of cell transplantation 

(Hakamata et al. 2006). 

 Fluorescent dyes intended for labeling of PIs should emit light in NIR spectrum to 

avoid interference with tissue autofluorescence. As an example, transplanted PIs labeled with 

SPIO nanoparticles that were modified by Cy5.5 were tracked under the kidney capsule 

(Evgenov et al. 2006); however optical imaging was performed only for differentiation         

of labeled and non-labeled islets ex vivo. Fluorescence imaging has been also implemented for 

examination of complex cellular processes of PIs transplanted into an anterior eye chamber         

of animals (Speier et al. 2008).  

 Although optical imaging is not broadly applicable in clinical practice due to necessity 

of gene manipulation (bioluminescence) and low penetration of light through the tissues 

(bioluminescence and fluorescence), these methods help to reveal important biological 

processes in transplanted PIs and contribute to enhance the transplantation outcome. 
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3.3.4 Radionuclide imaging  

 Radionuclide imaging modalities, such as PET and SPECT, are based on detection         

of radioactivity (PET – positrons created via beta decay, SPECT – gamma rays) originating 

from the radio labeled tracers. Detection of radioactivity possesses higher sensitivity 

(detectability in pM range) compared to MR and at least similar to optical imaging; however 

spatial resolution is low and the accumulation of the tracer needs to be high. Another 

disadvantage is the need of a cyclotron (eg. 
18

F, 
13

N, 
11

C) or a radionuclide generator                

(e.g. 
68

Ga) in close proximity to the experimental facility. Various PET tracers have relatively 

short half-life (e.g. 
18

F: 110 min, 
11

C: 20 min, 
15

O: 2 min) in comparison to SPECT tracers         

(6 hours to 8 days) that allow longer examination. 

 Mostly used approach for visualization of native beta cell mass (BCM) or transplanted 

PIs is direct targeting to a specific molecule on the islet surface as antigens or receptors. 

Variety of organic compounds have been suggested for BCM estimation and tracking                 

of transplanted PIs, such as broadly tested exendin, which is a glucagon-like peptide receptor 

(GLP-1) agonist or the serotonin precursor 
11

C-5-hydroxytryptophan (
11

C-HTP) (Eriksson et 

al. 2014). Radiolabeled exendin was used to visualize transplanted PIs in the liver of T1DM 

patients by PET (Eriksson et al. 2016) and in a skeletal muscle by SPECT (Pattou 2010). 

Moreover, SPECT detection of 
111

In-labeled exendin was efficient enough to differentiate 

between BCM of healthy volunteers and T1DM patients (Brom et al. 2014). 

 

3.3.5 Ultrasound imaging  

 Transplanted PIs can be visualized also by ultrasonography, which is based on 

detection of sound waves that propagate through the body and reflect on the tissue boundaries 

with different acoustic impendence. PIs transplanted under the kidney capsule were visualized                       

by ultrasonography and detected islet volume correlated with the number of islets (Sakata et 

al. 2012). Application of ultrasound CAs is limited due to poor spatial resolution and non-

specificity of imaging probes (usually based on air bubbles).  
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3.3.6 Encapsulated probes 

 Microencapsulation of islets together with contrast probes has become a potential 

route for islet visualization. The capsules (usually alginate) allow diffusion of metabolites, but 

restrict antibodies and immune cell infiltration. Islets have been encapsulated with SPIONs 

for 
1
H MRI (Barnett et al. 2007), with PFOB for 

19
F MR, ultrasound and CT imaging                 

(B P Barnett et al. 2011), with barium sulfate and bismuth sulfate for X-ray imaging (Barnett 

et al. 2006) or with Gd-gold or SPIO-gold nanoparticles for 
1
H MRI, CT and ultrasound 

(Arifin et al. 2011). 

 

3.3.7 Motivation for implementation of alternative 

probes 
 

The reviewed imaging methods and CAs differ by means of applicability for tracking 

of transplanted PIs (see Tab. 3.3). In this thesis, we implemented MRI because of its               

non-invasiveness, high spatial resolution, tomographic capabilities, visualization of deep 

structures and possibility of using different contrast mechanisms. The conventional MR CAs 

containing gadolinium possess low sensitivity, unsuitable small size and could be toxic for 

cells. SPIONs as the most common CAs for PIs are safe, sensitive and as low as a single 

SPION-labeled cell can be visualized in vivo. A strong effect of iron nanoparticles on 

magnetization creates a so-called blooming artefact beyond the actual cell size that even 

increases sensitivity of visualization. On the other hand, the blooming artefact restricts 

absolute quantification of the cell number. A hypointense MR signal originating from the 

labeled islets may cause false positive data because of other sources producing the same or 

similar MR signal intensity in the biological systems. Moreover, SPIONs are taken up by 

macrophages, which may then contribute to false positive results limiting in the proper 

visualization of transplanted PIs. Although SPION-labeled PIs were successfully used for PI 

tracking also in clinical practice, SPION-based CAs are not approved for clinical applications 

in Europe anymore. Therefore, there is a need for novel sensitive and specific agents or 

approaches for tracking of transplanted PIs. In this work, we tested novel MR probes that 

have not been tested yet for labeling of PIs as CEST agents or specific PLGA nanoparticles 

containing fluorine (
19

F). Highly sensitive optical imaging has been also implemented in the 

thesis to acquire more complex multimodal information about transplanted PIs.  
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Besides transplantation of islets in the liver, an alternative transplantation site was 

tested – polymeric scaffolds. The subcutaneously implanted scaffolds have already shown 

suitable properties for PIs transplantation, although with limited outcome. In this thesis, we 

implemented multimodal imaging approach (MRI and optical imaging) for optimization of 

transplantation protocol for PIs transplanted into the scaffolds. 

 

 

Tab. 3.3. Summary of advantages and limitations of different CAs for PI labeling.  

 

 

 

 

 

 

Advantages Limitations

Radionuclide PET/SPECT agents absolute quantification low resolution

high sensitivity ionizing radiation

MR SPIO nanoparticles high sensitivity relative quantification

low toxicity low specificity

negative MR signal 

MR paramagnetic agents positive MR signal low sensitivity

clinically approaved small size (diffusion out of cells)

low toxicity

CEST MR agents possibility of switch on/off low sensitivity

more agents visualized in one experiment strong pH dependence 

pH, temperature estimation signal quench in endosomes/lysosomes

need for post-processing algorithms
19F MR agents high specificity low sensitivity

absolute quantification long acquisition time

CT agents high sensitivity low specificity

fast acqusition ionizing radiation

need of encapsulation

Ultrasound probes fast acqusition spatial resolution

cheap and simple low specificity

Bioluminescence only viable cells detectable attenuation, scattering of light

high sensitivity only a surface image (2D BLI)

fast acqusition genetic manipulation

low spatial resolution

Fluorescent dyes high sensitivity attenuation, scattering of light

fast acqusition only a surface image (2D FLI)

tissues autofluorescence 
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4 Experimental part 
 

 In this chapter, experimental procedures and results of alternative visualization          

of pancreatic islets will be described and discussed. The section contains three studies focused 

on testing of CEST agents, visualization of genetically-modified bioluminescent islets and 

examination of multimodal nanoparticles suitable for 
19

F MRI and fluorescence imaging. 

Each study is divided into Materials and Methods, Results, Discussion and Summary. 

 

4.1 CEST agents for labeling of pancreatic islets  
 

 CEST approach has been already implemented in various applications. In our study, 

CEST agents were tested as novel contrast agents for labeling and visualization of PIs           

for the first time. The results of these experiments were summarized in two papers:  

 Gálisová A, Jirák D, Krchová T, Herynek V, Fábryová E, Kotek J, Hájek M. Magnetic 

Resonance Visualization of Pancreatic Islets labeled by PARACEST Contrast Agents 

at 4.7T. Journal of Molecular Imaging and Dynamics (impact factor (IF) 2) 

 Krchová T, Gálisová A, Jirák D, Hermann P, Kotek J. Ln(III)-complexes of a DOTA 

analogue with an ethylenediamine pendant arm as pH-responsive PARACEST 

contrast agents. Dalton Transactions 2016; 45(8):3486-96 (IF 4.0) 

 

4.1.1 Materials and Methods  
 

Preparation and characterization of the PARACEST agents 

 Two ligands with a different central atom europium Eu-DO3A-ae or ytterbium         

Yb-DO3A-ae (Fig. 4.2) with a suitable proton exchange rate between water and NH2 groups 

were synthetized in the Department of Inorganic Chemistry of the Faculty of Sciences, 

Charles University in Prague. Briefly, the ligand H3-DO3A-ae was prepared by reaction          

of t-Bu3DO3A by alkylation with N-(2-bromoethyl)-phthalimide followed by sequential 

deprotection by trifluoroacetic acid and hydrazine. The ligand H3DO3A-ae was purified by 

chromatography on an anion exchanger and by crystallization from hot EtOH with 59% 

overall yield. The Ln
3+

complexes of H3DO3A-ae were prepared by mixing the ligand Ln
3+ 
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chloride in small amount of distilled water. The complex was purified on Al2O3 column          

by chromatography. The pure product [Ln(DO3A-ae)] was eluted using a mixture                        

of EtOH:H2O:conc. aq. NH3 (10:8:1) (Krchová et al. 2013). The concentration of the probes 

mentioned in the text refers to concentration of Eu
3+

 or Yb
3+

 in the molecule, respectively. 

 For MR characterization of these agents, T1/T2 relaxation times of the compounds 

solutions (40 mM) were measured on a 4.7 T scanner using a resonator coil (Bruker BioSpin, 

Germany) at the room temperature (25 °C). T1 relaxation time was calculated from a series of 

images acquired by a spin echo sequence with a variable repetition time (TR = 6400/ 3200/ 

1600/ 800/ 400/ 200/ 100/ 50 ms), echo time (TE) of 7.2 ms and acquisition time (AT)               

of 5 min per one image. T2 relaxation time was measured by an imaging Carl Purcell 

Meiboom Gill (CPMG) sequence (TR = 5000 ms, TE = 7.2 ms, 256 echoes, AT = 21 min). 

The mean signal intensity from a selected ROI was assessed for each time point and it was 

fitted by a mono-exponential decay in the software GraphPad Prism (GraphPad Software Inc, 

USA). T1 and T2 relaxation times were calculated according to the formulas 3.2 and 3.3, 

respectively (p. 24). 

 To characterize the frequency offsets, Z-spectra of the PARACEST agents were 

obtained by acquisition of a series of images after saturation at variable frequency offsets 

ranging from -100 ppm to +100 ppm with the step of 2.5 ppm (81 images were acquired). For 

saturation, a Gaussian pulse (3000 ms/ 35 μT) was applied. A turbo spin echo sequence - 

RARE (Rapid Acquisition with Relaxation Enhancement) was used to acquire images with 

following parameters: TR = 5000 ms, TE = 6.4 ms, turbo factor = 16, matrix size of 128 × 128, 

the field of view (FOV) = 55 × 55 mm, 2 dummy scans, slice thickness of 2 mm and 

acquisition time of 40 seconds per one image.             

 

Isolation and labeling of pancreatic islets  

 Pancreatic islets were isolated from Brown-Norway rats according to a standard 

protocol described by Gotoh (Gotoh et al. 1985). Briefly, the pancreata (2-3 donor rats per 

recipient) were excised and digested by intraductal injection of collagenase (1 mg/mL;         

15 mL/rat). The tissue filled with collagenase was gently shaken at 37 C for 20 min. Islet 

pellet was then carefully overlayered by polysaccharide Ficoll® solution (Sigma Aldrich, 

USA)  of various concentrations - 1.037 g/mL, 1.069 g/mL, 1.096 g/mL and 1.108 g/mL. 

Following centrifugation of islets in the discontinuous Ficoll® gradient separates islets from 

the exocrine tissue. Islets were then hand-picked from the polysaccharide interlayer and 

incubated (37 C, CO2 atmosphere) in CMRL-1066 culture medium (PANBiotech GmbH, 
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Germany) supplemented with 5% HEPES buffer, 10% fetal bovine serum (FBS) and 1% of 

antibiotics penicillin/streptomycin/L/glutamine (all Sigma-Aldrich, USA).  

 After overnight incubation, islets were labeled either by pinocytosis or microporation. 

Labeling by pinocytosis was accomplished by incubation of islets in a culture medium 

containing dissolved CEST agents. Different numbers of islets were incubated in a 6-well 

plate (50 – 800 PIs) or in a 5 mL flask (1000 - 2000 PIs) for 12 or 24 hours; the wells 

contained    Eu-/Yb- agents at concentrations 30, 45, 60, 80, 100 mM. The control islets (not 

microporated; 200 PIs) were incubated in the medium without the contrast agents. 

 Microporation was performed using the Neon
TM

 transfection system (Thermo Fischer 

Scientific, USA). 300 islets were mixed with the resuspension buffer R containing                

60 mM or 100 mM of the CEST agents. Islets in 100 uL of the buffer were then placed into      

a container with the electrolytic buffer E2 and two 20 or 30 ms electric pulses were 

immediately applied. Various voltages ranging from 600 to 1000 V were tested. After 

poration, islets were transferred into a well containing the incubation medium and kept on ice 

for 10 min. Then, islets were placed into a 6-well plate and incubated overnight in 3 mL        

of culture medium without antibiotics at 37 C.  

 After labeling, the islets were washed three times with phosphate-buffered saline 

(PBS), counted in a black well and hand-picked. For each labeling condition, 10 islets were 

evaluated for estimation of viability and 50 islets for assessment of insulin release                  

in duplicates. For the MRI experiment, islets were placed into a dish containing 4% gelatin 

layer and overlaid with another 3% gelatin on the top. The exact numbers of islets in the 

phantoms are listed in the figure legends.  

 

Viability assays and functional tests 

 Islet viability was evaluated after staining with acid-binding fluorescent dyes that refer 

about cell membrane integrity (Bank 1987). Ten handpicked islets were mixed with a 1:1 

solution of propidium iodide (75 µmol/L) and acridine orange (9 µmol/L); after 5 minutes, 

250 µL of PBS was added to dilute the solution and the islets were examined under                 

a fluorescent microscope. The ratio of the viable cells to all cells inside each islet was 

assessed and expressed as an average percentage.  

 The functional potency of the islets was assessed using a glucose-stimulated insulin 

secretion test. Triplicates of 50 isolated islets were incubated in Krebs-Ringer bicarbonate 

buffer medium (37 ºC, 1 hour) at low (3.3 mM), high (22 mM) and low (again) glucose 

concentrations. Aliquots of the medium were removed and frozen at -20 ºC; insulin content 
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was measured using the ELISA test. The amount of insulin released upon glucose stimulation 

was assessed as the stimulation index, i.e., the ratio of insulin values measured after 

stimulation and before stimulation.  

  

ICP-QMS measurements  

 The uptake of the complexes into islets was assessed by inductively coupled 

quadrupole plasma mass spectrometry (ICP-QMS). The labeled and control islets were 

washed three times with PSB, then digested by 250 µL of concentrated HNO3 and dried in         

a desiccator (NaOH) equipped with a drying tube (CaCl2) for 24 hours at 90 C. The drying 

process was performed twice; then each sample was dissolved in 5 mL or 10 mL of 2% (v/v) 

HNO3. The blank sample contained only 2% (v/v) HNO3. ICP-QMS analysis was performed 

using a Thermo Scientific X Series II quadrupole ICP mass spectrometer. The uptake             

of the agents was estimated as a number of complexes incorporated in one islet.                           

For assessment of the feasibility of islet visualization of the labeled islets, an approximate 

milimolar concentration of the agents in a suspension containing 1000 islets per 50 µL was 

calculated. 

 

In vitro CEST MRI experiments of the labeled pancreatic islets  

 MR imaging was conducted on a 4.7 T MR scanner (Bruker BioSpin, Germany) using 

a resonator coil with a diameter of 7 cm (Bruker BioSpin, Germany). The parameters for 

CEST imaging were optimized in a separate experiment in advance (power and type              

of saturation pulses, readout parameters). Seven glass tubes containing 1.25 − 40 mM of each 

CEST agent dissolved in water were immersed in 4% gelatin (Fig.3 A, B). For CEST 

measurement, a modified RARE sequence was used: TR = 5000 ms, TE = 8.9 ms, turbo  

factor = 4, matrix size of 64 × 64, FOV = 55 × 55 mm, 2 dummy scans, slice thickness 2 mm, 

acquisition time of 1.5 min per one frequency offset (19 ppm, 34 ppm,  42 ppm, 89 ppm).   

The whole sequence was preceded by a saturation scheme consisting of a Gaussian pulse 

(3000 ms/35 μT). Contrast-to-noise ratio (CNR) was calculated for each concentration 

according to the formula 

𝐶𝑁𝑅 =
𝐼(−)−𝐼(+)

√𝜎2(−)+𝜎2(+)
,      (4.1) 

where I(-) and I(+) represent MR signal intensities in images acquired at negative or positive 

frequency offsets, respectively; σ2
(-) and σ2

(+) represent standard deviations from the same 

images (Liu et al. 2013). 
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The theoretical threshold CNRthreshold for in vivo visualization according to Liu (Liu et al. 

2009) is  

CNRthreshold = 2√2.                                               (4.2) 

The lowest detectable concentration, which generates CNR higher than this theoretical 

threshold, was determined for both CEST agents from CNR values experimentally assessed 

for various agent concentrations.  

 Islets labeled by both pinocytosis (60, 80, 100 mM) and microporation (100 mM) were 

examined by in vitro CEST imaging. The parameters for in vitro CEST imaging of islets were 

similar as for the phantom study with the solutions (TR/TE = 5000 ms/8.9 ms,                         

turbo factor = 16, matrix size of 128 × 128, FOV = 55 × 55 mm, slice thickness of 2 mm);          

the spatial resolution was higher because of the size of islets (a small islet layer                       

in the phantoms required smaller voxel size): slice thickness was 1 mm or 1.5 mm and two 

image resolutions were tested: 128 × 128 and 256 × 256. In the case of failure of detection                 

of 300 islets (labeled with 80 and 100 mM) within 3.5 or 20 min per one frequency offset,          

the acquisition time was prolonged to 1 hour per one frequency offset.  

 CEST effect of 1000 islets labeled with 60 mM concentration of each CEST agent was 

measured by acquisition of the whole Z-spectrum. �⃗⃗� 0 inhomogeneities were corrected in each 

voxel by using WASSR approach (Kim et al., 2009). For both CEST and WASSR Z-spectra 

acquisition, a series of images was acquired using a standard CEST protocol. A saturation 

Gaussian pulse (2000 ms/25 µT) with variable frequency offsets ranging from -110 ppm to 

+110 ppm with the step of 2.5 ppm (89 images) was applied. Measurement time per one 

frequency offset was 3.5 minute (total measurement time was 5 hours). For WASSR 

acquisition, direct water saturation was accomplished with higher frequency resolution 

ranging from -1.5 ppm to +1.5 ppm with the step of 0.25 ppm using a 100 ms/0.5 µT Gausian 

pulse (13 images). All Z-spectra were processed by MATLAB software (Mathworks, USA). 

The data were interpolated up to 0.5 ppm (CEST) or 0.05 ppm (WASSR) resolution using a 

smoothing spline-based interpolation method.  

 CEST effect was expressed as the asymmetric magnetic transfer ratio (MTRASYM) 

(according to the equation 3.9, p. 33) and calculated from a ROI on the pixel wise basis. 

MTRASYM maps were reconstructed using a custom written script in MATLAB (Mathworks, 

USA) (Fig. 4.1). The script with comments can be found in the Appendix A. The maps were 

expressed in a false-color scale in percentage of MTRASYM.  
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Fig. 4.1. An example of the home-made program for reconstruction of the CEST maps. The 

script written in MATLAB allows the choice of the raw images for analysis (A), and then a manually-

drawn ROI can be chosen (B). In the last step, the final CEST map is calculated (C). The final image 

can be manipulated – color map, minimum and maximum of the scale showing MTRASYM values can be 

chosen. The background can be deleted or transparent. The final image can be saved as .jpeg/.png      

at the specific location. 

 

4.1.2 Results  
 

  Characteristics of the CEST agents  

 Two specific peaks of each CEST agent were identified in their Z-spectra: for Eu-

DO3A-ae at 19 ppm and 34 ppm; for Yb-DO3A-ae at 42 ppm and 89 ppm (Fig. 4.2).                   

A solution of Eu-DO3A-ae agent of 50 mM concentration exploited higher CEST signal  

(47% MTRASYM at 19 ppm and 43% MTRASYM at 34 ppm) compared to Yb-DO3A-ae              

(8% MTRASYM at 42 ppm and 4% MTRASYM at 89 ppm). The Z-spectra showed that the peaks of 

Eu-DO3A-ae at 34 ppm overlap with the peak of Yb-DO3A-ae at 42 ppm. MR relaxivity 
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measurement revealed that the relaxation times of Eu-DO3A-ae (T1 = 1436 ± 24 ms; T2 = 480 

± 47 ms) are higher than         Yb-DO3A-ae (T1 = 599 ± 17 ms, T2 = 331 ± 39 ms). 

 

Fig. 4.2. Characterization of the CEST agents. A scheme of proton exchange between NH2- group  

of the CEST agents with a central lanthanide (Eu/Yb) and bulk water (A). Z-spectra and MTRASYM 

spectra of Eu-DO3A-ae (B) and Yb-DO3A-ae (C) agents. The peaks in the spectra represent water 

saturation after irradiation of the complexes at specific frequencies as a result of slow exchange         

of labile protons between the amino groups of the complexes and bulk water.  

 

 CEST imaging of solutions of the CEST agents showed proportional dependence             

of MTRASYM on agent concentration (Fig. 4.3 G). Similarly as in the Z-spectra, Eu-DO3A-ae 

exploits higher CEST signal compared to Yb-DO3A-ae; 40 mM solution of Eu-DO3A-ae 

possesses approximately 30% MTRASYM in contrast to 8% MTRASYM of Yb-DO3A-ae. 

Calculated CNR values revealed that the minimal detectable concentration for imaging (above 

the detection threshold, according to the formula 4.2, p. 50) is 1.25 mM for  Eu-DO3A-ae            

and 2.5 mM for Yb-DO3A-ae (Fig. 4.3 H).  
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Fig. 4.3. MR characterization of the CEST agents. 
1
H MR images and corresponding MTRASYM 

maps of a phantom containing various concentration of Eu-DO3A-ae (A, B, C) and Yb-DO3A-ae (D, 

E, F). MTRASYM maps of the agents were measured at specific frequency offsets: 19 ppm (B)             

and 34 ppm (C) for Eu-DO3A-ae, 42 ppm (E) and 89 ppm (F) for Yb-DO3A-ae. The numbers in the 

1
H images represent milimolar concentrations of the agents. Graphs (G) and (H) show dependence of 

MTRASYM values and contrast-to-noise ratios (CNR) on concentration; the dotted line represents          

the detection CNRthreshold and the minimal detectable concentration, which can reach CNR above 

this threshold is highlighted in the box (Gálisová et al. 2016). 

 

Labeling of pancreatic islets by CEST agents  

 PIs were labeled with the CEST agents using pinocytosis and microporation.           

The agent uptake in the islets after labeling by pinocytosis was in the range                            

of 8.3 × 10
12

 – 2.9 × 10
14 

complexes per one islet. The use of a higher concentration of the 

CEST agents for pinocytosis led to higher cellular uptake of both complexes (Fig. 4.4 A, B). 

Similarly, 24-hour incubation resulted in higher agent internalization in the islets compared to 

12 hours (Fig. 4.4 A, B). Labeling by microporation led to incorporation of maximum              

of 2 × 10
13 

of complexes per islet that is lower amount than using pinocytosis with 30 mM        
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of the agents for 24 hours (Fig. 4.4 C). Only labeling by pinocytosis with 80 mM 

concentration of CEST agents exceeded the detection threshold. 

 High concentrations of CEST agents in the culture medium during incubation had 

negative impact on islet viability (Fig. 4.5 A). By using concentration above 60 mM            

for 24-hour incubation, viability of islets decreased below 70%. Islet viability above 80% was 

reached by using shorter incubation time (12 hours) or with concentrations below 45 mM. 

Similarly, insulin secretion of islets, which were labeled with agent concentration 60 mM      

or higher was impaired (Table 4.1). Viability of microporated islets was approximately 80%; 

however, the amount of harvested islets was only about 30% of the initial mass. Viability           

of a control unlabeled sample was >95%, with the stimulation index >2.  

 

 

Fig. 4.4. Uptake of the CEST agents into pancreatic islets. Islets were labeled by pinocytosis using 

various concentrations of Eu-DO3A-ae (A) or Yb-DO3A-ae (B) in the incubation medium                

and by microporation using different voltage (C). The means and standard deviations (SD was below 

1%) were calculated from approximately 100 PIs. The dotted lines represent the detection threshold 

calculated from CNR of agent solutions (Gálisová et al. 2016).  
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Fig. 4.5. Viability assessment of labeled pancreatic islets. Representative fluorescence images               

of islets after staining with acridine orange and propidium iodide (A). Green color refers to viable 

cells, red color to dead cells. Distribution of dead cells in the labeled islets was different for 

pinocytosis and microporation – the porated islets had dead cells mostly in the islet center in 

comparison to pinocytosis, where dead cells were detected at the islet surface. The results of 

quantification of viability of islets labeled with Eu-DO3A-ae (B) and Yb-DO3A-ae (C) (Gálisová et 

al. 2016). 

PARACEST 
complex 

Concentration 
[mM] 

Stimulation 
index SD 

        

Eu-DO3A-ae 45 2.1 1.6 
  60 2.1 1.3 
  80 0.6 0.2 

        

Yb-DO3A-ae 45 1.2 0.2 
  60 2.0 1.8 
  80 0.9 0.1 

        

Control 0 2.1 1.5 

 
Table 4.1. Insulin secretion by labeled pancreatic islets. Average glucose stimulation indexes 

corresponding to insulin production of pancreatic islets labeled with various concentrations                

of the PARACEST agents by pinocytosis. SD refers to standard deviation. 
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Visualization of pancreatic islets labeled with the CEST agents  

Pancreatic islets labeled with the higher concentration of the agents (80 - 100 mM) 

were measured in a gelatin phantom at first. In this experiment, no CEST signal from              

the labeled islets was detected within 20 minutes of acquisition per one frequency offset                 

(Fig. 4.6 B, C). After prolongation of acquisition time up to 1 hour per one frequency offset, 

200 - 300 islets labeled either by 80 and 100 mM of CEST agents were detected                  

(Fig. 4.6 E, F). Using 100 mM of the agent for labeling, 20% MTRASYM signal was detected 

from  islets labeled with Eu-DO3A-ae, while only 4% of MTRASYM signal was observed from 

islets labeled with Yb-DO3A-ae (Fig. 4.6 E, F). Islets labeled with 80 mM of Eu-DO3A-ae 

provided about 8% MTRASYM (Fig. 4.6 H) and islets labeled with 80 mM of Yb-DO3A-ae were 

not detected (Fig. 4.6 I). No CEST signal was detected from islets microporated with 100 mM 

of the CEST agents within 1 hour of acquisition (Fig. 4.6 E, F). It should be mentioned that 

only a part of islets survived microporation, therefore only up to 170 microporated islets were 

transferred to a phantom for imaging. Islets labeled with Yb-DO3A-ae provided also low 

CEST effect (approximately 10%) after Eu-specific irradiation at 34 ppm and similarly islets 

labeled with Eu-DO3A-ae showed low MTRASYM values (4%) after Yb-specific irradiation         

at 89 ppm (Fig. 4.6 E, F). 
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Fig. 4.6. In vitro CEST MRI visualization of labeled pancreatic islets in a gelatin phantom.          

A  reference MR image of a gelatin phantom containing labeled pancreatic islets (A, D, G). MTRASYM 

maps of the phantom with saturation at 34 ppm for Eu-DO3A-ae (B, E, H) and with saturation            

at 89 ppm for Yb-DO3A-ae (C, F, I). Labeling conditions for each group: (1) pinocytosis                 

Eu-DO3A-ae, 300 PIs; (2) pinocytosis Yb-DO3A-ae, 380 PIs; (3) microporation Eu-DO3A-ae 800V 

for 20 ms, 60 PIs; (4) microporation Yb-DO3A-ae 800V for 20 ms, 60 PIs; (5) microporation          

Eu-DO3A-ae 800V for 30 ms, 150 PIs; (6) microporation Yb-DO3A-ae 800V for 30 ms, 170 PIs;     

(7) pinocytosis Eu-DO3A-ae, 200 PIs; (8) pinocytosis Yb-DO3A-ae, 200 PIs. Measurement time per 

one frequency offset: B, C – 20 min; E, F – 1 hour. The arrows mark the islets, which should be 

visualized at the chosen frequency offsets and the detailed images of these islets are shown                 

in the insets (Gálisová et al. 2016).  

 

The use of higher concentration of the CEST agents for labeling of pancreatic islets 

led to cell viability and functionality impairment; therefore we tested also visualization              

of higher number of islet labeled with 60 mM agent concentration by pinocytosis. To improve 

sensitivity of CEST detection, the WASSR approach was used for B0 inhomogeneities 

correction. The final CEST images were calculated by subtraction of the images at the (+/-) 
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offset, although the images originated from the corrected Z-spectra. In this experiment,         

1000 islets labeled with 60 mM of Eu-DO3A-ae reached 6% MTRASYM at 19 ppm and           

2% MTRASYM at 34 ppm. The islets labeled with Yb-DO3A-ae exploited less than                   

1% MTRASYM at 42 ppm and approximately 2% MTRASYM at 89 ppm (Fig. 4.7). The signal 

originated from the labeled islets was similar to the signal of a reference containing 2 mM     

of each CEST agent. No CEST signal was observed from the unlabeled control islets. 

 

Fig. 4.7. In vitro visualization of labeled pancreatic islets in PBS. The reference MR image             

of the phantom (A). PI Eu refers to islets labeled with Eu-DO3A-ae and PIs Yb refers to islets labeled 

with Yb-DO3A-ae. The reference samples contain the agent solutions or incubation medium. MTRASYM 

maps of 1000 labeled islets obtained by saturation at various frequency offsets: 19 ppm (B), 34 ppm 

(C), 42 ppm (D) and 89 ppm (E). A representative B0 map (F) and corresponding Z-spectra of islets 

labeled with Eu-DO3A-ae (G) and Yb-DO3A-ae (H). Islets were labeled by pinocytosis using 60 mM 

concentration of the complexes. Measurement time per one frequency offset was 3.5 minute.           

The arrow points the islets, which were selected for visualization at the chosen frequency offsets.  
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4.1.3 Discussion  
 

 CEST approach represents a novel contrast mechanism with some advantages                 

for cellular labeling and visualization compared to the conventional superparamagnetic and 

paramagnetic agents. The tested Eu-/Yb-based chelates can serve as exogenous CEST agents 

due to a slow exchange between protons of their amino groups and bulk water (Krchová et al. 

2013) resulting in two saturation peaks detected at different frequency offsets. Various 

saturation offsets allow specific identification of the agents (labeled cells or pancreatic islets) 

in one MR experiment, although the peaks of Eu-DO3A-ae (at 34 ppm) and Yb-DO3A-ae          

(at 42 ppm) chelates overlap and therefore these peaks are not optimal for differentiation       

of the agents. Nevertheless, the peaks at 19 ppm (Eu-DO3A-ae) and 89 ppm (Yb-DO3A-ae) 

could still serve for this purpose. Importantly, the chemical structure of the tested CEST 

agents is similar to the clinically approved MRI contrast agents (e.g., Gd-HPDO3A                    

– ProHance® or Gadovist®), which is advantageous for their possible clinical application. 

Moreover, the saturation peaks exploit a large chemical shift from water, which minimizes 

direct water saturation and therefore is preferable for in vivo measurements. Because             

of the distinguishable irradiation offsets of our tested CEST probes with a large shift from           

the water, we hypothesize that the agents can be feasible for differentiation of islets according 

to size or drug modification. 

 The CEST MR experiment involving the contrast agent solutions showed that           

the Eu-based agent had higher CEST effect compared to the Yb-based analogue at both 

saturation offsets. Lower relaxation times of Yb-DO3A-ae may contribute to its lower 

MTRASYM values. Better sensitivity of Eu-DO3A-ae allowed reaching the detection threshold 

using lower concentration compared to Yb-DO3A-ae.  

 In this study, two labeling methods were tested for PIs labeling – pinocytosis and 

microporation. Microporation allows cytoplasmic uptake of the agents that is favorable due to 

higher pH and lack of additional endosomal membrane. The labels taken up by pinocytosis 

are entrapped in endosomes, where lower pH and the endosomal membrane could quench         

the CEST signal (Terreno et al. 2006). In spite of mentioned advantages of microporation, this 

method did not lead to sufficient agent uptake for in vivo visualization in our study. Moreover, 

the procedure was harmful to islets and viability of islets subjected to microporation 

decreased below 80%. In other studies, microporation has been applied for transfection             
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of various cells types (Lim et al. 2010); however according to our results, it is not suitable for 

labeling of PIs using the CEST agents. 

 In the case of pinocytosis, only labeling at concentration of 80 mM of both agents 

exceeded the detection threshold, although viability of labeled PIs was impaired suggesting          

a detrimental effects of the probes on cells. This effect was manifested also by impaired 

insulin secretion of labeled islets. Sufficient viability and function of PIs was maintained         

at concentrations lower than 45 mM only; although this concentration did not reach the 

detection threshold.  Islets labeled by pinocytosis within longer time (leading to higher uptake 

of the complexes in PIs) expressed lower viability probably due to longer and higher exposure 

to the adverse impact of the contrast agents. A slow release of a toxic lanthanide ion under 

acidic condition (pH<6) has been already reported (Krchová et al. 2013) and we propose that 

the same effect occurred in endosomes during pinocytosis. Moreover, endosomes containing 

the agents could be fused with lysosomes, which pH is even more acidic.  

 CEST MRI experiment proved feasibility of in vitro visualization of PIs labeled with 

Eu-DO3A-ae and Yb-DO3A-ae chelates; however long acquisition time limits their use for    

in vivo application. PIs labeled with higher agent concentration showed higher CEST effect 

compared to lower concentration, which was in accordance to the higher content of the agent 

measured by ICP-QMS. PIs labeled with 80 and 100 mM concentration were visible after       

2 hours of acquisition reaching high CEST signal (MTRASYM ≈ 20%); however corresponding 

viability impairment and long acquisition times were unacceptable for in vivo applications.         

In a similar study (Ferrauto et al. 2013), the macrophages and murine melanoma cells were 

successfully visualized after labeling by 100 mM of Eu- and Yb-HPDO3A agents and 

viability of the labeled cells was not compromised. It is worth to note that the agents and the 

cell line used in this study were different to ours; pancreatic islets are non-phagocytic, fragile 

and with a more complex structure than the individual cells. Moreover, cells were visualized 

at 7 T using a microimaging probe that is more sensitive than 4.7 T used for the PI 

experiment. Although the in vitro signal from the labeled cells was approximately                    

15 - 20% MTRASYM, the in vivo signal reached 3% or 6% MTRASYM, what is comparable to our 

results.  In another study, in vivo visualization of Eu-/Yb-HPDO3A-labeled neural stem cells 

and endothelial cells was reported in an animal model of stroke at 9.4T (Nicholls et al. 2015). 

Similarly to our study, in vitro CEST signal from labeled cells was 1% or 12% for Eu- and 

Yb-labeled cells, respectively. Although differentiation of two different cell lines in vivo was 

reported, the difference between labeled and unlabeled cells was only 3.27% in the case of 

Eu-labeled cells and 1.16% for Yb-labeled cells. In the same work, the authors discussed           
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a reduction of the CEST effect after incorporation of the agents into the cells in comparison to 

the signal originating from the solutions. This effect also indicates low sensitivity                    

of visualization of cells labeled with the CEST agents.  

 Because of decreased viability of PIs after labeling by 80 – 100 mM of the agents, 

higher amount of islets (1000 PIs) and lower concentration (60 mM) were used for further 

tests. Despite usage of the WASSR approach for correction of B0 homogeneity and higher 

number of examined islets, only a small MTRASYM values (below 6% MTRASYM) were observed 

from the labeled islets. Moreover, WASSR approach and acquisition of the full Z-spectrum 

prolonged the acquisition time up to 5 hours that is unacceptable for routine in vivo 

examination. Low MTRASYM values originating from Yb-labeled islets after Eu-specific 

irradiation is caused by overlapping of the irradiation peaks of both agents in the Z-spectra. 

Low CEST signal of Eu-labeled PIs measured at Yb-specific frequency may correspond           

to a statistical error. 

In summary, decrease of CEST effect in endosomes after labeling by pinocytosis 

together with impairment of islet viability after labeling by higher concentration of the agents 

and low signal originating from PIs labeled at low concentration, make the CEST agents           

at current experimental setting unsuitable for in vivo application in PIs labeling and 

visualization. The obtained results are in accordance with the published data acquired             

at higher magnetic fields and processed by a complex post-processing and simulation 

approaches. However, improvement of agent properties (pH stability and toxicity) may allow 

further applications.  

 

4.1.4 Summary – CEST contrast agents 
 

 Labeling of pancreatic islets with the Eu/Yb-based CEST agents was more efficient        

in the case of endocytosis compared to microporation  

 Long acquisition times and the use of high labeling contrast agent concentration         

is needed for sufficient visualization of labeled islets 

 High concentration of the CEST agents impaired islet viability and functionality 

 Islets labeled with lower agent concentration were visualized only for long acquisition 

times, what is unsuitable for in vivo measurements  

 Our findings of low sensitivity of CEST for cellular imaging correspond to published 

data 
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4.2 Visualization of transplanted pancreatic islets by 

bioluminescence imaging 
 

 In this study, multimodal imaging including bioluminescence and MRI were 

implemented for long-term in vivo tracking of transplanted islets in artificial scaffolds in order 

to test this novel transplantation site and to optimize the transplantation protocol.                     

The experiment was preceded by several pilot and optimization experiments focused            

on examination of the effect of mesenchymal stem cells (MSCs) on vascularization               

of the scaffolds and proper timing of PIs transplantation. 

 The results of these experiments were published in three papers: 

 Gálisová A, Fábryová E, Jirák D, Sticová E, Lodererová A, Herynek V, Kříž J, Hájek 

M.. Multimodal imaging reveals improvement of blood supply to an artificial 

transplant site induced by bioluminescent mesenchymal stem cells. Molecular Imaging 

and Biology 2016 (IF 3.4)  

 Gálisová A, Fábryová E, Sticová E, Kosinová L, Jirátová M, Herynek V, Berková Z, 

Kříž J,
 
Hájek M, Jirák D. The optimal timing for transplantation of pancreatic islets in 

artificial scaffolds assessed by multimodal imaging. Contrast Media and Molecular 

Imaging 2017 (IF 3.3) 

 Fabryova E, Jirak D, Girman P, Zacharova K, Galisova A, Saudek F, Kriz J. Effect of 

Mesenchymal Stem Cells on the Vascularization of the Artificial Site for Islet 

Transplantation in Rats. Transplantation Proceeding 2014; 46:1963-1966 (IF 0.9) 

  

4.2.1 Materials and Methods  
 

Isolation and characterization of MSCs 

 MSCs were isolated from the visceral adipose tissue of epididymal and perirenal areas 

of rats. Briefly, fat tissue from the epididymal and perirenal areas was excised, washed twice 

with cold PBS and centrifuged (500g, 5 min) after each wash. The rinsed tissue was digested 

by collagenase (1340 PZS/g, 1 mg/ml; Sevapharma, Czech Republic) for 30 min at 37 °C. 

Digestion was terminated upon the addition of ice-cold fetal bovine serum (Sigma-Aldrich, 

USA) and the mixture was filtered through a 500-μm mesh. The suspension was then 
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centrifuged and washed three times (1000g; 10, 10 and 5 min) in PBS with 1% antibiotic-

antimycotic solution (AAS) containing penicillin, streptomycin and fungizone (Thermo Fisher 

Scientific, USA). The tissue pellet was then resuspended in 3 mL of PBS with AAS and 

overlaid with 2 mL of Ficoll solution (1077 g/ml, Ficoll-Paque™ Premium, GE Healthcare 

Bio Science AB, Sweden). The cells in the interlayer were collected and then washed with 

PBS and cultured in DMEM low-glucose medium supplemented with 10% fetal bovine serum 

and 1% L-glutamine-penicillin-streptomycin solution (Sigma-Aldrich, USA). The culture 

medium was replaced twice a week and the cells were sub-cultured for 2 weeks after 

isolation. Prior to transplantation, the cells were released from the bottom of the culture flask 

by trypsinisation, dissolved in cold PBS, quantified and placed in a syringe.  

 Tens of thousands of cells from each set were examined by fluorescent-activated cell 

sorting (FACS). The cells were incubated with anti-mouse/rat CD29 antibody (Biolegend, 

USA), phycoerythrin/CD44 antibody (Abcam, UK), PE-Cy
TM

5 mouse anti-rat CD45 antibody 

(BD Biosciences, USA), anti-rat/mouse CD90.1 (Thy-1.1) antibody (E-Bioscience, USA) and 

anti-mouse endoglin/CD 105 antibody (R&D Systems, USA) for 20 min. The cells were then 

washed with FACS solution (PBS, 0.2% fish skin gelatin, 0.01% sodium azide) and analyzed 

by flow cytometry (BD FACSCalibur, BD Biosciences, USA). The analysis revealed specific 

molecules on the MSC surface: CD29 in 95%, CD90 in 98% and CD105 in 54%. 

 Cells were differentiated into chondrocytes, osteocytes and adipocytes using                

a differentiation kit (RD Systems, USA) in order to assess the stem properties of isolated 

MCSs. Briefly, cells seeded in a 24-well plate (adipocytes, osteocytes) or a 15 mL tube 

(chondrocytes) were cultured in adipogenic, osteogenic and chondrogenic differentiation 

media, respectively, according to the manufacturer’s instructions. After 21 days, adipocytes, 

osteocytes and chondrocytes were detected using immunocytochemistry staining for FABP4, 

osteocalcin and aggrecan, respectively. 

 To confirm luciferase expression in luciferase positive (LUC+) MSCs, different 

numbers of MSCs (0.6×10
5
 ˗ 1×10

6
) were placed into a six-well plate and imaged for 1 min 

by an IVIS Lumina XR optical imager (Perkin Elmer, USA) after addition of 10 µL               

of D-luciferin (30 mg/mL). 

 

Pancreatic islet isolation and characterization 

 Pancreatic islets were isolated from rats according to a standard isolation protocol 

described in the Chapter 4.1.1 (p. 47). Islets were manually counted using a dissection 
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microscope and collected in a small plastic tube connected to a syringe prior to 

transplantation. 

 Viability of islets before transplantation was evaluated after staining with the nucleic 

acid-binding fluorescent dyes propidium iodide and acridine orange as is described in the 

Chapter 4.1.1 (p. 48). The functional potency of the islets was assessed using                           

a glucose-stimulated insulin secretion test as is also described in the Chapter 4.1.1 (p. 48). 

 Expression of the luciferase enzyme in isolated LUC+ PIs was confirmed using             

the optical imager. Various amounts of isolated islets (50, 100, 300, 600, 1000 PIs) were 

placed in the wells of a six-well plate and imaged for 1 minute after the addition of 10 µL       

D-Luciferin solution (30 mg/mL). 

 

Animal models 

In all experiments, polymeric scaffolds were prepared from a 0.3 mm thin non-degradable 

Silon monofilament mesh (ELLA-CS, Czech Republic). The mesh was sutured into a rounded 

form with a cavity inside (Fig. 4.8 A).  

 The rats were placed under general anesthesia (ketamine 36 mg/kg and 

dexmedetomidine 0.08 mg/kg; Vétoquinole, France and Orion Pharma, Finland) during all 

surgical procedures. 

All animals were kept in a conventional breeding facility under a 12/12 light cycle 

regimen, with free access to pelleted food and water. The protocols related to the study were 

approved by the Ethics Committee of the Institute for Clinical and Experimental Medicine 

and the Ministry of Health of the Czech Republic in accordance with the European 

Communities Council Directive 86/609/EEC. 

 

Enhancement of vascularization in the artificial scaffolds by LUC+ mesenchymal stem cells  

 The experiment focused on improvement of blood supply in scaffolds                        

by MSCs and assessment of optimal transplantation window for pancreatic islets. Polymeric 

scaffolds were implanted into 6 non-diabetic LUC- Lewis rats (Velaz, Czech Republic). The 

scaffolds were supplemented with the small polytetrafluoroethylene rods inserted during 

scaffold implantation and removed after one week. Then 15 millions of LUC+ MSCs were 

injected into the experimental cavity; the second device served as a control without 

transplanted cells. The design of the experiment is shown in Fig. 4.8. Localization and 

viability of transplanted MSCs were measured by bioluminescence imaging. Vascularization 
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inside the scaffolds was assessed by the dynamic contrast enhanced (DCE) MR technique 

using the contrast agent Gadofosveset and by histology. 

 

Fig. 4.8. Design of the experiment. A photograph showing a device consisting of a macroporous 

scaffold combined with a rounded rod (A). A photograph showing the implantation procedure of the 

scaffold into the subcutaneous space in the abdominal area of an animal (B), injection of MSCs 

through the skin and engrafted scaffold (C) and an animal with two implanted scaffolds (D).                

A schematic illustration of the timeline of the experiment (E). D in the scheme refers to a day 

after/before MSC transplantation (Gálisová, Fábryová, Jirák, et al. 2017). 

 

Optimization of timing for transplantation of LUC+ PIs into scaffolds in diabetic rats 

The goal of this experiment was to optimize the transplantation protocol for PIs in 

artificial scaffolds in diabetic rats. Two time points for PIs transplantation were tested               

– day 4 and day 7 after MSCs transplantation/ rod removal. The scaffolds were longitudinally 

examined by MR and bioluminescence imaging for 4 months after PIs transplantation. 

Vascularization and viability of the graft were assessed also by histology.  

The bioluminescent (LUC+) and non-bioluminescent (LUC-) litters used in this study 

were the progeny of bioluminescent heterozygous Lewis rats. The bioluminescent rats were 

used as donors of LUC+ pancreatic islets and their LUC- littermates served as either 

recipients of the transplanted syngenic islets or as donors of LUC- MSCs. All recipients were 
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10-weeks old male rats weighing 250-300 g at the time of islet transplantation. Two or three 

rats were used as islet donors for one recipient.  

 Diabetes was induced by injection of streptozotocin (60 mg/kg, Sigma-Aldrich, USA) 

dissolved in cold 3.8% sodium citrate (pH 4.5) into the peritonea of the overnight-fasted 

recipient LUC- rats. One week later, 24 animals with confirmed diabetes (a minimum                 

of 18 mmol/L blood glucose over 3 consecutive days) got subcutaneous implantation                            

of macroporous scaffolds in the abdominal region. The scaffolds were implanted with 

polytetrafluoroethylene rods, which were removed from all scaffolds one week after 

implantation. The cavities were left to heal spontaneously or with 10 million LUC- MSCs, 

which were transplanted by 30G needle syringe injection. The cavities were closed using 

small polytetrafluoroethylene plugs.  

 The plugs were then removed and one thousand isolated LUC+ PIs were transplanted 

into the experimental scaffolds at two time points (4 or 7 days after rod removal) by injection 

using a syringe supplemented with a thin plastic tube for continuous injection. The animals 

were divided into experimental groups (n = 6 each): Group A – islets were transplanted         

on day 4 after rod removal without MSCs; Group B – islets were transplanted on day 4 after 

rod removal with MSCs; Group C – islets were transplanted on day 7 after rod removal 

without MSCs; Group D – islets were transplanted on day 7 after rod removal with MSCs. 

Animals in group A had implanted control scaffolds containing PBS injected on day 4 (group 

E) without any transplanted cells or islets. Animals in group C had implanted control 

scaffolds containing PBS injected on day 7 (group F) without any transplanted cells or islets. 

Both experimental and control scaffolds were treated in the same way and after surgery the 

scaffolds were covered by skin and tightly sutured. The design of the experiment is shown in 

Fig. 4.9.   

  To avoid a negative effect of hyperglycemia on oxygen consumption in beta cells,      

a slow-release insulin pellet (Linplant Sustained Release Insulin Implants, LinShin Canada, 

Inc., Canada; ≈2U/day/implant for > 40 days) was implanted subcutaneously in each animal   

at the time of scaffold implantation. The pellets were removed two weeks after islet 

transplantation in order to determine the effect of transplanted PIs on blood glucose levels.  

The body weights of animals were measured and blood glucose levels monitored          

on a regular basis using an automatic blood glucose meter for the duration of the whole         

4-month experiment. Normoglycemia was defined as a blood glucose level                         

below 7.5 mmol/L.  
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Fig. 4.9. Design of the experiment. Scaffolds were divided into 6 experimental groups (A – F) 

according to the day of transplantation (Tx) of mesenchymal stem cells (MSCs) or pancreatic islets 

(PI). Phosphate buffered saline (PBS) was added to the control scaffolds (Gálisová, Fábryová, Sticová, 

et al. 2017). 

Magnetic resonance imaging  

 The animals were anesthetized by inhalation of isoflurane (Torrex, Austria) in air       

(5% for induction, 1% during the measurements). Animal body temperature was maintained 

using a heating system and breathing was monitored for the duration of all in vivo 

experiments. MRI measurements were carried out on a 4.7 T MR scanner (Bruker BioSpin, 

Germany) using a resonator coil with an internal diameter of 7 cm (Bruker BioSpin, 

Germany). Anatomical T2-weighted images were acquired using a fast spin echo sequence 
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(TR = 3000 ms, TE = 12 ms, turbo factor = 8, NA = 4, time of acquisition TA = 5 min, spatial 

resolution 0.2 × 0.2 × 1 mm
3
). For DCE MR measurements, a three-dimensional gradient 

echo sequence was used with the following parameters: TR = 10 ms, TE = 3.1 ms, spatial 

resolution  0.2 × 0.4 × 0.7 mm
3
, 32 slices covering the scaffold volume, evolution delay = 2 s, 

temporal resolution 40 s and TA = 16 min. A MR contrast agent (0.05 mmol/kg gadofosveset 

in the experiment with LUC+ MSCs or 0.1 mmol/kg gadobenate dimeglumine                       

in the experiment with LUC+ PIs) was administered after the 8
th
 cycle into the tail vein 

through a 24G catheter. For analysis, regions of interest (ROI) in MR images were outlined 

around the internal diameter of each device using ImageJ software (version 1.46r, National 

Institutes of Health, USA). The area under the curve (AUC) of the DCE MR signal was 

calculated within the first 160 s after administration of the contrast agent from the chosen ROI 

using GraphPad Prism 6.02 (GraphPad Software Inc, USA). The AUC was averaged           

from the 7 selected slices per time point.  

 

In vivo bioluminescence imaging 

 The animals were placed in a dark chamber of the IVIS Lumina XR optical imager 

(Perkin Elmer, USA) in order to detect bioluminescence signals. Standard light photographs 

were taken for anatomical co-registration of the bioluminescent source. Optical images were 

measured before and after intravenous administration of D-luciferin dissolved in sterile PBS 

(50 mg/kg of body weight) with an exposure time of 1 minute, open aperture and open 

emission filter. The images were acquired from a time series lasting 14 minutes, while the 

area under the dynamic time curve was calculated using GraphPad Prism 6.02 (GraphPad 

Software Inc, USA) in order to minimize the variability of D-luciferin administration among 

the measurements.  

 

Histology  

 The scaffolds with the tissue inside were removed from the animals at the end                 

of examination (two months in the experiment with LUC+ MSCs; four months in the 

experiment with LUC+ PIs). The scaffolds were fixed overnight in 4% formaldehyde (pH 7.4) 

at 4 ⁰C and embedded in paraffin blocks. Tissue sections (4 μm) were cut and routinely 

stained with hematoxylin and eosin (H&E) and Verhoeff-Van Gieson elastin stain. 

Immunohistochemical detection of CD31 (rabbit polyclonal, Acris Antibodies GmbH, 

Germany) and insulin (mouse monoclonal, MU029-UC, Biogenex, USA) was performed         

on 4-μm-thick paraffin sections. The primary antibodies were applied overnight at 4 °C.          
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The CD31 antibody was detected by biotinylated goat anti-rabbit IgG (H+L) (Vector 

Laboratories, USA), after which the sections were incubated with R.T.U. Vectastain Elite 

ABC Reagent (Vector Laboratories, USA) for 30 min. The Simple Stain MAX PO (MULTI) 

Universal Immuno-peroxidase Polymer anti-mouse, anti-rabbit Histofine (Nichirei 

Biosciences, Japan) was used to detect the primary anti-insulin antibody. Finally,                 

the specimens were stained with the Dako Liquid DAB Substrate-Chromogen System (Dako, 

Czech Republic) and counterstained with Harris’s hematoxylin.  

 Microvascular density (MVD) assessment was performed on serial sections from each 

scaffold. Two paraffin blocks were prepared from each sample; three serial sections per block 

were stained with the primary anti-CD31 antibody. MVD was evaluated in the area               

of the highest vascularization as a number of CD31-positive microvessels counted                    

at a magnification of ×400 (i.e., ×40 objective lens and ×10 ocular; 0.2375 mm
2
 per field). 

The results were expressed as the mean microvessel count with standard deviation.   

 

Statistical analysis 

 Statistical analysis was conducted using GraphPad Prism 6.02 (GraphPad Software 

Inc, USA). The average DCE MRI signals of the control and experimental scaffolds were 

compared per time point using the unpaired two-tailed Student’s t-test or, for the whole 

examination, using the paired t-test. Comparison between three groups (with and without 

MSCs and controls) was performed by analysis of variance (ANOVA). The significance level 

was set at p < 0.05. Mean values and standard deviations are presented in the graphs. 

Coefficient of determination (R
2
) were calculated by regression analysis. 
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4.2.2 Results 
 

Enhancement of vascularization in the scaffolds by LUC+ mesenchymal stem cells  

 The DCE MR measurements revealed significantly higher perfusion and vessel 

permeability in the scaffolds with MSCs compared to controls throughout the whole 

experiment (2 months) with the peak on day 9 after MSCs transplantation. Viable MSCs were 

tracked in scaffolds during the whole examination with maximum of the optical signal 

detected on day 3.  After 2 months, the bioluminescence signal stayed at approximately        

10 – 15 % of the maximal signal level. The stable optical signal was detected in 1 animal even                   

16 months after MSC transplantation. Histology confirmed higher vascularization (higher 

content of VEGF and more endothelial structures assessed by MVD) in the scaffolds with 

MSCs (Fig. 4.10).  

 The optimal window for PIs transplantation in terms of maximal vascularization 

(assessed by MRI) and viability or the transplanted MSCs (bioluminescence) therefore lies 

between day 3 and day 9 (Fig. 4.11).  

 

Fig 4.10. Histology of scaffolds with transplanted LUC+ MSCs. Representative histological images 

of scaffolds with (upper row) and without MSCs (bottom row) stained by hemtoxylin-eosin (H&E)  

(A, D), antibody to VEGF (B, E) and CD31 (C, F). Higher content of VEGF and more endothelial 

structures were found in scaffolds with MSCs in comparison to controls. 
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Fig. 4.11. Time window for transplantation of PIs in scaffolds. Assessment of optimal condition in 

the artificial scaffolds by means of vascularization (assessed by DCE MRI) and graft viability 

(assessed by bioluminescence imaging). The optimal time window with superior vascularization and 

islet viability was found between day 3 and 9 after MSCs transplantation                                       

(Gálisová, Fábryová, Jirák, et al. 2017). 

Optimization of timing for transplantation of LUC+ PIs into scaffolds in diabetic rats 

In vitro examination of LUC+ pancreatic islets  

 All isolated LUC+ pancreatic islets emitted photons following the addition                  

of D-luciferin into the incubation medium due to luciferase expression. A linear relationship 

between the number of isolated PIs and the optical signal was found (coefficient                       

of determination R
2
 = 0.98) (Fig. 4.12).  

The viability of the islets assessed by staining with fluorescent dyes was > 95% prior 

to transplantation. The mean of the stimulation index was greater than 5 in all groups.  
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Fig. 4.12. In vitro characteristics of isolated PIs. Bioluminescence images (superposed                        

on photography) of isolated LUC+ PIs (A); the numbers below the images represent the amount of PIs 

in the well. Quantification of optical signal originating from different number of isolated PIs (B) 

(Gálisová, Fábryová, Sticová, et al. 2017). 

 

Animal model 

 No adverse macroscopic effects of scaffolds on the surrounding tissue were observed. 

There was no visible sign of inflammation, seroma, or macrophages migration on the day           

of scaffold retrieval and no perforation into skin or peritoneum during the whole examination. 

The scaffolds were removed from animals without causing of massive bleeding or other 

macroscopic damage. Scaffolds exploited higher level of vascularization at the site closer to 

subcutaneous space compared to the site close to the muscle; therefore removal of the devices 

did not cause any harmful effect to the muscle tissue.  

 Diabetes was reversed in all animals without MSCs; four animals from groups B           

(n = 2) and D (n = 2) remained hyperglycemic (Fig. 4.13 A). The percentage of euglycemic 

animals at the end of study was 100% in group A, 67% in group B, 100% in group C and 60% 

in group D (one animal from the group D died during examination and it did not reach long-

term normoglycemia). Animals with non-functional grafts remained hyperglycemic since           

the removal of the insulin pellet until the end of the examination. Normoglycemia in animals 

with functional grafts was sustained for 4 months after removal of the insulin pellet. The body 

weights of animals with functional grafts increased regularly after PIs transplantation, while 

animals with non-functional grafts did not gain weight after PIs transplantation (Fig. 4.13 B). 



 

73 
 

 

Fig. 4.13. Glycemia and body weight of animals during the examination. Blood glucose level 

(BLG) was normalized in groups A-D with functional PIs, and increased in groups B and D with non-

functional PIs after pellet removal (A). The arrows show the day of pancreatic islet transplantation 

(Tx PIs) and the day of insulin pellet removal. Body weight of animals with functional                    

and non-functional grafts (B). Animals with non-functional grafts are represented by a dotted line 

(Gálisová, Fábryová, Sticová, et al. 2017). 

 

MR imaging  

 T2-weighted MR images showed that the connective tissue grew through the scaffolds 

within the first two weeks. No visible anatomical differences between the scaffolds were 

found among the groups (Fig. 4.14).  
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Fig. 4.14. Representative MR images of scaffolds. Representative DCE MR image of an animal with 

an implanted scaffold with MSCs and PIs (A) after contrast agent administration. The arrows indicate 

the kidneys (K), the scaffold and a reference tube. Representative T2-weighted anatomical MR images 

of the scaffolds of different groups on day 7 after scaffold implantation (B) (Gálisová, Fábryová, 

Sticová, et al. 2017). 

 

 Dynamic MR measurements revealed a peak in the AUC three days after PIs 

transplantation in all groups, after which AUC values continuously declined until day 60. 

 Comparison of experimental groups to controls: Higher AUCs were observed in the 

scaffolds with the transplanted MSCs and/or PIs compared to the control scaffolds without 

any transplanted cells (paired t-test; p < 0.001 in groups A and B and p < 0.01 in groups C and 

D) (Fig. 4.15 A, B). Specifically, the difference between group B and controls (group E) was 

significant on all days following PIs transplantation, while the difference between groups A 

and E was significant on day 7 and 35 (Fig. 4.15 A) (unpaired t-test; p < 0.05). There was       

a significant difference between groups C and F on day 7 after PIs transplantation and 

between groups D and F on day (-1) and 60 (Fig. 4.15 B) (unpaired t-test; p < 0.05).  

 Comparison between scaffolds with and without MSCs: A significantly higher AUC 

was found in scaffolds supported with MSCs in comparison to scaffolds without MSCs             

(paired t-test; p < 0.001 in groups A and B and p < 0.01 in groups C and D). Unpaired t-tests 

revealed significance between groups A and B on day 3 (Fig. 4.15 A) and between groups C 

and D one day before PIs transplantation (Fig. 4.15 B) (unpaired t-test; p < 0.05).  

 Comparison between groups with transplanted PIs on day 4 and day 7: Scaffolds with 

PIs transplanted without MSCs on days 4 and day 7 after rod removal showed similar AUC 
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values (Fig. 4.15 C). Paired statistical analysis confirmed higher AUCs in the scaffolds with 

PIs and MSCs transplanted on day 4 after rod removal (paired t-test; p = 0.02). Unpaired 

statistical analysis revealed significant differences in AUC values on days 7, 10 and 35        

(Fig. 4.15 D).  

 

Fig. 4.15. DCE MR analysis related to vascularization. Differences in AUC between scaffolds with 

and without MSCs and controls in animal groups with pancreatic islets transplanted on days 4 (A) and 

7 (B) after rod removal. Comparison of pancreatic islet transplantation on days 4 and 7 after rod 

removal according to AUC values in scaffolds without (C) and with MSCs (D). * p < 0.05,                  

** p < 0.01, *** p < 0.001 (Gálisová, Fábryová, Sticová, et al. 2017). 

  Bioluminescence imaging 

 Optical imaging confirmed the presence of viable LUC+ PIs in the scaffolds for             

the duration of the whole examination, whereas no bioluminescence signal was detected          

in the control groups. Optical signals originating from the viable PIs reached their maximum 

within the first post-transplant week in all experimental groups (day 5 or day 7) and, after 

partially decreasing, remained stable for 120 days. In the group C, the maximum 

bioluminescence signal (day 5) significantly differs from the signal measured on the last 

examination day (day 120) (p < 0.05). No significant difference was found between               

the maximum and the last measured signal in the groups A, B and D. 
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 Pancreatic islets transplanted on day 4 after rod removal showed higher optical signals 

regardless of MSC presence compared to transplantation on day 7 after rod removal                

(Fig. 4.16). There was a significant difference in optical signals between groups A and C           

on days 35 and 120 (Fig. 4.16 C) and between groups B and D on days 10 and 35              

(Fig. 4.16 D). Paired t-test analysis confirmed higher bioluminescence originating from PIs 

transplanted on day 4 compared to day 7 after rod removal (p < 0.0001). There was no 

significant difference between the groups (with or without MSCs) transplanted at the same 

time point (p > 0.05 for all groups).  

 

Fig. 4.16. In vivo bioluminescence imaging. Representative bioluminescence images of pancreatic 

islets transplanted into scaffolds without (A) and with MSCs (B). Images show the scaffolds              

on day 7 after PIs transplantation. Differences between optical signals originating from pancreatic 

islets transplanted on day 4 and day 7 after rod removal without (C) and with MSC support (D).          

D4 and D7 refer to the day after rod removal. *p < 0.05 (Gálisová, Fábryová, Sticová, et al. 2017). 

  

Histology  

 Histological analysis of the specimens stained with hematoxylin/eosin demonstrated 

the presence of viable islets in the central parts of all scaffolds (Fig. 4.17 left row). Insulin 

deposits were found in all scaffolds with transplanted PIs (Fig. 4.17, middle row).                 

The microarchitecture of the islets was distorted by mild interstitial fibrosis with minimal 

inflammatory changes. Neovascularization and fibrosis with hemosiderin deposits were also 

found in close proximity to the transplanted islets. Immunohistochemical staining with                
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the anti-CD31 antibody showed higher microvascular density within the devices with 

transplanted MSCs (Fig. 4.17 right row).  

 Quantitative analysis showed that the highest MVD was in the experimental scaffolds 

with PIs transplanted on day 4 after transplantation of MSCs (Group B). Representative 

images of CD31 stained microvascular structures in the scaffolds are shown in Fig. 4.2.18. 

The mean microvessel count per ×400 field was 9.4 in group A, 17.7 in group B, 11 in group 

C and 12.3 in group D. The results of DCE MR examination (AUC) strongly correlated with 

the results of MVD analysis (R
2
 = 0.99).  

 

Fig. 4.17. Histology of the grafts. Representative images of transplanted pancreatic islets in scaffolds 

stained with hematoxylin/eosin (H&E) (left row) and immunohistochemically with primary antibodies 

anti-insulin (middle row) and CD31 (right row). Viable islets containing insulin positive cells were 

present in the scaffolds (H&E) in all groups A-D. Endothelial structures (CD31) were found in close 

proximity to the islets. Scale bars correspond to 100 µm (Gálisová, Fábryová, Sticová, et al. 2017).  
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Fig. 4.18. Microvascular density analysis. Representative images of CD31 stained tissue sections 

from scaffolds. The arrows point to vascular structures that were counted for MVD analysis in group 

A (A), B (B), C (C) and D (D). Scale bars correspond to 50 µm (Gálisová, Fábryová, Sticová, et al. 

2017).  

 

4.2.3 Discussion  

  
 Subcutaneously implanted scaffolds represent a perspective transplantation site                

for PIs. They allow an easy access with the potential for biopsy/histology, device retrieval, 

imaging and possibility of direct drug delivery (e.g., immunosuppressives). Despite 

mentioned advantages, the subcutaneous space lacks sufficient vascularization that is 

necessary for highly oxygen demanding transplanted islets. Therefore, pre-vascularization                     

of the scaffolds by mesenchymal stem cells and proper timing was studied using multimodal 

imaging.  

 The effect of MSCs on vascularization was assessed by DCE MR technique. The DCE 

MR signal reflects the rate of extravasation of a contrast agent into the tissue. It can be 

quantified by calculating the area under the curve (AUC); its value is dependent on vascular 

permeability and perfusion, which are related to vascularization. Our results show that 

transplantation of MSCs into empty scaffolds enhances vascular permeability and perfusion 
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and improve local blood supply. It has been reported that MSCs secrete various                    

pro-angiogenic substances, such as vascular endothelial growth factor (VEGF),                  

platelet-derived growth factor and angiopoietin-2 (Kagiwada et al. 2008; Krock et al. 2011), 

and stimulate growth of the vascular network (Miranville et al. 2004; Cao et al. 2005; Minteer 

et al. 2013; Tang et al. 2004; Martens et al. 2006). The effect of MCSs on vascularization is 

based on enhancement of formation and stabilization of vascular tubes  of endothelial cells 

(Pill et al. 2015). Improvement of vascularization induced by MSCs was reported in variety of 

animal studies (Miranville et al. 2004; Cao et al. 2005; Minteer et al. 2013; Tang et al. 2004; 

Martens et al. 2006).  Expression of VEGF and angiogenesis is enhanced under hypoxic 

condition (Krock et al. 2011; Sunderkötter et al. 1994) as is the case of the empty scaffolds.  

 Our results show also that the scaffolds with transplanted MSCs and LUC+ PIs 

exhibited higher AUC values and were therefore more effective in forming the vascular 

network. It is worth noting that the difference between AUC values in the scaffolds with and 

without MSCs (containing LUC+ PIs) were significant only at some time points. This may 

have been caused by interanimal variability and the relatively low number of experimental 

animals. Also the amount of transplanted MSCs (10 million) could have only the modest 

effect on changes in vascularization. Nevertheless, it is important that the results obtained         

by DCE MR examination strongly correlated with the histological findings; both analyses 

confirmed higher concentration of vascular structures in the scaffolds containing MSCs.  

 Moreover, a positive impact of MSCs on islet function and survival has been reported 

after co-culture (Hematti et al. 2013; Johansson et al. 2008) or co-transplantation of PIs with 

MSCs (Sakata et al. 2011; Kerby et al. 2013; Figliuzzi et al. 2009) due to the suppression        

of inflammatory responses to transplantation itself and to allograft rejections (Ding et al. 

2011; Longoni et al. 2010). Some authors have also reported a positive influence of trophic 

factors released by MSCs such as VEGF (Figliuzzi et al. 2009), ciliary neurotrophic factor 

(Rezende et al. 2007), Von Willebrand factor (Ito et al. 2010; Figliuzzi et al. 2009; Solari et 

al. 2009) and IL-6 (Park et al. 2010) on islet survival.  

In our model, only viable islets produced a bioluminescence signal and therefore their 

viability can be assessed throughout the whole experiment. The results show that                     

the bioluminescent signal originating from transplanted PIs was comparable in the scaffolds 

with and without MSCs, while the number of normoglycemic animals was even lower            

in the groups with MSCs. Therefore, we suggest that MSCs had only a negligible impact on 

syngenic graft survival in our model and addition of MSCs also lowers islet function.  
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  The final aim was to identify the optimal timing for transplantation of PIs in scaffolds. 

Our experiments with LUC+ MSCs revealed that the best engraftment period for PIs is 

between 3 and 9 days after MSC transplantation (10 to 16 days after implantation of the 

scaffold) (Gálisová, Fábryová, Jirák, et al. 2017). Some other studies with rats (Kříž, Greg, et 

al. 2012; Pileggi et al. 2006) and mice (Pepper, Pawlick, et al. 2015; Smink et al. 2017) with 

transplant devices stated that 4 weeks is necessary for embedding the device by connective 

tissue, which should be free of inflammation and rich in new vessels (Pileggi et al. 2006; Kříž, 

Greg, et al. 2012; Smink et al. 2017). Also the first clinical islet transplantation into a pre-

vascularized device was performed 1 – 4 months after device implantation (Gala-Lopez et al. 

2016), although the graft functionality was not reached. Contrary to this, our results indicate 

that a shorter time period (4 or 7 days after rod removal / 11 or 14 days after scaffold 

implantation, respectively) is also suitable and that the tissue is well vascularized even after 

this shorter period. Transplantation of PIs on day 4 after rod removal and with the support of 

MSCs was found to be better than transplantation on day 7 due to better vascularization 

(assessed by DCE MRI and histological MVD analysis) and islet viability (assessed by 

bioluminescence). The islets transplanted on day 4 after rod removal produced a higher 

optical signal, which reflected either the higher amount of surviving PIs or better availability 

of a substrate for the bioluminescence reaction caused by higher blood supply. Nonetheless, 

bioluminescent signal of PIs transplanted on day 7 without MSCs significantly decreased 

between day 5 and the end of examination, which confirmed limited long-term survival of PIs 

under this transplantation condition. We hypothesize that on day 4 after rod removal, a layer 

of newly formed granulation tissue in the scaffolds created a matrix suitable for vessel growth 

and oxygen penetration. The tissue could have become denser over a longer period (7 days), 

restricting vessel and oxygen availability.  

In a novel site for PIs transplantation, consisting of a temporarily implanted catheter, 

an initial foreign-body response manifested by macrophage infiltration and neovascularization 

was reported to be favorable for islet survival and function (Pepper, Gala-Lopez, et al. 2015). 

We concede that a similar process could have also manifested in our model; although we 

emphasize the importance of the use of a retrievable scaffold for possible removal in case           

of complications such as rejection or inflammation. It should be noted that the devices were 

removed after certain period due to bacterial infection in a clinical study (Gala-Lopez et al. 

2016).  

 The effect of MSCs on islet engraftment was not prominent; the grafts were also 

functional and well-vascularized without the use of MSCs, which points to the strong 
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influence of proper timing on islet engraftment. It is also worth noting that the transplanted 

mass was suboptimal and that the number of transplanted islets was lower compared to other 

scaffold models (Pepper, Pawlick, et al. 2015; Pileggi et al. 2006), which is an important 

parameter for clinical application due to lack of donors.  

 This study shows that islets transplanted on day 4 after rod removal reverted diabetes 

in more than 80% of experimental animals and normoglycemia was maintained until 

graftectomy (4 months). These findings confirm the efficiency of the model presented here for 

type 1 diabetes treatment. Moreover, viable grafts and insulin deposits were confirmed by 

histology, which verified results obtained by other methods. The tested scaffolds were made 

from a clinically approved material, and easily attainable adipose-derived MSCs were used, 

all of which enables easy translation into clinical practice. 

 

4.2.4 Summary – bioluminescent pancreatic islets 
 

 Bioluminescence is capable to monitor viability of transplanted cells/islets 

 Artificial scaffolds represent a suitable extrahepatic site for PIs transplantation, which 

was confirmed by long-term reversal of diabetes, histology and imaging methods even 

using a suboptimal islet mass 

 Addition of mesenchymal stem cells improved vascularization in scaffolds, although 

hindered islet engraftment and function  

 The optimal time for transplantation of PIs into the scaffolds was found to be day 4 after 

rod removal (rather than day 7) in terms of better vascularization and islet viability 

 The optimized protocol holds a potential for clinical applications 
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4.3 Pancreatic islets labeled with multimodal 

nanoparticles for 19F MR and optical imaging 
 

 In this chapter, we focus on optimization of protocol for labeling of PIs by 

multimodal nanoparticles (NPs) trackable by both 
19

F MR and optical imaging. Three 

labeling routes – endocytosis, microporation, and pre-microporation were optimized and 

compared. Labeled islets were transplanted at extrahepatic transplantation site and tracked by 

multimodal imaging in vivo.  

 

The study was divided into four parts: 

1) Estimation of imaging sensitivity of the multimodal nanoparticles  

2) Comparison of islet labeling by standard microporation and pre-microporation 

3) Optimization of islet labeling using endocytosis 

4) In vivo multimodal imaging (
19

F MRI, fluorescence and bioluminescence)                     

of transplanted islets in rats 

 

 The results of the experiments focused on optimization of the procedures for labeling 

of PIs by the multimodal nanoparticles and longitudinal in vivo tracking of labeled PIs using 

trimodal imaging (
19

F MRI, fluorescence and bioluminescence) have been summarized          

in two publications:  

 Herynek V, Gálisová A, Srinivas M, van Dinther EAW, Kosinová L, Ruzicka J, 

Jirátová M, Kriz J, Jirák D. Pre-Microporation Improves Outcome of Pancreatic Islet 

Labeling for Optical and 
19

F MR Imaging. Biological Procedures 2017 (IF 2)  

 Gálisová A, Herynek V, Srinivas M, Swider E, Sticová E, Pátiková A, Kosinová L, 

Kriz J, Hájek M, Jirák D. A novel trimodal platform for tracking of transplanted 

pancreatic islets: 
19

F MR, fluorescence and bioluminescence imaging.              

Submitted to Molecular Imaging and Biology (IF 3.5).  
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4.3.1 Materials and Methods  
 

Preparation and characterization of the multimodal nanoparticles  

 Poly(lactic-co-glycolic acid) nanoparticles (PLGA-NPs) containing a near-infrared 

fluorescent dye indocyanine green (ICG) and perfluoro-15-crown-5-ether (PFCE) were 

prepared at the collaborating Multiscale imaging lab of Radboud University in Nijmegen 

(Netherlands) by solvent evaporation-extraction method as it was described before (Srinivas 

et al., 2010).  

Briefly, 100 mg of PLGA was dissolved in 3 mL Dichloromethane.                                  

900 µL of PFCE and 1 mg of ICG was added to the organic phase. Next, the organic phase 

was added to the aqueous phase containing a surfactant under 

ultrasonication. To formulate positively charged particles, the protocol was slightly modified 

by adding 0.4 g of diethylaminoethyl-dextran (Sigma-Aldrich, Germany) to the aqueous 

phase. The size of the nanoparticles – measured using dynamic light scattering (DLS; 

Zetasizer Nano – Malvern Instruments Ltd, UK) – was 180 nm with a polydispersity index of 

0.1. The PFCE content – measured on a Bruker Avance III 400 MHz NMR (Bruker, 

Germany) – was 1.8-6.0×10
18

 fluorine atoms per mg of the lyophilized sample.                    

The nanoparticles (in the form of a freeze-dried powder) were resuspended in distilled water 

or PBS at various concentrations (0.04 - 10 mg/mL) and placed into the tubes for assessment     

of imaging sensitivity.  

 

Isolation, labeling and preparation of islets for imaging  

 Pancreatic islets were isolated from Brown-Norway rats and the transgenic Lewis rats 

with ubiquital expression of a gene for the luciferase enzyme (National BioResource Project 

– Rat, Kyoto, Japan). Luciferase negative (LUC-) were used as donors for in vitro 

examination of islets and luciferase-positive (LUC+) animals were used as donors                 

of PIs for transplantation. Isolation of PIs was performed according to  a standard protocol 

described in the section 4.1.1 (p. 47). After isolation, islets were incubated for 24 hours             

(37 °C, 5% CO2 atmosphere) in a culture medium containing 84% CMRL-1066 medium, 

10% FBS, 5% HEPES, 0.5% penicillin/streptomycin, and 0.5% glutaMAX (ThermoFisher 

Scientific, USA).  

 Labeling by endocytosis, microporation and pre-microporation was tested and 

compared. Viability of labeled islets was examined by using fluorescent dyes propidium 
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iodide and acridine orange as was described in the section 4.1.1 (p. 48). Insulin release 

potency of islets was assessed by the glucose stimulated insulin secretion test as was 

described in the section 4.1.1 (p. 48). Gain was calculated as percentage of harvested islets to 

all islets used for labeling. For in vitro imaging, islets were fixed with 4% formaldehyde and 

different numbers of islets were placed into the separate tubes. Islets were labeled by 

endocytosis for in vivo experiment due to the best labeling outcome (without formaldehyde 

fixation). 

 

 Microporation – standard procedure 

 Poration was performed using the electroporation device Neon Transfection System 

(ThermoFischer Scientific, USA). 200 or 250 pancreatic islets were resuspended in the buffer 

R (ThermoFischer Scientific, USA) together with the nanoparticles (23 mg of PLGA-NPs per 

1 mL of suspension) in the final volume of 110 μL. The suspension was aspired by the 

pipette with a 100-μL pipette tip and placed into the container with the electrolytic buffer E2 

according to the manufacturer’s instructions. Then, high voltage electric pulses were applied. 

Islet suspension with nanoparticles was placed into a 96-well plate and kept on ice for         

10 minutes immediately after poration. Then the samples were transferred to wells containing 

3 mL of medium without antibiotics for 24-hour incubation (37 °C, 5% CO2) (Fig. 4.19). 

After labeling, the islets were collected, washed three times with PBS, counted and placed 

into 0.5 mL test tubes for imaging.  

Different poration parameters were optimized – number of pulses (1, 2, 4), length           

of pulses (20 and 30 ms) and voltage (600 – 1500 V corresponding to electric field              

20 – 50 kV/m). 

 

 ,,Pre-microporation“ – modified protocol for microporation 

 250 pancreatic islets were resuspended in 110 μL of the buffer R. The samples were 

aspired into the pipette tip and placed into the microporator container with the electrolytic 

buffer E2. Two 20 ms pulses were then applied with various voltage (500 – 1000 V, electric 

field 16.5 – 33 kV/m). After islets pre-poration, the samples were transferred into small wells 

(96-well plate) containing culture medium with suspended nanoparticles (final concentration 

of PLGA-NPs was 23 mg/mL). The islets were kept with concentrated nanoparticles on ice 

for 10 minutes, then the samples were placed into bigger wells (6-well plate) and incubated 
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for 24 hours (37 °C, 5% CO2) (Fig. 4.19) in medium without antibiotics. A control sample 

was microporated using 600 V (two pusles, 20 ms) and incubated in culture medium without 

nanoparticles. After incubation, the islets were collected, washed three times with PBS, 

counted and placed into 0.5 mL test tubes for imaging.  

 

Fig. 4.19. Comparison of experimental design of microporation and pre-microporation 

procedures. According to the standard procedure, islets are porated in a capillary with a contrast 

agent (PLGA-NPs) and then incubated in a 96-well plate with pure medium. On the contrary,          

pre-microporation includes poration without PLGA-NPs and then 10 minute incubation on ice               

in a well containing medium with PLGA-NPs. After 10 minutes, labeled islets are transferred               

into a 6-well plate for 24-hour incubation in both cases.  

 

 Endocytosis  

 Islets labeled by endocytosis served as a reference sample for comparison                    

of a standard microporation procedure and pre-microporation. In this experiment,                  

250 isolated islets were incubated in a medium containing resuspended 23 mg/mL of 
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PLGA-NPs for 24 hours. The islets were collected, washed three times with PBS, counted 

and placed into 0.5 mL test tubes for imaging after labeling.  

 500 islets were incubated in a culture medium containing various concentrations             

of PLGA-NPs: 12 mg/mL, 17 mg/mL and 23 mg/mL to optimize labeling by endocytosis. 

The islets were divided into three amounts (50, 100 and 300 islets) and placed into 0.5 mL 

test tubes prior imaging after 24-hour incubation. 

 Five hundred islets were labeled with 23 mg/mL of PLGA-NPs and different numbers 

(10, 30, 50, 100 and 300) of islets were placed into a 6-well plate with 2 mL of a culture 

medium to estimate imaging sensitivity. The islets were then visualized by fluorescence and 

bioluminescence imaging (after addition of 0.15 mg/mL D-luciferin).   

 For in vivo experiment, islets were incubated in a 5-mL flask containing 17 mg/mL    

or 23 mg/mL of PLGA-NPs (1000 islets in each flask). The islets were collected and washed 

three times with PBS after 24-hour incubation. Control islets were incubated in a culture 

medium without nanoparticles. The labeled and control islets were counted, hand-picked and 

placed into a plastic tube prior transplantation.  

 

Confocal microscopy  

Confocal microscopy was used for confirmation of intracellular localization of the labels 

inside the islets. The islets were prepared by overnight fixation by 4% formaldehyde.              

The islets were then washed by PBS and spun for 1 min at 1300 rpm. 2% agarose was added 

to the pellets and the mixture was immediately centrifuged for 1 min at 1800 rpm.                 

After solidification of agarose, the pellets were transferred into 30% sucrose solution and 

incubated at 4 °C overnight. After incubation, the islets were placed in plastic containers and 

overlayered by Tissue-Tek (Sakura, Netherlands). The samples were stained with 

diaminophenylindole (DAPI) and mounted with vectashield (Vector H-1000, USA)                

on a glass slide. The samples were visualized by the confocal microscope Olympus 

FV1200MPE (Olympus Life Science, Japan). Green background was imaged by an Argon 

laser at 488 nm, DAPI signal by an EPI lamp at 405 nm and ICG signal by a LD599 laser 

using excitation at 647 nm. The images were taken on 20x (air) and 60x (oil immersion) 

objective.    
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Animal model of extrahepatic transplantation of pancreatic islet 

 Male LUC- Lewis rats (Velaz, Czech Republic) weighing 350 – 450 g were chosen as 

the recipients of the pancreatic islets. A surgical non-fluorescent mesh was shaped into the 

scaffolds and implanted as described in the Chapter 4.2.1 (p. 66). Two scaffolds were 

implanted in each animal. Three days after rod removal, pancreatic islets were transplanted 

into the exposed cavities using a manual injector supplemented with a plastic tube in order to 

ensure the slow controlled injection of a large volume of islets (avoiding syringe 

obstruction). The scaffolds were closed using small plugs after transplantation and               

the incisions were tightly closed using 5-0 sutures. Experimental animals received labeled 

LUC+ islets (3000 and 1000 in each scaffold) and a control animal received unlabeled LUC+ 

islets (3000 and 1000). Islets were labeled with 17 mg/mL and 23 mg/mL of PLGA-NPs in 

this experiment.  

  

MRI and optical imaging 

 Prior imaging, the rats were anesthetized by intramuscular anesthesia (ketamine             

36 mg/kg and dexmedetomidine 0.08 mg/kg). All optical images (bioluminescence and 

fluorescence) were acquired on an IVIS Lumina XR imager and processed using Living 

Image software (Perkin Elmer, USA). Fluorescence images were measured using excitation 

at 745 nm and emission at 810 - 875 nm. Bioluminescence images were acquired with an 

open emission filter without using the excitation light. Fluorescence signal was expressed in 

average radiance efficiency [photons/sec/cm
2
/sr]/(μW/cm

2
); bioluminescence signal in 

average radiance (photons/sec/cm
2
/sr). 

 MR imaging was performed on a 4.7 T MR scanner (Bruker BioSpin, Germany) 

using a home-made dual 
1
H/

19
F surface single loop coil. For anatomical localization             

of the samples/animals, proton T2-weighted images were acquired using a turbo spin echo 

sequence: TR = 3000 ms, TE = 12 ms, effective echo time TEeff = 36 ms, turbo factor 8, 

spatial resolution 0.19 x 0.19 x 2 mm
3
, NA = 4 and scan time of 1 minute. After 

1
H MR 

acquisition, the coil was tuned to 
19

F frequency and transmitter power was set up using          

a simple single pulse FID sequence.  

 For visualization of pure agent solutions and the phantoms containing labeled islets, 

19
F MR images were acquired using a turbo spin echo sequence with parameters TR = 1000 

ms, TE = 3.2 ms, TEeff = 42.2 ms, turbo factor 32. For assessment of sensitivity                     
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of visualization of pure agents,
 19

F MR images were acquired using different acquisition 

times (4 min – 3 hours) and various slice thickness (2.2 – 10 mm). For assessment                    

of detection threshold of labeled islets, the phantoms were measured within 1 hour 8 minutes 

(NA = 4096) with slice thickness of 10 mm.  

 In vivo imaging of animals with transplanted islets was trimodal: bioluminescence, 

fluorescence and 
19

F MRI. Fluorescence imaging was performed using exposure time of 60 s 

(aperture fSTOP = 4). Bioluminescence images were acquired before and after intravenous 

administration of D-Luciferin (70 mg/kg) using 60 s exposure time. MR imaging was 

performed after optical imaging. Axial and coronal T2-weighted 
1
H MR images were 

acquired for co-registration. Axial 
19

F MR images were acquired using a turbo spin echo 

sequence with the following parameters: TR = 1500 ms, TE = 3.2 ms, TEeff = 42.2 ms, turbo 

factor 32, slice thickness 20 mm, spatial resolution 1.8 × 1.0 × 20 mm
3
. One 

19
F MR image 

was acquired with a reference tube within 19 minutes (NA = 768), then the reference was 

removed and another 
19

F MR image was acquired within 51 minutes (NA = 2048).              

The 
19

F MR images were interpolated from the acquisition matrix 32 × 32 to 256 × 256, 

converted to false colors and co-registered with anatomical images using ImageJ (National 

Institute of Health, USA). 

Signal intensity from 
19

F MR and fluorescence images was evaluated from manually 

outlined ROIs around each tube or artificial scaffold and SNR values were calculated. 

Fluorine content in labeled islets was calculated from the in vitro 
19

F MR images according 

to the formula 3.10 (p. 36). Absolute quantification of transplanted islets was performed 

according to the formula 3.11 (p. 37). 

 

Histological analysis 

 Two weeks after islet transplantation, the scaffolds were removed, fixed               

in 10% neutral buffered formalin and embedded in paraffin blocks. Four-µm-thick paraffin 

sections were cut and routinely stained with hematoxylin and eosin (H&E) and Verhoeff-Van 

Gieson elastin stain. Immunohistochemical detection of insulin (mouse monoclonal,   

MU029-UC, Biogenex, USA) and Luciferase (mouse monoclonal, Luci 21 1-107, Novus 

Biologicals, USA) was performed on 4-μm-thick paraffin sections. The primary anti-insulin 

antibody was detected by the Simple Stain MAX PO (MULTI) Universal Immuno-peroxidase 

Polymer anti-mouse, anti-rabbit Histofine (Nichirei Biosciences, Japan). The Histofine 

Simple Stain Rat MAX PO (Nichirei, Japan) was used for detection of Luciferase. 
 

Finally, 

visualization was performed with Dako Liquid DAB+ Substrate-Chromogen System (Dako, 
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Denmark) and counterstaining with Harris’s hematoxylin. The slides were viewed using               

a standard light microscopy (Olympus BX41). 

Statistical analysis 

Statistical analysis was conducted using GraphPad Prism 6.02 (GraphPad Software 

Inc., USA). Values in the graphs are reported as mean ± standard deviation. Coefficients             

of regression (R
2
) are presented based on the results of linear regression analysis.  

 

4.3.2 Results  
 

1) Sensitivity of visualization of the multimodal nanoparticles by 
19

F MR and fluorescence 

imaging  

 Both fluorescence and 
19

F MRI signal originating from tubes with PLGA-NPs was 

proportional to PLGA-NPs concentration; however optical signal was quenched at higher 

concentrations (higher content of the ICG dye) (Fig. 4.20). The curve shape of fluorescence 

quenching of our probe corresponds to the published data (Yuan et al. 2004).  

 The minimal concentration of PLGA-NPs detectable by 
19

F MRI (above signal              

of a control water sample with SNR = 2.5) is 0.3 mg/mL (from 10 mm slice and within           

30 min, SNR = 4.3) (Fig. 4.21). Fluorescence imaging was more sensitive for visualization  

of PLGA-NP than 
19

F MRI. To visualize 0.3 mg/mL of PLGA-NPs in a solution, 2 seconds 

of acquisition were needed (to detect 1×10
7
 photons/s/cm

2
/sr) in the case of fluorescence 

imaging, whereas 
19

F MRI required at least 30 minutes. Because of low sensitivity                 

of 
19

F MRI, the minimal thickness of a MR slice for current experimental set-up is 10 mm                 

for visualization of 0.3 mg/mL of PLGA-NPs (Fig. 4.21B). Concentration above 1.2 mg/mL 

of PLGA-NPs was necessary for sufficient MR detection of PLGA-NPs within shorter 

acquisition time (4 - 17 min). 
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Fig. 4.20. Fluorescence and 
19

F MR signal of resuspended PLGA-nanoparticles. Dependence          

of 
19

F MR (dotted line) and fluorescence signal (solid line) on PLGA-NPs concentration (A, B). 

Fluorescence signal is quenched at higher PLGA-NPs concentrations, while the 
19

F MR signal 

linearly increased (A). Representative 
19

F MR and fluorescence images of the tubes with resuspended 

nanoparticles at various concentrations are shown (B) (Herynek et al. 2017).  

 

Fig. 4.21. Sensitivity of visualization of PLGA-nanoparticles. 
19

F MR examination of detection 

sensitivity of PLGA-NPs. Various concentrations (A) and slice thickness (B) were tested.               

The line represents a detection threshold – the signal originating from a control water reference.  
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2) Comparison of a standard microporation procedure and pre-microporation 

 A number of pulses (1, 2 and 4) used for microporation were optimized at first. 

Viability and gain were similar when one or two pulses were used; however the use               

of 4 pulses led to significant decrease of both viability and gain of harvested islets              

(Mann-Whitney U test, p<0.05) (Fig. 4.22 B). Islets labeled by microporation using two 

pulses exploited the highest labeling efficiency assessed by fluorescence imaging; 
19

F MR 

signal of islets labeled by using one or four pulses was lower compared to two pulses             

(Fig. 4.22 C). Therefore, two 20-ms pulses for microporation and 10 min incubation on ice 

after microporation was implemented in further experiments. 

Fig. 4.22. Optimization of microporation parameters. 
19

F MR and fluorescence images of islets 

labeled by microporation using 1, 2 or 4 pulses (A). Comparison of calculated viability/gain (B) and 

19
F MR and fluorescent signal (C) of islets labeled by using different number of microporation pulses. 

 Microporation and pre-microporation were compared in terms of gain and viability  

of labeled islets. The results showed that gain of harvested islets was markedly higher in case 

of pre-microporation (Figure 4.23). The use of the standard microporation procedure led to 

low gain of harvested islets (below 50%) in comparison to pre-microporation, and 

significantly lower compared to endocytosis (U test, p< 0.05, marked by “x“ in Fig 4.23 A). 

Pre-microporation reached comparable gain to endocytosis at lower voltages; only the use        

of high voltage (1000 V) caused significant decrease in gain (U test, P < 0.5, marked by “×” 

in Fig. 23 B).  

 Viability of islets labeled by both microporation procedures was decreased at higher 

voltage (Fig. 4.23 A, B). Islets labeled by microporation at lower voltage reached comparable 

viability to endocytosis (around 90%). The use of voltage above 900 V (standard procedure) 

and 800 V (pre-microporation) affected islet viability significantly compared to endocytosis 

(U test, p<0.05, marked by “*“ in Fig. 4.23 A, B). Viability and gain of the control sample 

was above 98%. 
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Fig. 4.23. Comparison of viability and percentage of harvested islets (gain). Viability and gain          

of islets labeled by a standard microporation procedure (A) and pre-microporation (B) compared to 

endocytosis.  100% gain = number of islets before labeling (Herynek et al. 2017). 

 Islets labeling by both microporation procedures and by endocytosis was sufficient 

for detection by 
19

F MRI and fluorescence imaging. Representative 
19

F MR, fluorescence and 

viability images (fluorescence images reflecting integrity of the cell membrane) of labeled 

islets are presented in Fig. 4.24. The control samples (islets microporated without               

PLGA-NPs, and islets incubated in medium without PLGA-NPs) provided negligible 
19

F MR 

and fluorescence signals. 

 

Fig. 4.24. Comparison of labeling procedures – imaging and viability. Representative 
19

F MR, 

fluorescence (FLI) and viability images of the islets labeled by a standard microporation procedure 

and pre-microporation in comparison to endocytosis. The last row shows islets stained by propidium 

iodide and acridine orange (viable cells are green, dead cells are red) (Herynek et al. 2017). 
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 Quantification of signals revealed that the labeling of islets by using lower voltage 

was advantageous by means of higher 
19

F MR (Fig. 4.25 C, D) and optical signals              

(Fig. 4.25 A, B) obtained from the labeled islets. According to 
19

F MR data, labeling 

efficiency of both microporation procedures was markedly lower compared to endocytosis; 

however signal from 250 microporated islets was still detectable within a 1-hour scan       

(Fig. 4.25 C, D). Interestingly, fluorescence imaging revealed higher signal from 

microporated islets (at lower voltage) compared to endocytosis (Fig. 4.25 A, B).                    

This discrepancy can be explained by fluorescence quenching at higher ICG concentration 

inside islets in case of endocytosis. 

 

Fig. 4.25. Comparison of labeling procedures – quantification of imaging signals. Relative 

(normalized to endocytosis) fluorescence signal (upper row) and 
19

F MR signal intensity (bottom 

row) of islets labeled by a standard microporation (A) and pre-microporation (B). Different voltage 

ranging from 600 V to 1500 V was tested. 
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 The uptake of PLGA-NPs into pancreatic islets labeled by microporation and 

endocytosis was also confirmed by confocal microscopy. There was a higher fluorescence 

signal at the ICG frequency in the islets labeled by endocytosis compared to microporation 

(Fig. 4.26), which is in agreement with the 
19

F MR results. 

 

Fig. 4.26. Confocal microscopy of fixed islets. A control unlabeled pancreatic islets (upper row), 

islets labeled by microporation (600V, 2 pulses) (middle row) and endocytosis (bottom row) using  

the same concentration of PLGA-NPs. Artificial color represent autoluminescence (green), DAPI 

staining for nuclei (blue) and ICG signal corresponding to PLGA-NPs (red). Merged images of red, 

green and blue signals are shown on right. The scale bar represents 50 μm (Herynek et al. 2017). 

In summary, the optimal protocol for islet labeling by microporation, which ensures high 

gain of harvested islets and viability of the islets as well as reasonably high labeling 

efficiency is as follows:  

 pre-microporation without PLGA-NPs using two 20 ms pulses at 600 V,  

 placing of microporated islets in the medium with suspended PLGA-NPs on ice 

for 10 minutes, 

 transferring islets to a Petri dish containing the medium and 24-hour incubation 

at 37°C for recovery 
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3) Optimization of islet labeling using endocytosis 

 Viability and functionality of islets labeled with various concentration of PLGA-NPs 

using endocytosis was assessed. The results showed that labeling procedures based               

on endocytosis did not affect islet viability markedly; islets labeled by endocytosis with 

concentration 23 mg/mL of PLGA-NPs showed comparable viability to unlabeled ones   

(Fig. 4.27 A). Viability of the labeled islets was also confirmed by in vitro bioluminescence 

imaging, while labeled islets provided similar bioluminescence signal                                 

(300 PIs: 6.2 × 10
5
 p/s/cm

2
/sr) to unlabeled controls (300 PIs: 6.0 × 10

5
 p/s/cm

2
/sr).  

 Islet functionality after labeling was confirmed by measuring of the insulin release 

upon glucose stimulation. The glucose stimulation index above 2 confirmed good 

functionality of labeled islets (Fig. 4.27 B). Islets labeled with higher PLGA-NPs 

concentration (23 mg/mL of PLGA-NPs) had moderately lower stimulation indices (2.4±0.3) 

compared to the control sample (3.5±0.9). 

 In the case of LUC+ islets, in vitro bioluminescence imaging confirmed expression  

of luciferase and sufficient bioluminescence signal originating from both labeled and 

unlabeled islets (Fig. 4.27 C). Fluorescence imaging showed that unlabeled islets emit no 

fluorescence signal after excitation at 745 nm (Fig. 4.27 D). There was a linear relationship 

between the number of islets and their in vitro fluorescence and bioluminescence signal  

(both R
2 
= 0.99) (Fig. 4.27 C, D). 
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Fig. 4.27. In vitro characterization of pancreatic islets. Viability (A) and glucose stimulation indices 

(B) of islets after labeling with PLGA-NPs. Quantification of in vitro bioluminescence (C)               

and fluorescence (D) signal from labeled and unlabeled islets. Representative bioluminescence (E) and 

fluorescence (F) images of different numbers of labeled (upper row) and unlabeled (bottom row) islets. 

  As little as 50 islets were detected by 
19

F MRI at an imaging time of 1 hour           

(Fig. 4.28 A, C). Highest 
19

F MRI and fluorescence signal was originating from islets labeled 

by endocytosis using 17 mg/mL of PLGA-NPs for 24 hours (Fig. 4.28 A). Fluorescence 

imaging of labeled islets provided higher signal-to-noise ratio than 
19

F MRI (Fig. 4.28 B).  

 In vitro 
19

F MRI revealed incorporation of an average of 5.5±1.8 × 10
14 

of 
19

F per islet 

(approximately 5.5±1.8 × 10
11 

of 
19

F atoms per cell) after labeling using 17 mg/mL                 

of PLGA-NPs (Fig. 4.28 D). 
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Fig. 4.28. In vitro visualization of pancreatic islets labeled using endocytosis
 
by 

19
F MR                 

and fluorescence imaging. Comparison of signals originating from 300 islets labeled with different 

concentrations of nanoparticles (A). Representative 
19

F MR (left) and FLI (right) images of different 

numbers of islets labeled using 17 mg/mL of PLGA-NPs (B). Visualization sensitivity of various 

numbers of islets labeled at a 17 mg/mL concentration (C), where the relative signal is normalized         

to the signal from the unlabeled islets. Absolute quantification of the number of 
19

F atoms 

incorporated in labeled islets (D).  

 

4) In vivo imaging of transplanted islets in rats 

 

 Labeled LUC+ islets were transplanted into the scaffolds implanted to rats.                

In vivo BLI imaging confirmed the presence of viable transplanted islets in the scaffolds 

throughout the entire 14-day experiment (Fig. 4.29 A). In vivo bioluminescence showed that 

labeling did not impair viability and survival of transplanted islets as the bioluminescence 

signal of the labeled islets was comparable to unlabeled controls. Both, labeled and unlabeled 

islets showed maximum bioluminescence on day 4 after transplantation, with the signal 

decreasing slightly by day 14 (Fig. 4.29 A).  

 The fluorescence signal originating from the labeled islets reached its maximum 

immediately after transplantation (day 1), before rapidly decreasing over the next week in all 
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experimental groups (Fig. 4.29 B). The difference between signal measured at day 1 and day 

4 was 73% for labeling with 17 mg/mL of PLGA-NPs and 83% for 23 mg/mL                       

of PLGA-NPs. Unlabeled islets provided no fluorescence signal at any point. 

 

Fig. 4.29. Quantification of optical signals from transplanted islets. The time course                       

of bioluminescence signals (BLI) originating from viable transplanted islets (A). Changes                      

of fluorescence signal (FLI) of transplanted islets over time (B). 

  The localization of labeled islets inside the scaffolds was also confirmed by 
19

F MR 

imaging (Fig. 4.30 A) throughout the whole examination. The absolute quantification 

revealed engraftment of average of 2300±200 and 1100±300 islets in the scaffolds on day 1, 

corresponding to 3000 and 1000 transplanted islets respectively (manually counted before 

transplantation). The maximum 
19

F MR signal was detected on the first day after islet 

transplantation, after which the signal continuously declined. Islets labeled with 23 mg/mL       

of PLGA-NPs gave lower 
19

F MR signal compared to islets labeled with 17 mg/mL of NPs 

throughout the whole examination (Fig. 4.30 B). Both 1000 and 3000 islets labeled with 

PLGA-NPs with concentration 17 mg/mL provided a detectable signal in the scaffolds during 

the whole examination (until day 14). The 
19

F MR signal originating from the islets labeled 

with 23 mg/mL of NPs was significantly lower and reached the noise level on day 14, while 

19
F MR signal originating from 1000 islets labeled with 17 mg/mL of PLGA-NPs was still 

above the noise level. The signal from 3000 islets labeled with 17 mg/mL of PLGA-NPs 

decreased to 66% of the starting value on day 8 and to 47% on day 14. 
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Fig. 4.30. 
19

F MRI of transplanted islets. The representative 
19

F MR images of pancreatic islets 

labeled using 17 mg/mL of PLGA-NPs and 23 mg/mL of PLGA-NPs in artificial scaffolds (A). 

Quantification of the 
19

F MR signal from labeled islets (B).  

 

 The slow decline of the BLI and 
19

F MR signals contrasted with the rapid decrease          

of FLI (Fig. 4.31). The 
19

F MR signal strongly correlated with bioluminescence between 

days 4 and 14 (R
2 
= 0.99). 
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Fig. 4.31. Trimodal imaging of transplanted pancreatic islets in scaffolds. Representative 

bioluminescence, fluorescence and axial 
19

F/
1
H MR images of 1000 and 3000 pancreatic islets 

transplanted into scaffolds on days 4 and 14 (A). Time course of bioluminescence (BLI), fluorescence 

(FLI) and 
19

F MRI signals for 3000 labeled transplanted islets (B). MRI signal is recalculated             

to the corresponding number of 
19

F nuclei (left axis); the optical signals (BLI, FLI) are normalized         

to the maximum value (=100 %, right axis). 
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Histology 

 The histological analysis confirmed the presence of viable pancreatic islets                

in the central part of scaffolds (Fig. 4.32 A). Vascularized pancreatic islets distorted by 

fibrosis were present in the central parts of the scaffolds. Irregularly distributed clusters        

of cells co-expressing insulin and luciferase were detected immunohistochemically in all the 

islets (Fig. 4.32 B, C). Cells expressing both markers were arranged in trabeculae and 

occasional small ductular structures. Deposits of hemosiderin and foreign body 

granulomatous reaction composed of macrophages and multinucleated foreign body giant 

cells were detected in some islets.  

 

Fig. 4.32. Histology of scaffolds on day 14 after islet transplantation. The representative images        

of transplanted islets in a scaffold stained with hematoxylin and eosin (left magnification 20×) (A).        

A detail of the viable graft is shown at higher magnification on right (200×) (A). 

Immunohistochemical staining with the primary antibodies, anti-insulin (B) and anti-luciferase (C). 

Insulin- and luciferase-positive cells were present at the same locations within the graft. The scale bar 

corresponds to 100 µm. 
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4.3.3 Discussion  
 

1) Sensitivity of visualization of the multimodal nanoparticles by 
19

F MR and fluorescence 

imaging  

 The tested PLGA-NPs enable multimodal imaging. Incorporated ICG dye ensures 

high sensitivity of visualization by fluorescence imaging, which is advantageous for fast 

imaging (in range of seconds). A disadvantage of the tested PLGA-NPs is quenching               

of optical signal by local high ICG concentration due to decay of emission intensity and         

re-absorption of emission photons. This effect has been already described by Yuan et a. 

(Yuan et al. 2004) and it represents a limit for precise quantification of the fluorescence 

signal. Although quenching decreases reliability of quantification of the optical signal, it 

should be noted that under in vivo condition, islets may be more distributed and the effect          

of quenching will be smaller or even negligible. Whereas fluorescence signal decreased with 

increasing concentration due to quenching at high probe concentration, 
19

F MR signal 

increased with increasing concentration. In contrary to fluorescence, sensitivity                       

of visualization by 
19

F MRI is lower and longer acquisition times are needed                  

(minutes - hour). Besides high concentration of the 
19

F contrast agent, lowering of spatial 

resolution is necessary to obtain sufficient signal. In our case, the lowest slice thickness 

reliable for visualization of the probe was 10 mm and in-plane matrix 32 × 32 (voxel size           

24 µL). Although 
19

F MR shows similar sensitivity compared to 
1
H due to similar 

gyromagnetic ratio, concentration of fluorine atoms in the synthetized agents is extremely 

low (≈ mM) compared to protons in the tissues (≈ 100 M). The probe we used contained 

PFCE with 12 equivalent fluorine atoms, which partially compensated low fluorine 

concentration; however development of a probe with even higher fluorine content is still         

on demand.  

   

2) Comparison of labeling procedures 

 Two methods for labeling of pancreatic islets were tested and compared:  endocytosis 

and electroporation (microporation). Endocytosis has been used for labeling of pancreatic 

islets in a variety of studies (Jirák et al. 2004; Ferrauto et al. 2013). Labeling by endocytosis 

is an easy, widely used and effective procedure; however relatively time-consuming. Using 

endocytosis, the positively charged nanoparticles are preferable because of the negative 
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charge of the cell surface. Also electroporation is a widely used method for cell labeling; 

however there are only few studies focused on labeling of PIs. Tai et al. labeled PIs with 

SPIONs (Feridex with a poly-L-lysine transfection agent) using electroporation at lower 

voltage (100 – 500 V) (Foster et al. 2005; Tai et al. 2006).  

 Our results indicate that microporation is an invasive procedure in general and it led to 

substantial loss of islets during the procedure. Use of higher voltage or more than two pulses 

led to radical impairment of islet viability and decreased gain of harvested islets. It is worth to 

note that viability was assessed only on unbroken islets, therefore it does not reflect the 

overall lost or destruction of islets during the procedure. Moreover, microporation using          

a standard protocol when the islets are porated in a pipette together with PLGA-NPs is very 

difficult. In our case, suspension of the nanoparticles had turquoise color making visual 

control of the islets impossible and many islets could have been lost in the electrolytic buffer. 

Other obstacles were bubbles causing sparks during poration and harm the islets.                     

The PLGA-NPs suspension at certain concentration is foamy probably due to hydrophilic 

surface of the polymer (Srinivas, Cruz, et al. 2010), which decreases surface tension and 

therefore the nanoparticle suspension behaves like a surfactant. During the procedure, visible 

bubbles were usually removed, nevertheless microbubbles could still be presented and cause 

sparks. According to our observations, the islets porated by the standard microporation 

procedure were often destructed due to the presence of sparks; however labeling                   

by pre-microporation (the islets are presented in a pipette without nanoparticles) avoided 

these complications. The setting for pre-microporation was optimized as follows: two low 

voltage pulses (500 V - 600 V) with subsequent incubation on ice for 10 minutes. Ten minutes 

interval for incubation of islets with nanoparticles caused no damage to islet viability and it 

was in accord with the published data (Srinivas, Cruz, et al. 2010).  

The observed discrepancy between 
19

F and FLI signals from islets labeled                    

by endocytosis in this experiment was probably caused by quenching of the fluorescence 

signal due to locally high nanoparticle concentration. Moreover, the nanoparticles might not 

be distributed homogenously within the islet pellets, which could also contribute to optical 

signal loss due to quenching and shielding (the optical signal was detected from the surface). 

Although pre-microporation was less efficient and more invasive (at higher voltage than          

600 V) than endocytosis (3-fold lower uptake), it could be beneficial in applications when fast 

labeling is required. 
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3) Optimization of labeling by endocytosis 

 As low as 50 islets labeled by endocytosis were detected by in vitro imaging, although 

much higher amount was needed for sufficient visualization under in vivo conditions due to 

dispersion of islets in the scaffolds and attenuation of optical signal by the tissue.  

 Labeling by endocytosis retained viability and the therapeutic potential of labeled 

islets which was also proved by a comparable bioluminescence signal of labeled and 

unlabeled islets. The bioluminescence signal is dependent on presence of oxygen and 

adenosine triphosphate (ATP), therefore only viable cells emit photons in a bioluminescence 

reaction (Kim et al. 2015). Sufficient viability and insulin secretion of labeled islets was 

reached what corresponded to published non-toxicity of probes based on pefluorcarbons 

(Böhm-Sturm et al. 2011) and safety of chosen labeling method (Herynek et al. 2017).            

The same labeling nanoparticles have been used to label various subsets of primary human 

dendritic cells in preparation for clinical application (Srinivas et al. 2015). Thus, clinical 

application of this procedure is feasible. A strong correlation between islet number and 

detected fluorescence/bioluminescence signal confirmed reliability of optical imaging for 

detection of labeled islets and monitoring of their viability. 

 In vitro 
19

F MRI and fluorescence imaging revealed some controversial results. Using 

endocytosis, the highest imaging signal was detected from islets labeled with 17 mg/mL                       

of PLGA-NPs in contrast to concentration of 23 mg/mL. The labels (e.g. SPIONs) are usually 

present at the islet surface in the case of short labeling, while the particles are taken up in 

deeper islet structures after longer incubation time (Berkova et al. 2008). In our case, 

positively-charged fluorine nanoparticles could aggregate on islet surface even after long 

incubation time if the high concentration (≈ 23 mg/mL) was used. Nevertheless, labeling by 

17 mg/mL of PLGA-NPs led to incorporation of 5.5±1.8 × 10
14 

of 
19

F per one islet 

(approximately 5.5±1.8 × 10
11 

of 
19

F spins), what is in accordance with the published data 

(range of 10
11

-10
13

) (Fink et al. 2018; Bonetto et al. 2012; Helfer et al. 2010).  

 

 4) In vivo monitoring of transplanted islets in rats 

 In this study, we used multimodal imaging to track pancreatic islets transplanted into 

subcutaneously implanted artificial scaffolds. This site possesses some benefits over the liver 

(Kříž, Greg, et al. 2012) and is suitable for examining transplanted cells using various 

imaging methods (Fabryova et al. 2014; Gálisová, Fábryová, Sticová, et al. 2017). In addition 

to the grafted islets being concentrated at one place, what is advantageous for in vivo 
19

F MRI 
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detection, the scaffolds are implanted subcutaneously ensuring a short optical path for                               

the fluorescence/bioluminescence signal emitted from the transplanted islets. 

 Labeling by endocytosis was chosen for in vivo experiments due to adverse effects            

of microporation. Transplanted islets were visualized in artificial scaffolds by all used 

imaging methods within two weeks. Bioluminescence confirmed the viability of islets in the 

scaffolds throughout the whole examination with only a partial decrease in islet mass.           

The in vivo results were in accordance with in vitro findings; the highest 
19

F MR signal 

originated from islets labeled with 17 mg/mL of nanoparticles compared to 23 mg/mL 

concentration. Absolute quantification from 
19

F MR images confirmed appropriate numbers 

of transplanted islets in scaffolds on day 1 after islet transplantation. 1000 islets were 

detectable by 
19

F MR until day 4 in contrast to 3000 islets providing a sufficient 
19

F signal for 

the whole examination (14 days). The decrease of the 
19

F MR signal to 44% on day 14 

corresponds with published experimental and clinical data reporting a gradual loss                  

of transplanted islets within 2 weeks after transplantation (Saudek et al. 2010; Jirák et al. 

2009). To our knowledge, this is the first evidence of longitudinal tracking of transplanted 

islets by 
19

F MRI in vivo. Previous studies have visualized islets labeled with                     

fluorine-containing probes at one time point post-transplantation only (Liang et al. 2017; Brad 

P; Barnett et al. 2011). It should be noted that due to the low sensitivity of 
19

F MRI, long 

acquisition times (1 hour) were needed for visualize the transplanted grafts in our study. Low 

spatial resolution has been used to improve sensitivity, but it can also lead to the grafts being 

underestimated due to the spreading of the signal in the image voxel (Böhm-Sturm et al. 

2011). Low detection sensitivity of in vivo 
19

F MR has been also reported in other models, 

e.g., examination of carbohydrates sensitive to beta cells through GLUT-2 transporters in 

order to visualize transplanted islet (Liang et al. 2016) and tracking transplanted stem cells in 

the brain (Böhm-Sturm et al. 2011). However, the ability to quantify signals and estimate 

graft size without the use of radioactive probes represents a considerable advantage. 

Inhomogeneous B1 excitation when using the surface RF coil is a further limitation. 

The 
19

F MR signal is influenced not only by 
19

F concentration, but also by the distance from 

the coil. Other errors in quantification of the 
19

F MR signal may arise from filtering during 

post-processing, low measurement matrices and Fourier transform, potentially resulting in 

partial signal dispersion within the whole measurement matrix (Herynek et al. 2017; Amiri et 

al. 2015). To overcome these sensitivity problems and to increase 
19

F SNR, various data 

acquisition methods, such as compressed sensing have been proposed (Liang et al. 2017).  



 

106 
 

 Although fluorescence imaging was found to be a more sensitive method for cell 

tracking compared to 
19

F MRI, we observed a steep decline in the in vivo fluorescence signal. 

Quenching of fluorescence signals originating from islets labeled using high concentrations  

of PLGA-NPs has been described previously (Herynek et al. 2017), but the fluorescence 

signal used in this model decreased rapidly within four days after transplantation. 

Fluorescence of labeled islets decreased to a noise level within 1 week, while 
19

F MR and 

bioluminescence signals decreased only partially. This indicates the instability                             

of the fluorescent dye (ICG) in the nanoparticles under in vivo conditions. Thermal 

degradation of ICG using other multifunctional perfluorocarbon nanoemulsions                         

at temperatures above 37 °C has been previously reported (Bae et al. 2014). Alternatively,            

the dye may leak out of the islets over time (Swider et al. 2018). We hypothesize that these 

effects may have occurred in our model, thus limiting the reliability of in vivo fluorescence 

imaging. Therefore, in the absence of reporter genes, we did not use FLI with fluorescent dyes 

for longitudinal in vivo imaging. 

 The bioluminescence signal correlated strongly with the 
19

F MR signal from                

the transplanted islets, which indicates that the probe was washed out after cell death. This 

finding is in apparent contradiction to a previously published study that used PFC-labeled 

neural stem cells (Böhm-Sturm et al. 2011). The authors of that study found that the agent 

remained in the tissue, while the 
19

F MR signal persisted even after cell death in the case             

of stem cells transplanted into brain tissue. Another study, one that also used lipid-coated 

emulsions, found that perfluoro-crown-ether was retained at the site in a murine model                

of inflammation for several months (Jacoby et al. 2014). It should also be noted that               

the 
19

F labels used in these studies were different (lipid-coated emulsion versus PLGA NPs). 

Furthermore, the islets in our study were transplanted into a well-vascularized site with good 

access to circulating macrophages. It may also be that the difference in formulation had                 

a significant effect on the PFC clearance rate. We hypothesize that migrating macrophages 

remove the nanoparticles together with dead islets, thus eliminating their contribution to any 

false-positive results. In any case, clearance from dead cells is essential for avoiding                

false-positives, a major issue that we resolved through the use of PLGA-NPs.  

Importantly, histology revealed viable islet grafts in scaffolds, both labeled and 

unlabeled islets. It is significant that insulin deposits were found at the same locations               

as luciferase molecules, which confirmed the functionality of transplanted LUC+ islets 

labeled using PLGA-NPs. 

  



 

107 
 

4.3.4 Summary – multimodal PLGA-based 

nanoparticles 
 

 Labeling of PIs by multimodal PLGA-NPs was optimized: endocytosis was found            

to be a more efficient labeling process than microporation or pre-microporation 

 A novel platform for in vivo multimodal tracking of transplanted PIs including 

bioluminescence, fluorescence and 
19

F MRI was introduced  

 Islets labeled with PLGA-NPs were tracked in artificial scaffolds for 2 weeks              

- the study represents the first reported 
19

F MRI longitudinal in vivo tracking of PIs 

 In vivo fluorescence signal was detected only within 4 days after PIs transplantation 

indicating instability of the fluorescent dye in vivo 

 Correlation between the bioluminescence and 
19

F MRI signals confirmed good 

clearance of PLGA-NPs from the transplantation site after cell death what addresses  

a major issue related to intracellular imaging labels 

 The proposed imaging platform is therefore reliable for quantification of survived 

transplanted islets. 
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5 Conclusion 
 

  In this thesis, novel imaging approaches for visualization of pancreatic islets were 

examined with the aim of improvement of islet monitoring after transplantation. Magnetic 

resonance and optical imaging were implemented for this purpose, namely CEST MR 

approach, 
19

F MR imaging, fluorescence and bioluminescence imaging. 

 CEST as a frequency-selective approach has a great potential for MR imaging; 

however our results pointed out to low sensitivity of the method for cell imaging and high 

toxicity of the tested CEST probes. Labeled islets were successfully visualized only in vitro 

and within long acquisition times. Increase of labeling concentration had adverse effect        

on cell viability. Therefore, the use of the CEST agents as exogenous labels for PIs and their 

in vivo application is at current instrumental setting inappropriate.  

  Multimodal imaging with bioluminescence and MR imaging was used for 

optimization of a transplantation protocol at an alternative transplant site – artificial scaffolds. 

Transplantation of a suboptimal PIs mass on day 4 after rod removal from scaffolds was 

found to be superior in comparison to day 7 due to higher islet viability and vascularization. 

Using the optimized protocol, long-term normoglycemia was induced in more than                    

80% of experimental animals, therefore the model holds a potential for further clinical 

applications. 

 Three imaging modalities, including specific 
19

F MRI and sensitive optical imaging 

were applied for monitoring of PIs transplanted using the optimized transplantation protocol. 

Multimodal probes can provide complementary information about distribution and viability    

of transplanted grafts. Quantification of 
19

F MRI signals assessed absolute numbers                     

of transplanted islets in scaffolds over time. The bioluminescence signal correlated with         

the 
19

F MR signal indicating clearance of PLGA-NPs from the transplantation site after cell 

death eliminating false positive data. This result addresses one of the major issues                       

of intracellular imaging labels. The proposed imaging platform is therefore reliable                  

for quantification of survived transplanted islets. 

 The work contributes to the improvement of transplantation protocol for pancreatic 

islets and may help to monitor non-invasively the distribution and viability of transplanted 

islets or processes causing rejection. Moreover, multimodal imaging might speed up 

translation of these alternative transplant models into clinical practice. 
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Resonance Studies“ 2014, Czech Republic (oral presentation) 
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Gálisová A, Jirák D, Herynek V, Fábryová E, Dovolilová E, Kříž J, Hájek M. The Effect of 

Mesenchymal Stem Cells on Vascularization of an Artificial Cell Transplant Site studied by 

DCE MR and Optical Imaging, Annual Joint Meeting of ISMRM and ESMRMB 2014, Italy 

(traditional poster) 

 

Gálisová A, Jirák D, Herynek V, Fábryová E, Dovolilová E, Kříž J, Hájek M. Improvement 

of Blood Supply to an Artificial Transplant Site after Stem Cells Implantation studied by DCE 

MR and Bioluminescence Imaging, European Molecular Imaging Meeting 2014, Belgium 

(traditional poster) 

 

Gálisová A, Jirák D, Fábryová E, Kosinová L, Herynek V, Kříž J, Hájek M. 

Bioluminiscenční potkani a jejich využití v experimentálním modelu léčby diabetu.                  

8. výzkumné fórum "Pyramida" 2015, Czech Republic (oral presentation) 

 

Gálisová A, Jirák D, Fábryová E, Herynek V, Kosinová L, Kříž J, Hájek. Multimodal 

imaging of an artificial transplant site for pancreatic islets supported with mesenchymal stem 

cells. European Molecular Imaging Meeting 2015, Germany (oral presentation) 

 

Gálisová A, Jirák D, Fábryová E, Herynek V, Kosinová L, Kříž J, Hájek. Monitoring the 

pancreatic islets implantation in the subcutaneous polymeric scaffolds by DCE MRI and 

optical imaging, 23rd Annual Meeting of International Society for Magnetic Resonance         

in Medicine (ISMRM) 2015, Canada (electronic poster) 

 

Gálisová A, Herynek V, Jirák D, Martinisková M, Kotek J, Hájek M. Pilot 
19

F MRI 

experiments at IKEM. International Workshop ,,Magnetic Resonance Studies” 2015, Austria 

(oral presentation) 

 

Galisova A, Fabryova E, Jirák D, Herynek V, Kosinova L, Jiratova M, Kriz J, Hajek M. 

Multimodal imaging of pancreatic islets transplanted into the artificial scaffolds. Annual 

Scientific Meeting of European Society for Magnetic Resonance in Medicine and Biology 

(ESMRMB) Scientific meeting 2015, UK, Program No. 547 (electronic poster)  

 

Gálisová A, Fábryová E, Jirák D, Kosinová L, Jirátová M, Saudek F, Hájek M, Kříž J. Určení 

vhodného načasování transplantace pankreatických ostrůvků do arteficiálních podkožních 
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skeletů pomocí zobrazovacích metod. 52. Diabetologické dny 2016. Czech Republic 

(traditional poster) 

Gálisová A, Fábryová E, Kosinová L, Jirátová M, Herynek V, Kříž J, Hájek M, Jirák D. 

Assessment of an optimal timing for transplantation of pancreatic islets into the artificial 

scaffolds by multimodal imaging, World Molecular Imaging Meeting 2016, USA (oral talk) 

 awarded for the best pre-clinical paper  

 

6.4 Other first-author presentations  

Galisova A, Jirák D, Deligianni X, Drobny M, Sedivy P, Herynek V, Hajek M. Important 

biomarkers related to the MRI-estimated whole liver fat content in the healthy volunteers and 

type 1 diabetic patients. Annual Scientific Meeting of European Society for Magnetic 

Resonance in Medicine and Biology (ESMRMB) Scientific meeting 2015, UK (electronic 

poster + 2 min talk) 

 

Gálisová A, Jirák D, Jirátová M, Rabyk M, Hrubý M, Hájek M. In vivo MR zobrazování 

tumorů pomocí kontrastních látek na bázi glykogenu. 9. výzkumné fórum Pyramida 2016, 

Czech Republic (oral talk) 

 

Galisova A, Jirak D, Jiratova M, Hruby M, Rabyk M, Pospisilova A, Hajek M. 

Biodegradable glycoged-based nanoprobe as a multimodal tumor-targeting contrast agent. 

24rd Annual Meeting of International Society for Magnetic Resonance in Medicine (ISMRM) 

2016, Singapore, Program number: 2309 (traditional poster) 

 

Gálisová A, Jirák D, Hrubý M, Sedláček O, Hájek M. A novel thermoresponsive agent for 
19

F 

molecular imaging. 33rd Annual Scientific Meeting of European Society for Magnetic 

Resonance in Medicine and Biology (ESMRMB) 2016, Austria (electronic poster + 2 min 

talk) 

 awarded by the Certificate of Merit  

 

Gálisová A, Jirátová M, Sticová E, Hrubý M, Rabyk M, Hájek M, Jirák D. Multimodální 

polysacharidové „drug delivery“ systémy pro nádorovou teranostiku. 10. Výzkumné forum 

Pyramida 2017, Czech Republic (oral talk) 
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Gálisová A, Jirátová M, Hrubý M, Rabyk M, Hájek M, Jirák D. A Novel Multimodal 

Mannan-Based Polymer System Suitable for Tumor and Metastasis Diagnosis. 25th Annual 

Meeting of International Society for Magnetic Resonance in Medicine (ISMRM) 2017, USA. 

Program number: 3573 (electronic poster) 

 

Gálisová A, Jirátová M, Rabyk M, Hrubý M, Hájek M, Jirák D. Preklinické testování 

mananových konjugátů určených pro nádorovou teranostiku. 11. Výzkumné forum Pyramida 

2018, Czech Republic (oral talk) 

 

Galisova A, Jiratova M, Rabyk M, Sticova E, Hruby M, Hajek M, Jirak D. A novel glycogen-

based probe for tumor imaging and drug delivery. Annual Scientific Meeting of European 

Society for Magnetic Resonance in Medicine and Biology (ESMRMB) Scientific meeting 

2017, Spain, Program number: 426 (oral talk) 

 

Galisova A, Jiratova M, Rabyk M, Hruby M, Hajek M, Jirak D. A novel mannan-based probe 

for multimodal imaging of cancer and inflammation. European Molecular Imaging Meeting 

2018, Spain (paper poster) 

 awarded by a poster award 

 

 
 

 

 

 

 

 

 

 

 

 

 



 

115 
 

7 References 
 

Ahrens, E. et al., 2014. Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 

MRI. Magnetic Resonance in Medicine, 72(6), pp.1696–1701. 

Ahrens, E.T. & Bulte, J., 2013. Tracking immune cells in vivo using magnetic resonance imaging. Nat 

Rev Immunol, 13(10), pp.755–63. 

Aime, S. et al., 2005. Tunable imaging of cells labeled with MRI-PARACEST agents. Angewandte 

Chemie (International ed. in English), 44(12), pp.1813–5. 

Amiri, H. et al., 2015. Cell tracking using (19)F magnetic resonance imaging: technical aspects and 

challenges towards clinical applications. Eur Radiol, 25(3), pp.726–35. 

Antkowiak, P.F. et al., 2012. Manganese-Enhanced Magnetic Resonance Imaging Detects Declining 

Pancreatic Cell Mass in a Cyclophosphamide - Accelerated Mouse Model of Type 1 Diabetes. 

Diabetes, 62(1), pp.44–48. 

Arbab, A. et al., 2004. Comparison of Transfection Agents in Forming Complexes with Ferumoxides, 

Cell Labeling Efficiency, and Cellular Viability. Molecular Imaging, 3(1). 

Arifin, D. et al., 2013. Microencapsulated cell tracking. NMR in Biomedicine, 26(7), pp.850–9. 

Arifin, D.R. et al., 2011. Trimodal gadolinium-gold microcapsules containing pancreatic islet cells 

restore normoglycemia in diabetic mice and can be tracked using positive contrast MR, CT, and 

ultrasound imaging. Radiology, 260(3), pp.790–8. 

Atkinson, M.A., Eisenbarth, G.S. & Michels, A., 2014. Type 1 diabetes. The Lancet, 383(9911), 

pp.69–82. 

Bae, P.K., Jung, J. & Chung, B.H., 2014. Highly enhanced optical properties of indocyanine 

green/perfluorocarbon nanoemulsions for efficient lymph node mapping using near-infrared and 

magnetic resonance imaging. Nano Convergence, 1, p.6. 

Bank, H., 1987. Assessment of islet cell viability using fluorescent dyes. Diabetologia. 

Barnett, B.P. et al., 2011. Fluorocapsules for improved function, immunoprotection, and visualization 

of cellular therapeutics with MR, US, and CT imaging. Radiology, 182–191. 

Barnett, B.P. et al., 2007. Magnetic resonance-guided, real-time targeted delivery and imaging of 

magnetocapsules immunoprotecting pancreatic islet cells. Nature Medicine, 13(8), pp.986–991. 



 

116 
 

Barnett, B.P. et al., 2006. Radiopaque alginate microcapsules for X-ray visualization and 

immunoprotection of cellular therapeutics. Molecular Pharmaceutics, 3(5), pp.531–538. 

Barnett, B.P. et al., 2011. Use of perfluorocarbon nanoparticles for non-invasive multimodal cell 

tracking of human pancreatic islets. Contrast Media Mol Imaging, 6(4), pp.251–259. 

Barton, F.B. et al., 2012. Improvement in outcomes of clinical islet transplantation: 1999-2010. 

Diabetes care, 35(7), pp.1436–45. 

van Belle, T., Coppieters, K. & von Derrath, M., 2011. Type 1 diabetes: etiology, immnunology, and 

therapeutic strategies. Physiological Reviews, 91(1), pp.79–118. 

Berkova, Z. et al., 2008. Labeling of pancreatic islets with iron oxide nanoparticles for in vivo 

detection with magnetic resonance. Transplantation, 85(1), pp.155–159. 

Biancone, L. et al., 2007. Magnetic resonance imaging of gadolinium-labeled pancreatic islets for 

experimental transplantation. NMR in Biomedicine, 20(1), pp.40–48. 

Böhm-Sturm, P. et al., 2014. A multi-modality platform to image stem cell graft survival in the naïve 

and stroke-damaged mouse brain. Biomaterials, 35(7), pp.2218–2226. 

Böhm-Sturm, P. et al., 2011. In Vivo Tracking of Human Neural Stem Cells with Magnetic Resonance 

Imaging. PLoS ONE, 6(12), p.e29040. 

Bonetto, F. et al., 2012. A novel 19F agent for detection and quantification of human dendritic cells 

using magnetic resonance imaging. Int J Cancer, 129(2), pp.365–373. 

Boomsma, R. & Geenen, D., 2012. Mesenchymal stem cells secrete multiple cytokines that promote 

angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS ONE, 7(4), 

p.e35685. 

Bornhop, D. et al., 2001. Advance in contrast agents, reporters, and detection. J Biomed Opt, 6(2), 

pp.106–10. 

Brom, M. et al., 2014. Non-invasive quantification of the beta cell mass by SPECT with 
111

In-labelled 

exendin. Diabetologia, 57(5), pp.950–9. 

Bulte, J. et al., 2004. Chondrogenic differentiation of mesenchymal stem cells is inhibited after 

magnetic labeling with ferumoxides. Blood, 104(10), pp.3410–2. 

Cai, K. et al., 2012. Magnetic Resonance imaging of glutamate. Nature medicine, 18(2), pp.302–6. 

Cantarelli, E. & Piemonti, L., 2011. Alternative transplantation sites for pancreatic islet grafts. Curr 



 

117 
 

Diab Rep, 11(5), pp.364–74. 

Cao, Y. et al., 2005. Human adipose tissue-derived stem cells differentiate into endothelial cells in 

vitro and improve postnatal neovascularization in vivo. Biochemical and biophysical research 

communications, 332(2), pp.370–9. 

Delaune, V. et al., 2017. Intraportal islet transplantation: the impact of the liver microenvironment. 

Transpl Int, 30(3), pp.227–238. 

Delli Castelli, D. et al., 2014. In vivo maps of extracellular pH in murine melanoma by CEST-MRI. 

Magnetic resonance in medicine, 71(1), pp.326–332. 

Ding, D., Shyu, W. & Lin, S., 2011. Mesenchymal stem cells. Cell Transplantation, 20(1), pp.5–14. 

Dixon, W. et al., 2010. A concentration-independent method to measure exchange rates in 

PARACEST agents. Magn Reson Med, 63(3), pp.625–632. 

Eriksson, O. et al., 2014. Positron emission tomography ligand [11C]5-hydroxy-tryptophan can be 

used as a surrogate marker for the human endocrine pancreas. Diabetes, 63(10), pp.3428–37. 

Eriksson, O. et al., 2016. Positron Emission Tomography to Assess the Outcome of Intraportal Islet 

Transplantation. Diabetes, 65(9), pp.2482–2489. 

Evgenov, N. V et al., 2006. In vivo imaging of islet transplantation. Nature medicine, 12(1), pp.144–8. 

Fabryova, E. et al., 2014. Effect of mesenchymal stem cells on the vascularization of the artificial site 

for islet transplantation in rats. Transplantation proceedings, 46(6), pp.1963–6. 

Farrell, T., Patterson, M. & Wilson, B., 1992. A diffusion theory model of spatially resolved, steady-

state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. 

Med Phys, 19(4), pp.879–88. 

Ferrauto, G. et al., 2013. In vivo MRI visualization of different cell populations labeled with 

PARACEST agents. Magnetic resonance in medicine, 69(6), pp.1703–11. 

Ferrauto, G. et al., 2014. Lanthanide-loaded erythrocytes as highly sensitive chemical exchange 

saturation transfer MRI contrast agents. Journal of the American Chemical Society, 136(2), 

pp.638–41. 

Fiallo-Scharer, R. et al., 2011. Factors predictive of severe hypoglycemia in type 1 diabetes: analysis 

from the Juvenile Diabetes Research Foundation continuous glucose monitoring randomized 

control trial dataset. Diabetes care, 34(4), pp.586–90. 



 

118 
 

Figliuzzi, M. et al., 2009. Bone marrow-derived mesenchymal stem cells improve islet graft function 

in diabetic rats. Transplantation proceedings, 41(5), pp.1797–800. 

Fink, C. et al., 2018. 19F-perfluorocarbon-labeled human peripheral blood mononuclear cells can be 

detected in vivo using clinical MRI parameters in a therapeutic cell setting. Scientific Reports, 

8(1), p.590. 

Foster, P. et al., 2005. Cellular imaging of individual pancreatic islets using electroporation and 

3DFIESTA at 1.5 Tesla. Proc Intl Soc Mag Reson Med, 13, p.361. 

Fowler, M. et al., 2005. Assessment of Pancreatic Islet Mass after Islet Transplantation Using In Vivo 

Bioluminescence Imaging. Transplantation, 79(7), pp.768–776. 

Fröhlich, E., 2012. The role of surface charge in cellular uptake and cytotoxicity of medical 

nanoparticles. Int J Nanomedicine, 7, pp.5577–91. 

Gala-Lopez, B.L. et al., 2016. Subcutaneous clinical islet transplantation in a prevascularized 

subcutaneous pouch – preliminary experience. CellR4, 4(5), p.e2132. 

Gálisová, A. et al., 2016. Magnetic Resonance Visualization of Pancreatic Islets Labeled by 

PARACEST Contrast Agents at 4.7 T. Journal of Molecular Imaging & Dynamics, 6(1), pp.4–

10. 

Gálisová, A., Fábryová, E., Jirák, D., et al., 2017. Multimodal Imaging Reveals Improvement of Blood 

Supply to an Artificial Cell Transplant Site Induced by Bioluminescent Mesenchymal Stem 

Cells. Molecular Imaging and Biology, 19(1), pp.15–23. 

Gálisová, A., Fábryová, E., Sticová, E., et al., 2017. The Optimal Timing for Pancreatic Islet 

Transplantation into Subcutaneous Scaffolds Assessed by Multimodal Imaging. Contrast Media 

and Molecular Imaging, p.5418495. 

Gao, H., Shi, W. & Freund, L., 2005. Mechanics of receptor-mediated endocytosis. Proc Natl Acad 

Sci USA, 102(27), pp.9469–74. 

Gaudet, J. et al., 2015. Tracking the Fate of Stem Cell Implants with fluorine-19 MRI. PLoS ONE, 

10(3), p.e0118544. 

Gotoh, M. et al., 1985. An improved method for isolation of mouse pancreatic islets. Transplantation, 

40, pp.437–8. 

de Graaf, R., 2007. In Vivo NMR Spectroscopy. John Wiley & Sons, ISBN 97804, pp.43–231. 

Grad, J. & Bryant, R., 1990. Nuclear magnetic cross-relaxation spectroscopy. J Magn Resonance, 



 

119 
 

90(1), pp.1–8. 

Di Gregorio, E. et al., 2013. Gd loading by hypotonic swelling: an efficient and safe route for cellular 

labeling. Contrast media & molecular imaging, 8(6), pp.475–86. 

Hakamata, Y., Murakami, T. & Kobayashi, E., 2006. “Firefly rats” as an organ/cellular source for 

long-term in vivo bioluminescent imaging. Transplantation, 81(8), pp.1179–84. 

Haris, M. et al., 2011. In vivo mapping of brain myo-inositol. NeuroImage, 54(3), pp.2079–85. 

Harlan, D. et al., 2009. Current advances and travails in islet transplantation. Diabetes, 58(10), 

pp.2175–84. 

Harlan, D., 2016. Islet Transplantation for Hypoglycemia: Unawareness/Severe Hypoglycemia: 

Caveat Emptor. Diabetes care, 39(7), pp.1072–1074. 

Hathout, E. et al., 2009. In vivo imaging demonstrates a time-line for new vessel formation in islet 

transplantation. Pediatr Transplant, 13(7), pp.892–7. 

Helfer, B. et al., 2010. Functional assessment of human dendritic cells labeled for in vivo (19)F 

magnetic resonance imaging cell tracking. Cytotherapy, 12(2), pp.238–50. 

Hematti, P. et al., 2013. Potential role of mesenchymal stromal cells in pancreatic islet transplantation. 

Transplantation reviews (Orlando), 27(1), pp.21–9. 

Herynek, V. et al., 2011. Improved detection of pancreatic islets in vivo using double contrast. 

Contrast Media and Molecular Imaging, 6(4), pp.308–13. 

Herynek, V. et al., 2017. Pre-Microporation Improves Outcome of Pancreatic Islet Labelling for 

Optical and 19F MR Imaging. Biological Procedures Online, 19, p.6. 

Chaikof, E., 1999. Engineering and material consideration in islet cell transplantation. Annual Reviews 

of Biomedical Engineering, 1, pp.103–127. 

Chen, X. et al., 2006. In vivo bioluminescence imaging of transplanted islets and early detection of 

graft rejection. Transplantation, 81(10), pp.1421–7. 

Chen, X. & Kaufman, D.B., 2009. Bioluminescence Imaging of Transplanted Islets P. B. Rich & C. 

Douillet, eds. Methods in Molecular Biology, 574, pp.1–10. 

Ishimaru, A., 1978. Wave propagation and Scattering in Random Media. Elsevier, ISBN: 978-. 

Ito, T. et al., 2010. Mesenchymal stem cell and islet co-transplantation promotes graft 

revascularization and function. Transplantation, 89(12), pp.1438–45. 



 

120 
 

Jacoby, C. et al., 2014. Probing different perfluorocarbons for in vivo inflammation imaging by 19F 

MRI: Image reconstruction, biological half-lives and sensitivity. NMR in Biomedicine, 27(3), 

pp.261–271. 

Jirák, D. et al., 2009. Monitoring the survival of islet transplants by MRI using a novel technique for 

their automated detection and quantification. Magnetic Resonance Materials in Physics, Biology 

and Medicine, 22(4), pp.257–65. 

Jirák, D. et al., 2004. MRI of transplanted pancreatic islets. Magnetic resonance in medicine, 52(6), 

pp.1228–33. 

Johansson, U. et al., 2008. Formation of Composite Endothelial Cell – Mesenchymal. Diabetes, 

57(10), pp.2393–2401. 

Kagiwada, H. et al., 2008. Human mesenchymal stem cells as a stable source of VEGF-producing 

cells. Journal of Tissue Engineering and Regenerative Medicine, 2(4), pp.184–189. 

Kawahara, T. et al., 2011. Portal vein thrombosis is a potentially preventable complication in clinical 

islet transplantation. American journal of transplantation, 11(12), pp.2700–2707. 

Kerby, A. et al., 2013. Co-transplantation of islets with mesenchymal stem cells in microcapsules 

demonstrates graft outcome can be improved in an isolated-graft model of islet transplantation in 

mice. Cytotherapy, 15(2), pp.192–200. 

Kim, H. et al., 2007. Registration of Sheep Brain MR Images for Cell Tracking Using Ferrite-

Composite Micro-Beads as Markers. In Engineering in Medicine and Biology Society. 

Kim, J., Kalimuthu, S. & Ahn, B., 2015. In vivo cell tracking with bioluminescence imaging. Nuclear 

Medicine and Molecular Imaging, 49(1), pp.3–10. 

Kim, M. et al., 2009. WAter Saturation Shift Referencing (WASSR) for chemical exchange saturation 

transfer experiments. Magnetic Resonance in Medicine, 61(6), pp.1441–1450. 

Kingsley, P. & Monahan, W., 2000. Effects of off-resonance irradiation, cross-relaxation, and 

chemical exchange on steady-state magnetization and effective spin-lattice relaxation times. J 

Magn Reson, 143(2), pp.360–75. 

Koblas, T. et al., 2005. Magnetic resonance imaging of intrahepatically transplanted islets using 

paramagnetic beads. Transplantation proceedings, 37(8), pp.3493–5. 

Kogan, F. et al., 2014. In vivo CEST Imaging of Creatine (CrCEST) in Skeletal Muscle at 3T. J Magn 

Reson Imaging, 40(3), pp.596–602. 



 

121 
 

Korsgren, O. et al., 2008. Optimising islet engraftment is critical for successful clinical islet 

transplantation. Diabetologia, 51(2), pp.227–32. 

Kotková, Z. et al., 2010. Cyclodextrin-based bimodal fluorescence/MRI contrast agents: an efficient 

approach to cellular imaging. Chemistry, 16(33), pp.10094–102. 

Krchová, T. et al., 2013. Lanthanide(III) complexes of aminoethyl-DO3A as PARACEST contrast 

agents based on decoordination of the weakly bound amino group. Dalton transactions, 42(44), 

pp.15735–47. 

Krock, B., Skuli, N. & Simon, M., 2011. Hypoxia-induced Angiogenesis. Genes Cancer, 2(12), 

pp.1117–33. 

Kříž, J., Greg, V., et al., 2012. A novel technique for the transplantation of pancreatic islets within a 

vascularized device into the greater omentum to achieve insulin independence. American journal 

of surgery, 203(6), pp.793–7. 

Kříž, J., Jirák, D., et al., 2012. Detection of pancreatic islet allograft impairment in advance of 

functional failure using magnetic resonance imaging. Transplant international : official journal 

of the European Society for Organ Transplantation, 25(2), pp.250–60. 

Largiader, F., Kolb, E. & Binswanger, U., 1980. A long-term functioning human pancreatic islet 

allotransplant. Transplantation, 29(1), pp.76–7. 

Liang, S. et al., 2017. Comparison of different compressed sensing algorithms for low SNR 19F MRI 

applications — Imaging of transplanted pancreatic islets and cells labeled with perfluorocarbons. 

NMR in Biomedicine, 30(11), p.e3776. 

Liang, S. et al., 2016. In vivo and ex vivo 19-fluorine magnetic resonance imaging and spectroscopy 

of beta-cells and pancreatic islets using GLUT-2 specific contrast agents. Contrast Media and 

Molecular Imaging, 11(6), pp.506–513. 

Lim, F. & Sun, A., 1980. Microencapsulated islets as bioartificial endocrine pancreas. Science, 

210(4472), pp.908–10. 

Lim, J.Y. et al., 2010. Microporation is a valuable transfection method for efficient gene delivery into 

human umbilical cord blood-derived mesenchymal stem cells. BMC Biotechnology, 10, p.38. 

Liu, G. et al., 2010. High-throughput screening of chemical exchange saturation transfer MR contrast 

agents. Contrast Media and Molecular Imaging, 5(3), pp.162–170. 

Liu, G. et al., 2012. In vivo multicolor molecular MR imaging using diamagnetic chemical exchange 



 

122 
 

saturation transfer liposomes. Magn Reson Med, 67(4), pp.1106–1113. 

Liu, G. et al., 2013. Nuts and bolts of chemical exchange saturation transfer MRI. NMR in 

biomedicine, 26(7), pp.810–28. 

Liu, G. et al., 2009. PARACEST MRI with improved temporal resolution. Magnetic resonance in 

medicine, 61(2), pp.399–408. 

Longoni, B. et al., 2010. Mesenchymal stem cells prevent acute rejection and prolong graft function in 

pancreatic islet transplantation. Diabetes Technol Ther, 12(6), pp.435–46. 

Lu, Y. et al., 2004. Bioluminescent monitoring of islet graft survival after transplantation. Molecular 

Therapy, 9(3), pp.428–435. 

Ludwig, B. et al., 2012. Improvement of islet function in a bioartificial pancreas by enhanced oxygen 

supply and growth hormone releasing hormone agonist. Proceedings of the National Academy of 

Sciences of the United States of America, 109(13), pp.5022–7. 

Luker, G.D. & Luker, K.E., 2008. Optical imaging: current applications and future directions. Journal 

of nuclear medicine, 49(1), pp.1–4. 

Major, J. et al., 2007. The synthesis and in vitro testing of a zinc-activated MRI contrast agent. Proc 

Natl Acad Sci USA, 104(35), pp.13881–13886. 

Martens, T. et al., 2006. Mesenchymal lineage precursor cells induce vascular network formation in 

ischemic myocardium. Nat Clin Pract Cadriovasc Med, 3, pp.S18-22. 

Mc Crimmon, R. & Sherwin, R., 2010. Hypoglycemia in type 1 diabetes. Diabetes, 59(10), pp.2333–

9. 

Meiringeng, Q. et al., 2009. Human Pancreatic Islet Isolation: Part II: Purification and Culture of 

Human Islets. J Vis Exp, 27, p.1343. 

Merbach, A., Helm, L. & Toth, E., 2001. The chemistry of the contrast agents in medical magnetic 

resonance imaging. Wiley, ISBN: 978-. 

Minteer, D., Marra, K. & Rubin, J., 2013. Adipose-derived mesenchymal stem cells: biology and 

potential applications. Adv Biochem Eng Biotechnol, 129, pp.59–71. 

Miranville, A. et al., 2004. Improvement of postnatal neovascularization by human adipose tissue-

derived stem cells. Circulation, 110(3), pp.349–55. 

Moassessfar, S. et al., 2015. A Comparative Analysis of the Safety, Efficacy, and Cost of Islet Versus 



 

123 
 

Pancreas Transplantation in Nonuremic Patients With Type 1 Diabetes. American journal of 

transplantation, 16(2), pp.518–526. 

Moats, R., Fraser, S. & Meade, T., 1997. A “Smart” Magnetic Resonance Imaging Agent That Reports 

on Specific Enzymatic Activity. Angewandte Chemie, 36(7), pp.726–728. 

Mutavdžic, D. et al., 2011. Determination of the size of quantum dots by fluorescence spectroscopy. 

Analyst, 136(11), pp.2391–6. 

Naziruddin, B. et al., 2014. Evidence for Instant Blood-Mediated Inflammatory Reaction in Clinical 

Autologous Islet Transplantation. American journal of transplantation, 14, pp.428–437. 

Nicholls, F.J. et al., 2015. Simultaneous MR imaging for tissue engineering in a rat model of stroke. 

Scientific reports, 5, p.14597. 

Nivorozhkin, A., Kolodziej, A. & Caravan, P., 2001. Enzyme-activated Gd(3+) magnetic resonance 

imaging contrast agents with a prominent receptor-induced magnetization enhancement. Angew 

Chem Int Ed Engl, 40, pp.2093–6. 

Ntziachristos, V., 2010. Going deeper than microscopy: the optical imaging frontier in biology. Nature 

Methods, 7, pp.603–614. 

Oh, N. & Park, J., 2014. Endocytosis and exocytosis of nanoparticles in mammalian cells. 

International journal of nanomedicine, 9, pp.51–63. 

Olokoba, A., Obateru, O. & Olokoba, L., 2012. Type 2 Diabetes Mellitus: A Review of Current 

Trends. Oman Medical Journal, 27(4), pp.269–273. 

Park, K. et al., 2010. Trophic molecules derived from human mesenchymal stem cells enhance 

survival, function, and angiogenesis of isolated islets after transplantation. Transplantation, 

89(5), pp.509–17. 

Park, S.-Y. et al., 2005. Optical imaging of pancreatic beta cells in living mice expressing a mouse 

insulin I promoter-firefly luciferase transgene. Genesis, 43(2), pp.80–6. 

Pattou, F., 2010. GLP-1–Receptor Scanning for Imaging of Human Beta Cells Transplanted in 

Muscle. The New England journal of medicine, 363, pp.1289–1290. 

Pepper, A.R., Gala-Lopez, B., et al., 2015. A prevascularized subcutaneous device-less site for islet 

and cellular transplantation. Nature biotechnology, 33(5), pp.518–23. 

Pepper, A.R., Pawlick, R., et al., 2015. Diabetes Is Reversed in a Murine Model by Marginal Mass 

Syngeneic Islet Transplantation Using a Subcutaneous Cell Pouch Device. Transplantation, 



 

124 
 

99(11), pp.2294–300. 

Pileggi, A. et al., 2006. Reversal of diabetes by pancreatic islet transplantation into a subcutaneous, 

neovascularized device. Transplantation, 81(9), pp.1318–24. 

Pill, K. et al., 2015. Vascularization mediated by mesenchymal stem cells from bone marrow and 

adipose tissue: a comparison. Cell Regen, 4(8). 

Pongrac, I.M. et al., 2016. Improved biocompatibility and efficient labeling of neural stem cells with 

poly(L-lysine)-coated maghemite nanoparticles. Beilstein Journal of Nanotechnology, 7, pp.926–

936. 

Pyzdrowski, K. et al., 1992. Preserved insulin secretion and insulin independence in recipients of islet 

autografts. The New England journal of medicine, 327(4), pp.220–6. 

Rezende, L. et al., 2007. Ciliary neurothrophic factor promotes survival of neonatal rat islets via BLC-

2 anti-apoptotic pathway. J endocrinol, 195(1), pp.157–68. 

Rheinheimer, J. et al., 2015. Human pancreatic islet transplantation: an update and description of the 

establishment of a pancreatic islet isolation laboratory. Arch Endocrinol Metab, 59(2). 

Ribeiro, R.S.G. et al., 2018. Improved Labeling of Pancreatic Islets Using Cationic 

Magnetoliposomes. Journal of Personalized Medicine, 8(1), p.12. 

Rice, B.W., Cable, M.D. & Nelson, M.B., 2001. In vivo imaging of light-emitting probes. Journal of 

Biomedical Optics, 6(4), p.432. 

Ricordi, C., Lacy, P. & Scharp, D., 1989. Automated islet isolation from human pancreas. Diabetes, 

38, pp.140–2. 

Ruiz-Cabello, J. et al., 2010. Fluorine (19F) MRS and MRI in biomedicine. NMR in Biomedicine, 

24(2), pp.114–129. 

Sakata, N. et al., 2013. Imaging of transplanted islets by positron emission tomography, magnetic 

resonance imaging, and ultrasonography. Islets, 5(5), pp.179–187. 

Sakata, N. et al., 2012. Intraoperative ultrasound examination is useful for monitoring transplanted 

islets. Islets, 4(5), pp.339–342. 

Sakata, N. et al., 2014. Strategy for clinical setting in intramuscular and subcutaneous islet 

transplantation. Diabetes Metab Res Rev, 30(1), pp.1–10. 

Sakata, N. et al., 2011. Utility of co-transplanting mesenchymal stem cells in islet transplantation. 



 

125 
 

World Journal of Gastroenterology, 17(47), pp.5150–5155. 

Saudek, F. et al., 2010. Magnetic Resonance Imaging of Pancreatic Islets Transplanted Into the Liver 

in Humans. Transplantation, 90(12), pp.1602–1606. 

Shapiro, A., Pokrywczynska, M. & Ricordi, C., 2017. Clinical pancreatic islet transplantation. Nat Rev 

Immunol, 13(5), pp.268–277. 

Shapiro, E. et al., 2007. Antibody-mediated cell labeling of peripheral T cells with micron-sized iron 

oxide particles (MPIOs) allows single cell detection by MRI. Contrast Media and Molecular 

Imaging, 2(3), pp.147–53. 

Shapiro, J.A.M. et al., 2000. Islet transplantation in seven patients with type 1 diabetes mellitus using 

glucocorticoid-free immunosuppresive regimen. The New England journal of medicine, 343(4), 

pp.230–238. 

Schleich, C. et al., 2016. Glycosaminoglycan chemical exchange saturation transfer at 3T MRI in 

asymptomatic knee joints. Acta Radiol, 57(5), pp.627–32. 

Smink, A.M. et al., 2017. The Efficacy of a Prevascularized, Retrievable Poly(D,L-lactide-co-ε-

caprolactone) Subcutaneous Scaffold as Transplantation Site for Pancreatic Islets. 

Transplantation, 101(4), pp.e112–e119. 

Solari, M.G. et al., 2009. Marginal mass islet transplantation with autologous mesenchymal stem cells 

promotes long-term islet allograft survival and sustained normoglycemia. Journal of 

Autoimmunity, 32(2), pp.116–124. 

Solomon, I., 1955. Relaxation process in a system of two spins. Phys Rev, 99(559–65). 

Speier, S. et al., 2008. Noninvasive in vivo imaging of pancreatic islet cell biology. Nature Medicine, 

14(5), pp.574–8. 

Srinivas, M., Heerschap, A., et al., 2010. (19)F MRI for quantitative in vivo cell tracking. Trends in 

biotechnology, 28(7), pp.363–70. 

Srinivas, M., Cruz, L., et al., 2010. Customizable, multi-functional fluorocarbon nanoparticles for 

quantitative in vivo imaging using 19F MRI and optical imaging. Biomaterials, 31(27), pp.7070–

7077. 

Srinivas, M. et al., 2007. Fluorine-19 MRI for Visualization and Quantification of Cell Migration in a 

Diabetes Model. Magnetic Resonance in Medicine, 58(4), pp.725–734. 

Srinivas, M. et al., 2012. Labeling cells for in vivo tracking using (19)F MRI. Biomaterials, 33(34), 



 

126 
 

pp.8830–40. 

Srinivas, M. et al., 2015. PLGA-encapsulated perfluorocarbon nanoparticles for simultaneous 

visualization of distinct cell populations by 19F MRI. Nanomedicine, 10(15), pp.2339–48. 

Sun, P., Farra, C. & Sorensen, A., 2007. Correction for artifacts induced by B0 and B1 field 

inhomogeneities in pH-sensitive chemical exchange saturation transfer (CEST) imaging. Magnet 

Reson Med, 58(6), pp.1207–1215. 

Sunderkötter, C. et al., 1994. Macrophages and angiogenesis. J Leukoc Biol, 55(3), pp.410–22. 

Swider, E. et al., 2018. Design of triphasic poly(lactic-co-glycolic acid) nanoparticles containing a 

perfluorocarbon phase for biomedical applications. RSC Adv., 8(12), pp.6460–6470. 

Tai, J. et al., 2006. Imaging islets labeled with magnetic nanoparticles at 1.5 Tesla. Diabetes, 55(11), 

pp.2931–2938. 

Tang, Y.L. et al., 2004. Autologous mesenchymal stem cell transplantation induce VEGF and 

neovascularization in ischemic myocardium. Regulatory Peptides, 117(1), pp.3–10. 

Terreno, E. et al., 2006. Effect of the intracellular localization of a Gd-based imaging probe on the 

relaxation enhancement of water protons. Magnetic resonance in medicine, 55(3), pp.491–7. 

Terrovitis, J. et al., 2008. Magnetic resonance imaging overestimates ferumoxide-labeled stem cell 

survival after transplantation in the heart. Circulation, 117(12), pp.1555–1562. 

Toso, C. et al., 2008. Clinical magnetic resonance imaging of pancreatic islet grafts after iron 

nanoparticle labeling. American journal of transplantation, 8(3), pp.701–6. 

Tsourkas, A. & Josephson, L., 2010. Magnetic Nanoparticles. Molecular Imaging: Principles and 

practice, ISBN-13 97, pp.523–541. 

Vaithilinqam, V., 2011. Islet transplantation and encapsulation: an update on recent developments. 

The rewiev of diabetic studies, 8(1), pp.51–67. 

Vargas, E. & Chen, J., 2010. Magnetic Resonance Imaging Agents. In Molecular Imaging: Principles 

and practice. pp. 389–404. 

Wang, J. et al., 2016. Magnetic Resonance Imaging of Glucose Uptake and Metabolism in Patients 

with Head and Neck Cancer. Scientific reports, 6(30618). 

Wang, P. et al., 2014. GLP-1R–Targeting Magnetic Nanoparticles for Pancreatic Islet Imaging. 

Diabetes, 63(5), pp.1465–1474. 



 

127 
 

Weissleder, R., 2002. Scaling down imaging: molecular mapping of cancer in mice. Nature Reviews 

Cancer, 2(1), pp.1–8. 

Wolf, U., 2006. Subsecond fluorine-19 MRI of the lung. Magn Reson Med, 55(4), pp.948–51. 

Wolf, W., Presant, C. & Waluch, V., 2000. 19F-MRS studies of fluorinated drugs in humans. Adv 

Drug Deliv Rev, 41(1), pp.55–74. 

Yuan, B., Chen, N. & Zhu, Q., 2004. Emission and absorption properties of indocyanine green in 

Intralipid solution. J Biomed Opt, 9, pp.497–503. 

Zhou, J. et al., 2004. Quantitative description of proton exchange processes between water and 

endogenous and exogenous agents for WEX, CEST, and APT experiments. Magn Reson Med, 

51(5), pp.945–952. 

van Zijl, P.C.M. & Yadav, N.N., 2011. Chemical Exchange Saturation Transfer (CEST): what is in a 

name and what isn’t? Magnetic Resonance in Medicine, 65(4), pp.927–948. 

 

 

 

 

 


