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Multicriteria and robust extension
of news-boy problem

Department of Probability and Mathematical Statistics

Supervisor of the master thesis: doc. RNDr. Ing. Miloš Kopa, Ph.D.
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Introduction

This thesis studies the single-period newsvendor problem and its modifica-
tions whilst searching for optimal solutions. The newsvendor problem, or alter-
natively the news-boy problem (Choi, 2012), is one of the classical problems in the
stochastic programming/inventory management literature. In its basic form it is
a very simple optimization problem that features stochastic demand (Khouja,
1999). Due to its versatility and simplicity, it is a very popular model among
researchers.

Simply put, every morning a newsvendor has to decide how many items to
order. However, the demand is random and hence the newsvendor must in some
way decide the number of products to be ordered. The problem formulation
differs upon the circumstances and newsvendor’s thinking. The aim is to find the
optimal solution of the given problem that maximizes the newsvendor’s expected
profit.

In the first chapter the single-period newsvendor problem (NP) with known
demand distribution is introduced and the optimal solution for both discrete and
continuous random demand are found.

The second chapter contains extensions of the single-period newsvendor model
with the assumption that the demand depends on the selling price or the amount
of money put into advertising or both combined. We distinguish whether the
endogenous variable (customer demand) is interrelated in the additive or multi-
plicative manner in all cases. The considered response functions are commonly
used in literature and could be possibly switched to others (Hrabec, 2016). Fur-
thermore, we find relations between the optimal solutions in the additive and
multiplicative demand cases via the riskless case, i.e. the problem formulation
with absence of uncertainty.

The third chapter extends the classical single-period newsvendor model in
terms of multiple criteria and multiple product. The multicriteria extensions
begin with a definition of the multicriteria optimization problem and follow with
the definition of Conditional Value at Risk (CVaR) that is used as a measure
of risk and serves as the other decision criterion for the newsvendor. The CVaR
measure was first introduced by Rockafellar and Uryasev (2002) as a risk measure
of loss. In this paper, however, we use the CVaR of profit (Pflug and Römisch,
2007). Thereafter the optimal solution of only CVaR objective is derived so that it
might be used in various reformulations of the multicriteria newsvendor problem.
Lastly, we combine the multicriteria newsvendor problem with dependency of
the customer demand on selling price. For multiproduct extensions two cases
are assumed: the case where demands are independent and the case where they
are dependent. In addition, we derive an algorithm to find the optimal solution
under the independent demands in case the solutions of single-item newsvendor
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problems are infeasible.
In the fourth chapter we provide the distributionally robust single-period

newsvendor model (Wiesemann et al., 2014) that makes the newsvendor immune
to the worst possible distribution of demand that is drawn from the set of all
distributions featuring certain characteristics. The considered ambiguity set con-
tains distributions that come from the discrete support, have given mean and are
restricted above by the variance. Moreover, we try to find the best and the worst
distribution for the given ambiguity set.

Using the given real data, the last chapter contains the comparison of solu-
tions of two models derived in the theoretical part of the thesis. Specifically, we
compare the classical newsvendor model with the model with pricing. To approx-
imate the objective function we use the Sample Average Approximation (SAA)
method that is described by Levi et al. (2015).
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Chapter 1

The classical newsvendor
problem

Every morning a news-boy can order his daily supply of newspaper for the
price c per item (cost). Hence news-boy buys x pieces of newspaper where x
is a fixed number. Selling price of each newspaper is p for which holds p > c.
Although, number of newspaper which could be sold each day is not fixed. It is
given by random demand ω which probability distribution P is known. In case
there are newspaper left at the end of the selling period they are salvaged for
the value v per item. On the other hand, in case there is lack of newspaper the
shortage penalty s is executed for every item that could have been sold. Note that
v may be negative, in which case it represents per-unit disposal value. Moreover,
to avoid trivial solution we assume that p > c > v. This reflects real case
scenarios where selling price is greater than buying price (i.e. the newsvendor
behaves reasonably and his only goal is to maximized its profit) and buying price
is greater than salvage value (i.e. otherwise the newsvendor would buy infinitely
many items).

Denote π(x; ω) as the news-boy’s profit in case he ordered x newspaper and
real demand was ω in the given day. From the task description we obtain that

π(x; ω) =
{

pω − cx + v(x − ω) for ω ≤ x,
px − cx − s(ω − x) for ω > x.

(1.1)

This utility function is continuous from the problem description. Then the
objective is to maximize (1.1) and the optimization problem is to

maximize
x

p min{ω, x} − cx + v max{x − ω, 0} − s max{ω − x, 0}

for x ≥ 0.

Since the demand is not realized at the beginning of the selling period, the
newsvendor cannot observe the actual profit. Thus, the traditional approach to
analyze the problem is based on assuming a risk neutral newsvendor who makes
the optimal quantity decision at the beginning of the selling period.

Actually, researchers have followed two approaches to solving the single-period
problem. In the first approach, the expected costs of overestimating and under-
estimating demand are minimized. The second approach is based on maximizing
the total expected profit. Both approaches lead to the same optimal solution
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(Qin et al., 2011). We perform second approach in this paper where the optimal
quantity is evaluated by maximizing the total expected profit.

Denote mean profit
Π(x) = EP[π(x; ω)].

Since demand cannot be negative in real situations, suppose that ω ≥ 0. Hence
for any probability distribution P with cumulative distribution function (cdf) F
we obtain

Π(x) =
∞∫

0

π(x; ω) dF (ω). (1.2)

Suppose that ω has mean value EP ω. Then, according to (1.2), holds

Π(x) =
x∫

0

(p ω − cx + vx − v ω) dF (ω) +
∞∫

x

(px − cx − s ω + sx) dF (ω)

= (p − c)
∞∫

x

x dF (ω) + p

x∫
0

ω dF (ω) − c

x∫
0

x dF (ω)

+ v

x∫
0

(x − ω) dF (ω) − s

∞∫
x

(ω − x) dF (ω).

Since (p − c)
∞∫
x

x dF (ω) + p
x∫
0

ω dF (ω) − c
x∫
0

x dF (ω) can be rewritten as

(p − c)x − p

x∫
0

(x − ω) dF (ω),

we finally obtain

Π(x) = (p − c)x −

⎡⎣s

∞∫
x

(ω − x) dF (ω) + (p − v)
x∫

0

(x − ω) dF (ω)
⎤⎦, (1.3)

where
∫∞

x (ω − x) dF (ω) represents the expected shortages in case x items is
ordered and

∫ x
0 (x−ω) dF (ω) the expected leftovers. The expected shortages can

be written as
∫∞

x (ω −x) dF (ω) = EP(ω −x)+, where y+ = max{0, y} is called the
positive part function. Analogically for the expected leftovers

∫ x
0 (x−ω) dF (ω) =

EP(x − ω)+. Therefore, from (1.3), the optimization problem with the maximal
expected profit criterion is formulated as:

maximize
x

(p − c)x −

⎡⎣s

∞∫
x

(ω − x) dF (ω) + (p − v)
x∫

0

(x − ω) dF (ω)
⎤⎦

for x ≥ 0.

(1.4)

Optimality

Analogically to Šedina (2015), the model (1.4) is easily solvable optimization
problem. Notice the shape of function Π(x) under assumption that the random
demand ω is bounded on a finite interval [ b, b ]:
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Π(x) =

⎧⎪⎪⎨⎪⎪⎩
(p − c)x − s EP(ω − x) if x < b,

(p − c)x −
[
s EP(ω − x)+ + (p − v) EP(x − ω)+

]
if b ≤ x ≤ b,

p EP ω − cx + v EP(x − ω) if x > b.

If ω has a mean value, we can similarly derive Π(x) in case b = −∞ or b = ∞.
As we stated in task description, p > c > v holds. Moreover, it is reasonable to
assume that p > c > 0 and s ≥ 0. Under such assumptions is

Π(x) = (p − c)x − EP[φ(x; ω)]

a concave function in x, since it is the difference of linear function and mean of
function

φ(x; ω) = (p − v)(x − ω)+ + s(ω − x)+ = (p − v) max{x − ω, 0} + s max{ω − x, 0}

that is a convex function of x given ω because the sum of convex functions is
convex and maximum multiplied by nonnegative parameter is obviously convex
(see figure 1.1).

Figure 1.1: Graph of function φ(x; ω) for given ω, where p − v > s.

Next part, evaluation of the optimal solution, is inspired by Dupačová (1986).
If x < b then Π(x) is linear and Π′(x) = p − c + s > 0. Similarly if x > b then
Π′(x) = v − c < 0. The derivative of Π(x) may not exist in all points of the range
x ∈ [ b, b ]. Although, existence of subdifferential ∂Π(x) is guaranteed. Then

∂Π(x) = { η : Π(l) ≤ Π(x) + η(l − x) ∀ l }
= { η : (p−c+s)−(p−v+s)F (x) ≤ η ≤ (p−c+s)−(p−v+s)F −(x)}.

Endpoints of interval ∂Π(x) are left hand and right hand derivatives of function
Π in point x and F −(x) = limy→x− F (y).
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If p > c > v, p > c > 0 and s ≥ 0, then the maximum of Π(x) is obviously
reached for x0 ∈ [ b, b ] that satisfies condition

0 ∈ ∂Π(x0).

Thus

(p − c + s) − (p − v + s)F (x0) ≤ 0 ≤ (p − c + s) − (p − v + s)F −(x0)

which leads to
F −(x0) ≤ p + s − c

p + s − v
≤ F (x0). (1.5)

Let the subscript ∗ denote optimality. If x0 ≥ 0, then the optimal order
quantity of (1.4) is x∗ = x0. Otherwise, the optimal decision is apparently x∗ = 0.

Continuous distribution case

For absolutely continuous distribution is F −(x) = F (x) and ∂Π(x) is single-
point set. Therefore the function Π is differentiable

∂Π(x)
∂x

= p − c − [s(F (x) − 1) + (p − v)F (x)]

for x ∈ [ b, b ] and the optimal decision x∗ is given by condition

F (x∗) = p + s − c

p + s − v
, (1.6)

alternatively
F (x∗) = 1 − c − v

p + s − v
,

or eventually by condition x∗ = 0.
Thanks to our assumptions on the news-boy problem, we are able to express

x∗ as a quantile of a distribution. Hence the optimal order quantity for x∗ ∈ [ b, b ]
and F invertible is

x∗ = F −1
(

p + s − c

p + s − v

)
. (1.7)

Example. Suppose that ω has continuous uniform distribution on interval [A, B],
where A ≥ 0. For A ≤ x ≤ B is the total expected profit

Π(x) = (p − c)x − p − v

B − A

x∫
A

(x − ω) dω − s

B − A

B∫
x

(ω − x) dω.

Straight computation leads to quadratic function

Π(x) = (p − c)x − (p − v)(x − A)2 + s(B − x)2

2(B − A) ,

which reaches its maximum in the point

x∗ = A + (B − A)(p − c + s)
p − v + s

(1.8)

that belongs to the interval [A, B].
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Discrete distribution case

For a discrete distribution, the inequality (1.5) may be satisfied by multiple
points. Suppose that the random variable ω takes values ω1, . . . , ωk with prob-
abilities q1, . . . , qk, where ∀j ∈ {1, . . . , k} : qj > 0 and ∑k

j=1 qj = 1. Moreover
ω1 < ω2 < . . . < ωk holds. Recall that the cdf of discrete distribution is piece-wise
linear, right hand continuous and nondecreasing function. If exists x0 ∈ [ω1, ωk]
for which F (x0) = ∑i

j=1 qj = p+s−c
p+s−v

for some i ∈ {1, . . . , k}, then the optimal
decision is to buy x∗ = x0 units. This corresponds to the optimal ratio p+s−c

p+s−v

being equal to the one step of cdf. Otherwise F (ωi−1) < p+s−c
p+s−v

< F (ωi) holds
for some i ∈ {2, . . . , k}, which corresponds to the optimal ratio p+s−c

p+s−v
being in

between steps of cdf. Therefore the optimal order quantity is x∗ = ωi.
The results from previous paragraph could be summarized and we obtain that

for the discrete distribution the optimal order quantity is

x∗ = inf
{

xj : F (xj) ≥ p + s − c

p + s − v

}
, (1.9)

which is again p+s−c
p+s−v

-quantile of distribution F that is generalized for discrete
distributions.
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Chapter 2

Endogenous extensions of the
classical newsvendor model

The customer demand is typically treated as an exogenous parameter in the
prior analysis. However, depending upon the context, it could be argued that
the customer demand ω and price p are interrelated or customer demand ω could
be influenced by marketing effort a expended by the newsboy. We examine both
cases in the following sections and, furthermore, add section where both the price
p and the advertising a together influence the customer demand ω. In these cases,
the endogenous randomness is considered.

2.1 Model with pricing
This section is mainly inspired by Petruzzi and Dada (1999). In a classic

newsvendor problem, selling price is considered as exogenous, over which the
vendor has absolutely no control. This is true in a perfectly competitive market
where buyers are mere price-takers. In practice, however, newsvendor can adjust
the current selling price in order to increase or reduce demand. This model is
mostly called as the newsvendor problem with pricing (NPP). The first mathe-
matical formulation of the price effect in inventory control problems was provided
by Whitin (1955).

Consider a firm that stocks a single product. However, this firm faces a
price-dependent demand function, and has an objective of determining jointly
the optimal ordering quantity x and the selling price p to maximize the total
expected profit. The expected profit function is now a bivariate function with
price and order quantity as the decision variables. However, from the managerial
perspective, we deal with problems where the decision-maker does not know the
real demand. Therefore, we further model the demand as a function, which
can be affected by the price chosen and which somehow depends on a random
element. Randomness in demand is independent of price and can be modeled by
either multiplicative form or additive form. Specifically, the multiplicative form
of demand, first introduced by Karlin and Carr (1962), can be expressed as

ωM(p, ϵ) = dM(p)ϵ, (2.1)
and the additive form, first introduced by Mills (1959), as

ωA(p, ϵ) = dA(p) + ϵ, (2.2)
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where both dM(p) and dA(p) are response functions that describe relation between
price and demand, and ϵ is a continuous random variable defined on the range
[A, B]. Furthermore, let the response functions be continuous, positive, twice
differentiable and strictly decreasing on its domain [pl, pu] in the pricing policy
p (Khouja, 1999). Positiveness is required due to the upcoming substitution
where the response function is a denominator. Otherwise, only nonnegativity
of the response function would be sufficient because setting the price too high
might lead to zero demand. Limitations on the price reflect real situations where
retailer cannot set price unrealistically and without any bounds (p ∈ [pl, pu] where
pu > pl > c).

Since the exact form of dM(p) and dA(p) influences the exact form of (2.1)
and (2.2), we denote

dM(p) = αp−β (α > 0, β > 1) (2.3)

in the multiplicative case and

dA(p) = α − βp (α > 0, β > 0) (2.4)

in the additive case. Both representations of dM(p) and dA(p) are common in the
economics literature. Additive case corresponds to a linear demand curve and
multiplicative case represents an isoelastic demand curve. One interpretation of
the model could be that the demand curve shape is deterministic and random
scaling parameter corresponds to the size of the market. Figure 2.1 illustrates
both of the response functions mentioned above.

0 20 40 60 80 100

0

20

40

60

80

100

d(p)

p

hyperbolic
linear

Figure 2.1: Shape of response functions considered in the newsvendor problem
with pricing. The hyperbolic function is given by (2.1) and the linear by (2.2).
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However, we have to still keep in mind that the demand cannot be nega-
tive. Therefore, we suppose that the lower endpoint of ϵ satisfies A > 0 in the
multiplicative case and A > βpu − α in the additive case. All the assumptions
combined now guarantee that nonnegative demand is observed for all allowed
ranges of p. Let F represent the cumulative distribution function (cdf) of ϵ, and
f the probability density function. Likewise, we define µ and σ as the mean and
standard deviation of ϵ, respectively. Researchers usually assume that µ is equal
to zero and one in the additive demand case and the multiplicative demand case,
respectively (Yao et al. (2006),Hrabec (2016)). This basically says that the de-
mand can be on average fully represented by the appropriate response function.
Precisely that both Eϵ[ωA(p, ϵ)] = dA(p) and Eϵ[ωM(p, ϵ)] = dM(p). We skip this
assumption in order to deduce more general results and models.

Hence Eϵ[ωA(p, ϵ)] = dA(p) + µ and Eϵ[ωM(p, ϵ)] = dM(p)µ are both strictly
decreasing in price as mean value in multiplicative demand case is always positive
(A > 0). Monotonicity of the expect demand is satisfied for all common items,
except only special luxury goods exhibiting the Veblen paradox (Yao et al., 2006).

2.1.1 Additive demand case
In the additive demand case the demand function is ωA(p, ϵ) = dA(p) + ϵ

where dA(p) = α − βp (see (2.2) and (2.4)). The single-period problem’s task
description is similar as in Chapter 1 with the only difference that the random
demand ω is now represented by demand function ωA(p, ϵ). Thus, if we substitute
ω = ωA(p, ϵ) in (1.1), we obtain the utility function

πA(x; p; ω) =
{

pωA(p, ϵ) − cx + v[x − ωA(p, ϵ)] for ωA(p, ϵ) ≤ x,
px − cx − s[ωA(p, ϵ) − x] for ωA(p, ϵ) > x.

(2.5)

Again, a newsboy stocks x units at the beginning of selling period for cx. De-
pending upon he underestimated or overestimated demand, his income for sales is
p min{ωA(p, ϵ), x}. Term v[x − ωA(p, ϵ)] is added to overall profit if a newsvendor
stocked more units than demand, where v is per-unit disposal (salvage) value and
x−ωA(p, ϵ) is number of units left. And penalty s[ωA(p, ϵ)−x] is subtracted from
overall profit in case demand is not fulfilled, where s is per-unit penalty value
and ωA(p, ϵ) − x is number of units missing.

Therefore, the optimization problem with the maximal expected profit crite-
rion for additive price-dependent demand case is formulated as:

maximize
x;p

(p − c)x −

⎡⎣ s

∞∫
x

(ωA(p, ϵ) − x) dF (ωA(p, ϵ))

+ (p − v)
x∫

0

(x − ωA(p, ϵ)) dF (ωA(p, ϵ))
⎤⎦

for x ≥ 0, p ∈ [pl, pu].

(2.6)

As described in Petruzzi and Dada (1999) a convenient expression for this
profit function is obtained by substituting ωA(p, ϵ) = dA(p) + ϵ to (2.5) and
defining z = x − dA(p) where z ∈ R. The substitution was first established by
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Whitin (1955) and he introduced the sequential method of finding the optimal z
given p performed on the following pages. Therefore, we get from (2.5) that

πA(z; p; ϵ) =
{

p[dA(p) + ϵ] − c[dA(p) + z] + v[z − ϵ] for ϵ ≤ z,
p[dA(p) + z] − c[dA(p) + z] − s[ϵ − z] for ϵ > z.

(2.7)

For better understanding we unify notation for both multiplicative and additive
cases and the same symbols π are also used for objective functions involving either
x or z.

This transformation to z provides an alternative interpretation of the quantity
decision: If the z is larger than the realized value of ϵ, then leftovers occur; if
the amount of z is smaller than the realized value of ϵ, then shortages occur. Let
z∗ and p∗ maximize the total expected profit. Hence the optimal stocking and
pricing policy is to stock x∗ = dA(p∗) + z∗ units to sell at price p∗ for one paper.

Remember that random variable ϵ is defined on the region [A, B]. From (2.7),
the total expected profit is

ΠA(z; p) = Eϵ[πA(z; p; ϵ)] =
z∫

A

(p[dA(p) + ϵ] + v[z − ϵ]) dF (ϵ)

+
B∫

z

(p[dA(p) + z] − s[ϵ − z]) dF (ϵ)

− c[dA(p) + z].
That could rewritten as follows:

ΠA(z; p) =
B∫

A

pdA(p) dF (ϵ) +
z∫

A

pϵ dF (ϵ) +
B∫

z

pz dF (ϵ)

− cdA(p) − c

B∫
A

(z − ϵ + ϵ) dF (ϵ)

+ v

z∫
A

(z − ϵ) dF (ϵ) − s

B∫
z

(ϵ − z) dF (ϵ)

=(p − c)dA(p) + pµ −
B∫

z

pϵ dF (ϵ) +
B∫

z

pz dF (ϵ)

− c

z∫
A

(z − ϵ) dF (ϵ) + c

B∫
z

(ϵ − z) dF (ϵ) − cµ

+ v

z∫
A

(z − ϵ) dF (ϵ) − s

B∫
z

(ϵ − z) dF (ϵ)

=(p − c)[dA(p) + µ]

− (c − v)
z∫

A

(z − ϵ) dF (ϵ) − (p + s − c)
B∫

z

(ϵ − z) dF (ϵ).

(2.8)

By denoting
Λ(z) =

∫ z

A
(z − ϵ) dF (ϵ) (2.9)
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and
Θ(z) =

∫ B

z
(ϵ − z) dF (ϵ) (2.10)

we can rewrite the total expected profit as

ΠA(z; p) = ΨA(p) − LA(z, p), (2.11)

where
ΨA(p) = (p − c)[dA(p) + µ] (2.12)

and
LA(z, p) = (c − v)Λ(z) + (p + s − c)Θ(z). (2.13)

Equation (2.12) represents riskless profit function, where profit margin (p− c)
per sold item is multiplied by the sum of price-dependent demand dA(p) and mean
µ of the random variable ϵ. Equation (2.13) is the loss function that captures loss
in case demand is higher or lower than quantity stocked. Specifically, it assesses
the overage cost (c − v) for each of the Λ(z) expected leftovers, represented by
(2.9), when z is too high and the underage cost (p + s − c) for each of the Θ(z)
expected shortages, represented by (2.10), when z is too low. Equation (2.11)
corresponds to the total expected profit since it is the subtraction of the riskless
profit, which would occur in the absence of uncertainty, by the overall loss that
occurs as a result of the presence of uncertainty.

The objective is to maximize the total expected profit. Thus from (2.11) we
obtain the optimization problem as:

maximize
z;p

ΠA(z; p)

subject to p ∈ [pl, pu].
(2.14)

We use the first and the second order derivatives of ΠA(z; p), given by (2.11),
with respect to z and p to find the optimal solution. Hence

∂ΠA(z; p)
∂z

= p − c − [s(F (x) − 1) + (p − v)F (x)], (2.15)

∂2ΠA(z; p)
∂z2 = −(p + s − v)f(z), (2.16)

∂ΠA(z; p)
∂p

= 2β(pA
Ψ − p) − Θ(z), (2.17)

where pA
Ψ = α+βc+µ

2β
is the optimal riskless price, which is the price that maximizes

ΨA(z) (2.12). And the last derivative is

∂2ΠA(z; p)
∂p2 = −2β. (2.18)

Notice that ΠA(z; p) is concave in z for a given price p from (2.16). Thus, it
is possible to reduce (2.14) to an optimization problem of the single variable p if
we first solve the problem in z as a function of p and then substitute result back
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into ΠA(z; p). This method is described in detail in Whitin (1955) and yields the
rule for determining z,

1 − F (z∗) = c − v

p + s − v
, (2.19)

which is the same formula as if p would be fixed (see (1.6)). Thus it corresponds to
the standard NP solution in case p is fixed. Similarly, we can notice that ΠA(z; p)
is concave in p for a given z from (2.18). Hence we can get the optimal solution
by first optimizing p for a given z and then searching over the resulting optimal
space to maximize ΠA(z; p∗). Both approaches yield the same conclusions, but
only the latter procedure is presented. See Hrabec (2016) for the other approach.

Lemma 1 follows directly from (2.17) and (2.18).

Lemma 1 (Petruzzi and Dada (1999)). For a fixed z, the optimal price is deter-
mined uniquely as a function of z:

p∗ = p(z) = pA
Ψ − Θ(z)

2β
. (2.20)

Since the expected shortage Θ(z) (2.10) is nonnegative, then p∗ ≤ pA
Ψ from

(2.20). Consequently, the optimal price p∗ must satisfy c < p∗ ≤ pA
Ψ and from

(2.14) yields the boundary condition that is given by

c < pl ≤ p∗ ≤ min{pA
Ψ, pu}.

We can now substitute p∗ = p(z) to (2.14) and the optimization problem with
two decision variables becomes the maximization over a single variable z:

maximize
z

ΠA(z; p(z)).

Therefore, the optimal quantity decision and pricing policy depends on the
shape of ΠA(z; p(z)). However, as shown in Theorem 2, ΠA(z; p(z)) might have
more than one point that satisfy the first order optimality condition depending
on the value of parameters of the problem.

Theorem 2 (Petruzzi and Dada (1999)). The single-period optimal stocking and
pricing policy for the additive demand case is to stock x∗ = dA(p∗) + z∗ units to
sell at the unit price p∗, where p∗ is specified by Lemma 1 and z∗ is determined
according to the following:

(a) If F is an arbitrary distribution function, then an exhaustive search over
all values of z in the region [A,B] will determine z∗.

(b) If F is a distribution function satisfying the condition 2r(z)2+∂r(z)/∂z > 0
for A ≤ z ≤ B, where r(·) = f(·)/[1 − F (·)] is the hazard rate, then z∗ is
the largest z in the region [A,B] that satisfies

∂ΠA(z; p(z))
∂z

= 0.

(c) If the condition for (b) is met AND α − β(c − 2s) + A > 0, then z∗ is the
only z in the region [A,B] that satisfies

∂ΠA(z; p(z))
∂z

= 0.
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Proof. From the chain rule and Lemma 1 follows that
∂ΠA(z; p(z))

∂z
= −(c − v) +

(
pA

Ψ + s − v − Θ(z)
2β

)
[1 − F (z)].

The rest of proof is conducted in Petruzzi and Dada (1999).
k

In case F is a distribution function that satisfies 2r(·)2 + r,(·) > 0, then
the second condition in (c) causes that ΠA(z; p(z)) is unimodal in z (Petruzzi
and Dada, 1999). Condition (b) is satisfied by all nondecreasing hazard rate
distributions, which include PF2 distributions and the log-normal distribution
(Barlow and Proschan, 1987, Theorem 4.1.). In particular, the exponential, the
reflected exponential (if X is exponential, then −X is reflected exponential), the
uniform, the Erlang, the normal, the truncated normal, and all translations (g+X
is a translation for scalar g) and convolutions of such distributions (Porteus, 2002,
Page 135).

Zhan and Shen (2005) deal with the solution based on the relation between
the equations (2.19) and (2.20), and give a geometrical interpretation. They also
developed an iterative algorithm and simulation based algorithm to solve the
system of equations (2.19) and (2.20).
Example. This example is inspired by Hrabec et al. (2012). Assume the maximal
expected profit criterion (2.6) before substitution. Suppose that ϵ has continuous
uniform distribution on interval [A, B], thus ϵ ∼ U(A, B). Hence price-dependent
demand ωA(p, ϵ) can be represented as ωA(p) that has uniform distribution with
bounds [A(p), B(p)] where A(p) = α − βp + A and B(p) = α − βp + B. That
is ωA(p) ∼ U(A(p), B(p)). Moreover B > A > βpu − α (p ∈ [pl, pu]) so that
we always observe nonnegative demand. Therefore the random demand ωA is a
linear nonnegative function of bounded price p.

Hrabec et al. (2012) states that the uniform distribution is suitable for cases
where bounds of uncertainty are known, otherwise there is a lack of information
about uncertainty. We may think that this linear dependency does not approx-
imate some real situations very well. Hyperbolic dependency might be used, as
shown in next section 2.1.2, that can be piece-wise approximated. So, thinking
about Taylor expansion features, we assume that linear approximation can be
acceptable.

Denote ΠωA(x; p) = EωA [πA(x; p; ωA(p))]. We know that ωA(p) ∈ [A(p), B(p)]
and thus, we may rewrite the model (2.6) as follows

ΠωA(x; p)=

⎧⎪⎨⎪⎩
(p−c)x−s E[ωA(p)−x], x < A(p),
(p−c)x−s E[ωA(p)−x]+−(p−v)E[x−ωA(p)]+, x ∈ [A(p),B(p)]
p E ωA(p)− cx+v E[x−ωA(p)], x > B(p).

Thus for uniformly distributed random demand ωA(p) we get

ΠωA(x; p) =(p − c)x − p − v

B(p) − A(p)

x∫
A(p)

(x − ωA(p)) dωA(p)

− s

B(p) − A(p)

B(p)∫
x

(ωA(p) − x) dωA(p).
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Straight computation leads to quadratic function

ΠωA(x; p) = (p − c)x − (p − v)(x − A(p))2 + s(B(p) − x)2

2(B(p) − A(p)) .

Then, under assumptions given, model (2.6) may be rewritten as:

maximize
x;p

(p − c)x − (p − v)(x − A(p))2 + s(B(p) − x)2

2(B(p) − A(p))
for x ≥ 0, p ∈ [pl, pu].

(2.21)

Notice that the objective function of model (2.21) is concave in x with fixed
p since it is the difference of linear function and sum of convex functions that is
again convex. Hence the necessary optimality condition is sufficient for optimality
and by taking ∂Π

ωA (x;p)
∂x

= 0 we get

x∗(p) = A(p) + (B − A)(p − c + s)
p − v + s

(2.22)

that belongs to the interval [A(p), B(p)]. Note that we obtained similar optimal
ordering as in NP, compare (1.8) and (2.22). The optimal stocking decision
depends on the choice of pricing, i.e. x∗ is a function of p.

The problem of maximizing (2.21) over two variables is reduced to a maxi-
mization problem over the single variable p by substituting back (2.22) to (2.21),
i.e. x = x∗(p). We obtain

ΠωA(x∗(p); p) = (p − c)x∗(p) − B − A

2

⎡⎣(p − v)
(

p − c + s

p − v + s

)2

+ s

(
c − v

p − v + s

)2
⎤⎦.

2.1.2 Multiplicative demand case
As stated before, in the multiplicative demand case ωM(p, ϵ) = dM(p)ϵ and

dM(p) = αp−β (see (2.1) and (2.3)). We perform the same type of substitution
as in section 2.1.1. Specifically, ωM(p, ϵ) = dM(p)ϵ replaces ω and x = dM(p)z in
equation (1.1). Hence z ≥ 0 (note that when x = 0 then z = 0 since dM(p) > 0).
The single-period total profit function can be rewritten as follows:

πM(z; p; ϵ) =
{

pdM(p)ϵ − cdM(p)z + vdM(p)[z − ϵ] for ϵ ≤ z,
pdM(p)z − cdM(p)z − sdM(p)[ϵ − z] for ϵ > z.

Although z is defined differently compared to the additive demand case, the
effect is the same. Thus leftovers occur if z is larger than the realized value of
ϵ and shortages occur if z is smaller than the realized value of ϵ. A managerial
interpretation of z is provided in the next section 2.1.3.

Analogous to the additive demand case, the optimal order quantity and pricing
policy is to buy x∗ = dM(p∗)z∗ items at the unit price p∗, where z∗ and p∗ jointly
maximize the total expected profit. Similarly to the additive demand case (see
(2.8)), the expected profit can be written as:

ΠM(z; p) = Eϵ[πM(z; p; ϵ)] = ΨM(p) − LM(z, p). (2.23)
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But this time
ΨM(p) = (p − c)dM(p)µ, (2.24)

and

LM(z, p) = dM(p)
[
(c − v)Λ(z) + (p + s − c)Θ(z)

]
= dM(p)LA(z, p), (2.25)

where LA(z, p) is denoted by (2.13). Consequently, ΨM(p) is again interpreted
as riskless profit and LM(z, p) as expected loss due to uncertainty. However,
this time the expected leftovers are represented by Λ(z)dM(p) and the expected
shortages by Θ(z)dM(p).

To obtain the optimal solution of ΠM(z; p) (2.23) we have to follow the same
procedure that was described in previous section in detail (section 2.1.1). Initially,
the optimal selling price p∗ is denoted as a function of z (p∗ = p(z)). Then
the optimal price is substituted back into the total expected profit function and
therefore the problem is reduced to a single variable problem. The opposite
approach where optimal z∗ = z(p) is substituted back into ΠM(z; p) is conducted
in Hrabec (2016).
Note. If we derive the necessary optimal condition with respect to the price p,
i.e. ∂ΠM (z;p)

∂p
= 0, we obtain

∂dM(p)
∂p

[(p − c)µ − LA(z, p)] + dM(p)[µ − Θ(z)] = 0. (2.26)

This condition is further used to compare the optimal price of the NPP with
the optimal price of the newsvendor problem with joint pricing and advertising
(NPPA) in section 2.3.

Lemma 3 (Petruzzi and Dada (1999)). For a fixed z, the optimal price is deter-
mined uniquely as a function of z:

p∗ = p(z) = pM
Ψ + β

β − 1

⎡⎣(c − v)Λ(z) + sΘ(z)
µ − Θ(z)

⎤⎦,

where pM
Ψ = βc

β−1 and Λ(z) are expected leftovers given by (2.9) and Θ(z) are
expected shortages given by (2.10).

Proof. See Petruzzi and Dada (1999) for proof.
k

By assumption β > 1 and A > 0. Moreover, it can be shown that Θ(z) is
nonincreasing in z, and thus µ − Θ(z) ≥ µ − Θ(A) = A > 0. Consequently, it
holds that p∗ ≥ pM

Ψ , where pM
Ψ represents the optimal riskless price. Note that in

this case pM
Ψ does not depend on the random variable ϵ, whereas in the additive

demand case pA
Ψ is a linear function of the mean of ϵ. From inequality p∗ ≥ pM

Ψ
yield the boundary condition

max{pM
Ψ , pl} ≤ p∗ ≤ pu.

Similarly to the additive case, the shape of ΠM(z; p(z)) depends on the pa-
rameters of the problem
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Theorem 4 (Petruzzi and Dada (1999)). The single-period optimal stocking and
pricing policy for the multiplicative demand case is to stock x∗ = dM(p∗)z∗ units
to sell at the unit price p∗, where p∗ is specified by Lemma 3 and z∗ is determined
according to the following:

(a) If F is an arbitrary distribution function, then an exhaustive search over all
values of z in the region [A,B] will determine z∗.

(b) If F is a distribution function satisfying the condition 2r(z)2 +∂r(z)/∂z > 0
for A ≤ z ≤ B, and β ≥ 2, then z∗ is the only z in the region [A,B] that
satisfies

∂ΠM(z; p(z))
∂z

= 0.

Proof. The proof is similar to that of Theorem 2. From the chain rule and
equations (2.23) - (2.25) we get

∂ΠM(z; p(z))
∂z

= dM(p(z))[1 − F (z)]
[
p(z) + s − v − c − v

1 − F (z)

]
.

The rest of the proof is conducted in Petruzzi and Dada (1999).
k

Condition β ≥ 2 implies that the product has to be elastic enough.

2.1.3 Comparison and unified framework
It is essential to see the difference in how pricing decision contributes to de-

mand uncertainty in the additive and multiplicative demand case. Let the random
variable ω(p, ϵ) stands for the random demand in both the additive demand case
and the multiplicative demand case. And let ω(p, ϵ) has the first and the second
order moments. Then the unified expected demand is

E[ω(p, ϵ)] =
{

dA(p) + µ for the additive demand case,
dM(p)µ for the multiplicative demand case,

and the unified variance of the demand satisfies

var[ω(p, ϵ)] =
{

σ2 for the additive demand case,
dM(p)2σ2 for the multiplicative demand case.

Hence, the variance of the demand is independent of price in the additive
demand case. However, the demand variance is a decreasing function of price in
the multiplicative demand case due to the shape of dM(p) (2.3). And√

var[ω(p, ϵ)]
E[ω(p, ϵ)] ,

the demand coefficient of variation, is an increasing function of price in the addi-
tive demand case and is independent of price in the multiplicative demand case.
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In case we assume a deterministic setting, thus ϵ = µ, the optimal decision
on price is to choose the riskless price as there is no risk of understocking or
overstocking. In case we assume uncertainty, there is the risk of understocking
and overstocking. Luckily, price can be used to reduce this risk. In ideal scenario,
price can be used to reduce both the variance and the coefficient of variation, as
they are two common measures of uncertainty. But that is not possible in either
the additive or the multiplicative case. Nevertheless, it is possible to decrease
the demand coefficient of variation without affecting the variance by lowering the
price in the additive demand case, and to decrease the demand variance without
affecting the coefficient of variation by the price raise in the multiplicative demand
case. Therefore it is obvious that p∗ ≤ pA

Ψ in the additive demand case and
p∗ ≥ pM

Ψ in the multiplicative demand case. Thus the pricing strategy differs
according to how the randomness is included in the demand.

Let us consider that we do not know anything about the form of demand
uncertainty. We try to develop an unified framework for joint stocking and pricing
problem given both the additive and the multiplicative demand case. First, we
provide a managerial interpretation for z and, then, we define a pricing benchmark
that we refer to as the base price.

Despite the fact that z is defined differently in both the additive and the
multiplicative demand case, its meaning is similar for both. As stated in Petruzzi
and Dada (1999), it is a stocking factor that we define as a surrogate for safety
factor (SF).

Definition 1 (safety factor, Silver and Peterson (1985)). Safety factor, SF, is the
number of standard deviations that stocking quantity deviates from the expected
demand:

SF = x − E[ω(p, ϵ)]
sd[ω(p, ϵ)] , (2.27)

where sd[ω(p, ϵ)] =
√

var[ω(p, ϵ)].

This definition provides the basis for the following theorem.

Theorem 5 (Petruzzi and Dada (1999)). For both the additive and the multi-
plicative demand cases, the variable z represents the stocking factor, defined as
follows:

z = µ + SFσ.

Since z represents the stocking factor, our problem can be then transformed
into an equivalent optimization problem, where we have to choose the optimal
pricing policy and the stocking factor, regardless to the problem being formulated
as the additive demand or the multiplicative demand case. This is important
because substituting z for x provides analytical tractability.

Base price is developed as it is a convenient tool in case the optimal pricing
strategy depends on the choice between the additive and the multiplicative model.
From equations (2.11)-(2.13) and (2.23)-(2.25), the expected profit for the NPP
can be expressed as

Π(z; p) = (p − c) Eϵ[ω(p, ϵ)]

−
(

(c − v) Eϵ[Left(z, p, ϵ)] + (p − c + s) Eϵ[Short(z, p, ϵ)]
)

,
(2.28)
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where

Eϵ[Left(z, p, ϵ)] =
{

Λ(z) for the additive demand case,
dM(p)Λ(z) for the multiplicative demand case,

are the unified expected leftovers and

Eϵ[Short(z, p, ϵ)] =
{

Θ(z) for the additive demand case,
dM(p)Θ(z) for the multiplicative demand case.

are the unified expected shortages. We interpret equation (2.28) as a difference
between the riskless profit and the loss function. This expression is convenient
for further analysis. When we fix p, then the task to find the order quantity that
maximizes the expected profit is equivalent to the task to find the order quantity
that minimizes the loss function. However, we will apply the identity

E[Sales] = E[Demand] − E[Shortages] = Eϵ[ω(p, ϵ)] − Eϵ[Short(z, p, ϵ)],

because the price is not fixed in the NPP. The total expected profit can be then
expressed as

Π(z; p) = (p − c) Eϵ[Sales(z, p, ϵ)]

−
(

(c − v) Eϵ[Left(z, p, ϵ)] + s Eϵ[Short(z, p, ϵ)]
)

.
(2.29)

We interpret (2.29) similarly to (2.28): the total expected profit is the difference
between the total expected sales profit and the total expected loss caused by
inevitable occurrence of either shortages or leftovers. This allows us to define the
base price.

Definition 2 (base price, Petruzzi and Dada (1999)). For a given value of z, we
define the base price, pB(z), as the price that maximizes the function J(z, p) =
(p − c) Eϵ[Sales(z, p, ϵ)], which represents the expected sales contribution.

Lemma 6 (Petruzzi and Dada (1999)). For both the additive and the multiplica-
tive demand cases, pB(z) is the unique value of p, given z, that satisfies

p = c +
(

− Eϵ[Sales(z, p, ϵ)]
∂ Eϵ[Sales(z, p, ϵ)]/∂p

)
.

Proof. Petruzzi and Dada (1999).
k

Lemmas 1 and 6 imply that for a given z in the additive demand case the
following holds pA

Ψ ≥ p∗ = pB(z). On the other hand, Lemmas 3 and 6 imply
that for a given z in the multiplicative demand case the following holds p∗ ≥
pM

Ψ = pB(z). Hence for both the additive and the multiplicative cases, p∗ ≥
pB(z). Thus, given z, p∗ can be interpreted as the sum of the base price and a
premium, where amount of the premium depends on the risk of overstocking and
understocking. And since p∗ = pB(z) in the additive demand case, the premium
associated with the optimal selling price is equal to zero for this case. Thus it is

21



consistent with the fact that the demand variance is independent of price in the
additive demand case. In the multiplicative demand case, the premium can be
expressed from Lemma 3 as

Premium = p∗ − pB(z) = p∗ − pM
Ψ = β

β − 1

[
(c − v)Λ(z) + sΘ(z)

µ − Θ(z)

]
,

and, if we multiply both the numerator and the denominator by dM(p), we obtain

Premium = β

β − 1

[
(c − v) Eϵ[Left(z, p, ϵ)] + s Eϵ[Short(z, p, ϵ)]

Eϵ[Sales(z, p, ϵ)]

]
.

The premium in selling price is based on a formula where the sum of the total
expected leftover cost ((c − v) Eϵ[Left(z, p, ϵ)]) and the total expected shortage
cost (s Eϵ[Short(z, p, ϵ)]) is spread over the total expected sales and multiplied
by the weighting β

β−1 that depends on the form of the demand function and is
related to its price elasticity.

Under reasonable technical assumptions such as the market being large enough,
when this concept is developed as a multiple period problem or we let the price
change by the end of the selling period, the temporary sales prices can be used to
either boost sales or sell out stocks. One example could be a bakery that places
discount prices on all products an hour prior to closing in order to reduce leftovers
as much as possible. Another example could be a newsvendor who sells weekly
magazines and on the last day he decides to reduce the price in order to empty
his stocks.
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2.2 Model with advertising
The effect exhibited by advertising on the sales represents an important as-

pect of demand-based problems. When a newsvendor faces a demand of the
stochastic advertising-sensitive type, he is forced to make a decision concern-
ing advertising and inventory prior to the demand being met. Furthermore, the
advertising policy is a crucial aspect of marketing and many businesses try to
find the optimal policy where the effort put into advertising is most effective.
This effort is usually represented money-wise as various marketing channels have
different advertising response functions. The advertising response function is a
function that describes the relation between the effort put into advertising and
the relative increase in demand. A major issue is how to measure effectiveness
of advertising. In other words, which response function shall be chosen. To cap-
ture a real situation/dependency between the advertising expenditure and the
demand, Hrabec et al. (2016) suggests three particular response functions, that
are convenient thanks to their illustrative-suitable behaviour: a concave function
without threshold, a concave function with threshold and a S-shaped function
with threshold. This newsvendor problem modification is usually referred as the
newsvendor problem with advertising (NPA).

We consider two cases how the response function incorporate the demand, the
additive and the multiplicative case, similarly to the price-dependent demand in
the NPP (section 2.1). Again, we assume that the advertising-related randomness
is independent of the demand.

Advertising response function

The response function describes the sales effect of costs spent on advertising.
Let the response function d(a) be continuous, positive, twice differentiable and
increasing on its domain [0, amax] in the advertising expenditure (Khouja, 1999).
Positiveness is required due to the upcoming substitution where the response
function is a denominator.

The advertising function without threshold in demand is a function with di-
minishing returns, that is given by

d1(a) = d0 + βaα, (2.30)

where α ∈ [0, 1] and β > 0 are empirically determined constants indicating the
effectiveness of advertising and d0 > 0 represents the initial demand for a = 0.
Note that if we allow β = 0 then the demand is independent of the advertising
expenditure. Since α is in the exponent, the larger the value of α is, the more
effective advertising is. The response function (2.30) represents an idea that from
the beginning every amount spent on advertising has enormous impact on the
increase in sales and this impact decreases with more money spent. However, this
function does not have an upper bound. Therefore every increase in advertising
expenditure has perceptible increase in sales.

The advertising function with threshold in demand is an asymptotic function
with an upper bound, that is given by

d2(a) = d0 + θ

[
1 − 1

(a + 1)δ

]
, (2.31)
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where θ and δ are positive real numbers and d0 is an initial demand. The upper
bound (horizontal asymptote) is defined by value d0 + θ since 1 − 1

(a+1)δ is always
less than one. The larger the value of δ is, the faster function speeds towards the
upper bound. The response function (2.31) is similar to (2.30) with only one dif-
ference. It is that the advertising amount once reaches a point where the relative
sales increase is almost monotonous with more effort put into advertising. This
means that the advertising do not have almost any impact on buyers anymore.

The S-shaped function with threshold in demand is a logistic function that is
represented by a typical ”S” shape graph. The function is given by

d3(a) = d0 + θ

1 + ( θ−θl

θl
)e−γa

, (2.32)

where θ specifies an upper asymptote, γ is a coefficient of growth and θl defines
a lower asymptote. The S-function is a bounded real function with a positive
derivative at each point which is first convex and then concave. It means that in
the beginning the sales do not respond to the advertising because the advertising
budget is too low. It supposedly takes time for the advertising to wear in. After
the advertising budget exceeds some minimum critical-level threshold, sales start
to respond to the increased advertising. Eventually, the curve begins to slope
downward again, when the diminishing returns phase appears.

Figure 2.2 illustrates three particular functions (2.30)-(2.32). In this section all
three response functions are considered in both the additive and the multiplicative
demand case. Hence we refer to the advertising response function as d(a) without
specifying the exact shape.
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Figure 2.2: Shape of the considered response functions in the newsvendor problem
with advertising given by (2.30)-(2.32).

24



2.2.1 Additive demand case
Similarly to the price-dependent demand case (2.2), the demand function is

defined as ωA(a, ϵ) = d(a) + ϵ, where ϵ is a continuous random variable. Let ϵ be
defined on the domain [A, B]. Again, we could require E ϵ = 0 alike in Hrabec
et al. (2016). But we do not need that because results can be evaluated in general
form. Moreover, suppose that A > −d(a) so that we guarantee nonnegative
demand at all times.

The problem description and assumptions on parameters are similar to the NP
(section 1). Only difference is that we have to include the advertising expenditure
a into the overall profit function (1.1). Thus, if we substitute ω = ωA(a, ϵ) and
add the advertising amount cost a to (1.1), we obtain the utility function

πA(x; a; ω) =
{

pωA(a, ϵ) − cx + v[x − ωA(a, ϵ)] − a for ωA ≤ x,
px − cx − s[ωA(a, ϵ) − x] − a for ωA > x.

(2.33)

The decision variables are the order quantity x and the amount spent on adver-
tising a.

We perform similar transformation as in section 2.1.1 (the additive NPP). Let
us denote z = x−d(a), where z ∈ R is the stocking factor, and we get from (2.33)
that

πA(z; a; ϵ) =
{

p[d(a) + ϵ] − c[d(a) + z] + v[z − ϵ] − a for ϵ ≤ z,
p[d(a) + z] − c[d(a) + z] − s[ϵ − z] − a for ϵ > z.

Interpretation of z is the same as in section 2.1.1. Since there are many similarities
with the price-dependent demand case, we use the same notation.

The expected profit can be expressed by

ΠA(z; a) = Eϵ[πA(z; a; ϵ)] =
z∫

A

(p[d(a) + ϵ] + v[z − ϵ]) dF (ϵ)

+
B∫

z

(p[d(a) + z] − s[ϵ − z]) dF (ϵ)

− c[d(a) + z] − a

=ΨA(a) − LA(z),

(2.34)

where
ΨA(a) = (p − c)[d(a) + µ] − a (2.35)

is the riskless profit and

LA(z) = (c − v)Λ(z) + (p + s − c)Θ(z) (2.36)

is the expected loss. Series of equations (2.34) is evaluated similarly as in the
NPP case (see (2.8)).

We can see that the decision on a and z are made independently from (2.34).
Therefore, we can handle the problem of finding the optimal decision indepen-
dently. Thus the optimal amount of advertising a∗ must satisfy the necessary
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optimal condition (first order condition for the riskless profit ΨA(a)), that is
given by

∂d(a)
∂a

= 1
p − c

. (2.37)

The exact formulas of the optimal advertising expenditure a∗ for considered re-
sponse functions will be provided at the end of the next section (section 2.2.2).
The optimal stocking quantity z∗ is determined by solving the first order condition
since we know that LA(z) given by (2.36) is concave (follows from (2.16) because
the result of the second order derivative of LA(z) is identical). The optimal z can
be then expressed by

F (z∗) = p + s − c

p + s − v
. (2.38)

2.2.2 Multiplicative demand case
For the multiplicative demand case, the demand function ωM(a, ϵ) is defined

as ωM(a, ϵ) = d(a)ϵ. In order to assure that the demand is positive, we require
that A > 0. The utility function is (2.33) and by substituting z = x

d(a) , where
z ≥ 0 is the stocking factor, we obtain

πM(z; a; ϵ) =
{

pd(a)ϵ − cd(a)z + vd(a)[z − ϵ] − a for ϵ ≤ z,
pd(a)z − cd(a)z − sd(a)[ϵ − z] − a for ϵ > z.

Analogically to the additive demand case, the expected profit is

ΠM(z; a) = Eϵ[πM(z; a; ϵ)] = ΨM(a) + LM(a, z), (2.39)

where
ΨM(a) = (p − c)d(a)µ − a (2.40)

is the riskless profit and

LM(a, z) = d(a)[(c − v)Λ(z) + (p + s − c)Θ(z)] = d(a)LA(z) (2.41)

is the expected loss.
In order to find the optimal solution with respect to x and a we perform two

consequent steps. Thanks to the form of the expected loss function (2.41) we
can obtain the optimal stocking factor z∗ independently on the optimal value of
a. After that we can determine the optimal value of a using a suitable response
function d(a). After that we can determine the optimal ordering quantity x∗ by
substituting back to x∗ = d(a∗)z∗.

Analogically to the finding of the optimal stocking factor z∗ in the additive
demand case, we obtain that the optimal z satisfies (2.38) (ΠM(z; a) is concave
in z). Moreover, when F is invertible, we can express the optimal and unique z∗

as
z∗ = F −1

(
p + s − c

p + s − v

)
, (2.42)

which corresponds to the standard NP result (see (1.7)) and the optimal z∗ derived
for the additive demand case (see (2.38)).
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Notice that (2.39) can be rewritten as

ΠM(z; a) = ΨM(a) + d(a)LA(z) = d(a)[(p − c)µ − LA(z)] − a, (2.43)

where LA(z) is given by (2.36). And by substituting (2.42) into (2.43) we get the
following expression:

ΠM(z∗; a) = d(a)[(p − c)µ − LA(z∗)] − a. (2.44)

Notice in (2.44) that, since we assume d(a) > 0, it could happen for (p − c)µ −
LA(z∗) < 0 that the expected profit ΠM(z∗; a) is negative and strictly decreasing
in a. Similarly when (p − c)µ − LA(z∗) = 0. But that does not capture any
real situation because the expected per-unit profit would be negative. In that
case, the only good strategy is to do nothing and buy zero items (x = 0, a =
0 and thus z = 0). Therefore we introduce another assumption that verifies,
that the expected per-unit profit is greater than zero. Thus we assume that
(p − c)µ − LA(z∗) > 0. This assumption could be easily violated mainly due
to the shape of distribution F , i.e. high variance causes large expected loss as
there would be high expected shortages and leftovers that cannot be covered by
expected gain. However, all parameters could possibly cause violation of this
assumption too, e.g. small per-unit profit margin p − c.
Note (Assumption 1). Denote the inequality (p−c)µ−LA(z∗) > 0 as Assumption
1.

Now solving the first order condition of ΠM(z∗; a) (2.44) with respect to a
determines the optimal advertising expenditure a∗. Hence a∗ must satisfy the
necessary optimality condition

∂d(a)
∂a

= 1
(p − c)µ − LA(z∗) . (2.45)

Optimal advertising for given response functions

We can now express the exact form of the optimal advertising expenditure a∗

with respect to the advertising response function d(a) used. The following ex-
pressions are actual for the multiplicative demand case. While to get expressions
for the additive demand case, substitute µ = 1 and LA(z∗) = 0 (see/compare
(2.45) and (2.37)).

For the advertising response function without threshold in demand d1(a) given
by (2.30) we get that the optimal a is

a∗ = 1−α

√
αβ[(p − c)µ − LA(z∗)]. (2.46)

For the advertising response function with threshold in demand d2(a) given
by (2.31) we get

a∗ = δ+1
√

θδ[(p − c)µ − LA(z∗)] − 1.

And the advertising optimal for the S-shaped response function d3(a) given
by (2.32) is expressed by

a∗ = −
ln
({

1− 1
2 [(p−c)µ−LA(z∗)]θγ+ 1

2

√
−4[(p−c)µ−LA(z∗)]θγ+[(p−c)µ−LA(z∗)]2θ2γ2

}
θl

θl−θ

)
γ
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2.2.3 Monotonicity
Let us investigate some properties of the expected profit ΠM(z∗; a) (2.44). If

we compute the second order derivative of the expected profit given by (2.44),
we get

∂2ΠM(z∗; a)
∂a2 = ∂2d(a)

∂a2 [(p − c)µ − LA(z∗)]. (2.47)

This is the fundamental for the following proposition.

Proposition 7 (Hrabec et al. (2016)). Under Assumption 1 the intervals where
the expected profit ΠM(z∗; a) is convex or concave with respect to the advertising
a are equal to the intervals where the advertising response function d(a) is convex
or concave.

Proof. The direct implication of (2.47) and Assumption 1.
k

We need to add another assumption that would together with Assumption
1 help us guarantee that the optimal solution is unique for selected types of
demand functions (i.e. concave and S-shaped function). From equation (2.45)
and the fact that d(a)’s domain is [0, amax] yields that we must assume that
∂d(0)+

∂a
> 1

(p−c)µ−LA(z∗) and ∂d(amax)−

∂a
< 1

(p−c)µ−LA(z∗) to obtain a unique solution.
In case d(a) is defined on a greater interval than [0, amax], the assumption can be
expressed as ∂d(0)

∂a
> 1

(p−c)µ−LA(z∗) and ∂d(amax)
∂a

< 1
(p−c)µ−LA(z∗) .

Note (Assumption 2). Denote the inequalities ∂d(0)+

∂a
> 1

(p−c)µ−LA(z∗) and
∂d(amax)−

∂a
< 1

(p−c)µ−LA(z∗) as Assumption 2.
We can deduce the following theorem for the strictly concave response function

in the multiplicative demand case.

Theorem 8 (Hrabec et al. (2016)). If the response function d(a) is strictly con-
cave, then, under Assumptions 1 and 2, the expected profit ΠM(z∗; a) is strictly
concave in a and so the globally optimal advertising expenditure a∗ is unique and
is given by solution of (2.45) with respect to the decision variable a.

Proof. Since the response function d(a) is considered to be strictly concave in its
domain then from Proposition 7 follows that also the expected profit ΠM(z∗; a)
is strictly concave in a. Moreover, Assumption 2 guarantees that the expected
profit ΠM(z∗; a) is increasing at its initial point and decreasing at its endpoint.
Then, the critical point determined from the optimality condition (2.45) is unique
and is the optimal advertising amount a∗.

k
Similar theorem holds for the additive demand case.

Theorem 9 (Hrabec (2016)). If the response function d(a) is strictly concave,
the expected profit ΠA(z∗; a) is strictly concave in a and, under Assumption 2, the
optimal advertising amount is unique and is given by (2.37).
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Proof. The proof is much the same as the one of Theorem 8.
k

And for the S-shaped response function we get the following theorem in case
of the multiplicative demand case.

Theorem 10 (Hrabec et al. (2016)). If the response function d(a) is S-shaped,
then, under Assumptions 1 and 2, the expected profit ΠM(z∗; a) is strictly quasi-
concave in a and so the globally optimal advertising expenditure is unique and is
given by (2.45).

Proof. Since the response function is S-shaped, we know that the expected
profit function ΠM(z∗; a) is first convex and then concave in a from Proposition
7. Moreover, Assumption 2 guarantees that the expected profit ΠM(z∗; a) is
increasing at its initial point and so it increases until it reaches its maximum. In
other words, ΠM(z∗; a) is strictly quasi-concave in a. Then, from the optimality
condition (2.45), we can obtain a single critical point a∗, the optimal advertising
amount, which always lies in the concave range.

k
Again, for the additive demand case, we obtain the similar result.

Theorem 11 (Hrabec (2016)). If the response function d(a) is S-shaped, the
expected profit ΠA(z∗; a) is strictly quasi-concave in a and, under Assumption 2,
the optimal advertising amount is unique and is given by (2.37).

Proof. The proof is much the same as the one of Theorem 10.
k

Since we derived the unique optimal solution for ΠM(z; a) with respect to
both a and z, we can now solve the original problem of maximizing the expected
profit given by the objective function (2.33) with respect to the order quantity x.
This can be done easily by substituting back with the formula x∗ = z∗

d(a∗) . The
pair [a∗, x∗] then represents the optimal solution of the newsvendor problem with
pricing in case of the multiplicative demand.

Similarly, we obtain the optimal ordering quantity in case of the additive
demand as x∗ = z∗ + d(a∗).

Comparison with riskless problem

Let us take a closer look on the riskless problem and compare it with the NPP
results. Suppose that the advertising problem does not contain any uncertainty.
Problem can be then reduced only to a deterministic problem and its objective
function is the riskless profit ΨA(a) = (p−c)d(a)−a for the additive demand case
and ΨM(a) = (p − c)d(a)µ − a for the multiplicative demand case (see (2.35) and
(2.40)). Solving the first order condition of ΨM(a), we get the following necessary
optimality condition:

∂d(a)
∂a

= 1
(p − c)µ, (2.48)

that must be satisfied by the optimal riskless advertising aM
Ψ in the multiplicative

demand case. If the response function d(a) is either concave or S-shaped, then
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Proposition 7 can be applied adequately (Assumption 1 holds thanks to absence
of uncertainty) and, under Assumption 2, the necessary optimal condition (2.48)
is also sufficient for the optimal riskless advertising aM

Ψ .
The following theorem summarizes relation between the optimal decision of a

in absence and presence of uncertainty for the multiplicative demand case.

Theorem 12 (Hrabec et al. (2016)). Based on the optimality condition (2.48),
considering concave and S-shaped functions, and under Assumptions 1 and 2, we
can derive that for the multiplicative demand model the optimal advertising a∗ is
always less than or equal to the optimal riskless advertising aM

Ψ .

Proof. We know that with presence of uncertainty the function LA(z∗) given by
(2.36) is always positive. Hence if we compare equations (2.45) and (2.48), we
obtain inequality 1

(p−c)µ ≤ 1
(p−c)µ−LA(z∗) which is equivalent with ∂d(aM

Ψ )
∂a

≤ ∂d(a∗)
∂a

.
For the response functions considered, concave and S-shaped, the optimal ad-
vertising a∗, if it exists and is greater than zero, belongs to the concave part of
d(a). Then, for the concave part of d(a), we know that the derivative of d(a) is
a decreasing function of a. So from ∂d(aM

Ψ )
∂a

≤ ∂d(a∗)
∂a

follows that aM
Ψ ≥ a∗.

k

Recall that for the NPP with the multiplicative demand case the optimal price
is not less than the riskless price. Despite the expected profit functions of the NPA
and the NPP are similar (see (2.23) and (2.43)), the demand response functions
are defined differently: d(p) is decreasing in p whereas d(a) is increasing in a.
Therefore, there is no surprise that we derived the opposite effect of uncertainty
in the NPA given by Theorem 12 and in the NPP case (see Lemma 3 from which
follows p∗ ≥ pM

Ψ ).
In the additive demand case the decisions on a and z are made independently

from equation (2.34) unlike in the multiplicative demand case (see (2.43)). There-
fore, the optimal advertising a∗ is always equal to the riskless optimal advertising
aA

Ψ, which is obtained by taking ∂ΨA(a)
∂a

= 0 that leads to

∂d(a)
∂a

= 1
(p − c) .

However, this result arises doubts. Can indeed be the optimal advertising a∗

resistant to the demand uncertainty? An analysis that answers this question
might help the interested manager to choose a suitable model.

Similarly to the NPP (section 2.1.3), it is essential to see the difference in
how advertising contributes to the demand uncertainty, precisely the variance
and the coefficient of variation, in the additive and the multiplicative demand
case. While in the additive case the variance of the demand is constant, i.e.
var[ωA(a, ϵ)] = σ2, in the multiplicative case the variance is a function of the re-
sponse function, i.e. var[ωM(a, ϵ)] = d(a)σ2. Thus in the multiplicative demand
case the variance is increasing function of advertising due to the shape of d(a).
The demand coefficient of variation is independent of advertising in the multi-
plicative case, i.e.

√
var[ωM (a,ϵ)]
E[ωM (a,ϵ)] = σ

µ
, thus constant. On the other hand, in the

additive case the demand coefficient of variation is a decreasing function of the
advertising amount.
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Hence an enlargement of advertising amount a in the additive demand case
helps to reduce risk because the variance is kept constant and the coefficient
of variation decreases. On the other hand, an increment in advertising amount
a for the multiplicative demand case causes that the coefficient of variation is
kept constant but the variance increases. Therefore, it is sensible to keep the
advertising expenses low in the multiplicative demand case of the NPA if we
want to avoid leftovers or shortages.
Example. Let the random variable ϵ has continuous uniform distribution, i.e.
ϵ ∼ U(A, B), and consider the multiplicative demand case. Then, from (2.42),
we obtain the optimal z∗ = A + p+s−c

p+s−v
(B − A). If we want to derive Assumption

1, that states (p − c)µ − LA(z∗) > 0, we must substitute z∗ into LA(z) (2.36).
Then LA(z∗) = (z∗ − A) c−v

2 = p+s−c
p+s−v

(c − v)B−A
2 . Hence we get that Assumption

1 must satisfy
B − A

2

(
p − c − (c − v) p + s − c

p + s − v

)
> 0.

Assumption 1 then crucially depends on all defined parameters apart from the
advertising expenditure a.
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2.3 Model with joint pricing and advertising
The newsvendor problem with joint pricing and advertising (NPPA) combines

all of the operational and marketing strategies introduced in sections 1, 2.1 and
2.2. Therefore, the NPPA is a problem with three decision variables: ordering
(stocking), pricing, advertising, and one random variable influencing the demand.

Setting where a firm wants to optimize both pricing and advertising is most
common in business. Here, a decision-maker may in most cases adjust the selling
price in order to lower or elevate the demand and he has also the benefit of
influencing the final demand by choosing and investing into the right marketing
activities, e.g. promotional displays, advertising, and other demand-enhancing
activities.

This section follows Hrabec (2016) that summarizes two papers on the NPPA:
Dai and Meng (2015) and Wang and Hu (2011). The NPPA model is in its for-
mulation similar to the NPA model (section 2.2). The crucial difference is that
the newsvendor faces stochastic demand ω(a, p, ϵ), where p is the decision vari-
able as well. Thus we define the joint advertising and pricing response function
d(a, p) that is assumed to be separable, nonnegative, twice differentiable, strictly
concave, and is defined on [0, ∞)× [0, ∞). Conceivably, d(a, p) is strictly increas-
ing and concave in the advertising amount and is strictly decreasing and convex
in the selling price. Thanks to the separability the response function satisfies
d(a, p) = d1(a)d2(p). The newsvendor simultaneously decides on: the advertising
amount a, the selling price p, and the amount x to be stocked and sold. Replac-
ing ωA(a, ϵ) with ω(a, p, ϵ) in the NPA model utility function (2.33), the NPPA
model utility function is expressed as

π(x; a; p; ω) =
{

pω(a, p, ϵ) − cx + v[x − ω(a, p, ϵ)] − a for ω ≤ x,
px − cx − s[ω(a, p, ϵ) − x] − a for ω > x.

(2.49)

In the paper by Dai and Meng (2015) two demand cases are investigated:
the marketing-dependent price-multiplicative case (MDPM) and the marketing-
dependent price-additive case (MDPA). Let the demand function for MDPM case
is denoted as ωM(a, p, ϵ) and let it satisfy

ωM(a, p, ϵ) = d1(a)d2(p)ϵ. (2.50)

The demand function for MDPA case is denoted as ωA(a, p, ϵ) and is given by
ωA(a, p, ϵ) = d1(a)[d2(p) + ϵ]. Moreover, let the random variable ϵ be defined on
the domain [A, B] and satisfy A > 0 for MDPM and A > −d2(p) for MDPA.

In this thesis, the MDPM case is further investigated.

2.3.1 Marketing-dependent price-multiplicative
demand model

Let ϵ ∈ [A, B], where A > 0, and let d(a, p) denote the general response func-
tion that could be expressed as d1(a)d2(p). Then, the demand is in the MDPM
form like (2.50). The utility function (2.49) may be rewritten by substituting
(2.50) into ω(a, p, ϵ) and defining the stocking factor as z = x

d(a,p) :

π(z; a; p; ϵ) =
{

pd(a, p)ϵ − czd(a, p) + vd(a, p)[z − ϵ)] − a for ϵ ≤ z,
pzd(a, p) − czd(a, p) − s[ϵ − z] − a for ϵ > z.

(2.51)
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The objective is to maximize the expected profit. Let us denote Π(a, p, z) =
Eϵ[π(z; a; p; ϵ)]. Then the expected profit is expressed as

Π(a, p, z) = Ψ(a, p) − L(a, p, z) = Ψ(a, p) − d(a, p)l(p, z), (2.52)

where Ψ(a, p) = (p−c)d(a, p)µ−a is the riskless profit and l(p, z) = (c−v)Λ(z)+
(p+s−c)Θ(z). Recall that d(a, p)Λ(z) are the expected leftovers and d(a, p)Θ(z)
are the expected shortages.

Optimality

To maximize the expected profit Π(a, p, z) (2.52) we use the following sequence
of steps: first the optimal stocking quantity is evaluated, after that the optimal
pricing policy and finally the optimal advertising expenditure is found. Taking
∂Π(a,p,z)

∂z
= 0, it leads to the optimal stocking quantity z∗, if F is invertible, that

is expressed as

z∗ = F −1

⎛⎝p + s − c

p + s − v

⎞⎠.

Notice that we derived once again the solution that corresponds to the standard
NP optimal quantity (1.7) and to the optimal stocking factor of the NPP (2.19)
as well as of the NPA (2.42).

The next optimal value of a decision variable to be found is price p. If we
set the derivative of the expected profit w.r.t. p to zero, i.e. ∂Π(a,p,z)

∂p
= 0, it can

be observed that ∂d(a,p)
∂p

[(p − c)µ − l(z, p)] + d(a, p)[µ − Θ(z)] = 0. Substitute
d(a, p) = d1(a)d2(p) into the derived formula and we obtain

∂d2(p)
∂p

[(p − c)µ − l(z, p)] + d2(p)[µ − Θ(z)] = 0. (2.53)

Notice that the necessary optimal pricing condition of price p does not contain
advertising amount a and is identical to the optimal pricing condition in the NPA
(2.26). In order to find the unique optimal price p∗, the following definitions are
needed (see Yao et al. (2006)).

Definition 3 (GSIFR, IFR). We say that the distribution F (·) has generalized
strict increasing failure rate (GSIFR) if

g′(ϵ) > 0 ∀ϵ,

where g(ϵ) = ϵ ·r(ϵ) is generalized failure rate function and r(ϵ) = f(ϵ)
1−F (ϵ) is hazard

rate (or so called failure rate function) used in Theorems 2 and 4.
Moreover, we say that the distribution F (·) has increasing failure rate (IFR)

if
r′(ϵ) ≥ 0 ∀ϵ.

GSIFR class of distributions include PF2 distributions as well as log-normal
distribution with parameter restrictions. GSIFR is generalization of IFR and thus
include more distribution used in literature. IFR does not include all gamma and
Weibull distributions that are present in GSIFR. For more discussion on GSIFR
and IFR, see Yao et al. (2006), Barlow and Proschan (1987) or Chen et al. (2007).
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Definition 4 (IPE). We say that the expectation of ω, i.e. Eϵ[ω(p, ϵ)] = y(p),
belongs to a class of demand functions with an increasing pricing elasticity (IPE)
if

∂e

∂p
≥ 0,

where e = −py′(p)
y(p) denotes the price elasticity of y(p).

The price elasticity gives the percentage change in demand in response to a
one percent change in price. In our case Eϵ[ω(p, ϵ)] = d(p)µ. Thus if d(p) has IPE,
then Eϵ[ω(p, ϵ)] has IPE as well because e = −pd′(p)

d(p) for both. For more details on
IPE, see Yao et al. (2006).

Theorem 13 (Hrabec (2016)). If d2(p) has IPE and the cdf F (·) has GSIFR,
then Π(a, p, z) is quasi-concave in p, and optimal price of the MDPM model is
unique and is always equal to that of the multiplicative form in the NPP.

Proof. Consider the NPP model with the multiplicative demand form (section
2.1.2). As stated in Hrabec (2016), it can be shown that if the mean demand
Eϵ[ωM(p, ϵ)] has IPE and the distribution F has GSIFR, then Π is quasi-concave
in p in the range [pl, pu] and thus the first order condition ∂ΠM (z(p),p)

∂p
= 0 has a

unique solution (see Yao et al. (2006)).
Moreover, Eϵ[ωM(p, ϵ)] = dM(p)µ and if dM(p) has IPE, then Eϵ[ωM(p, ϵ)] has

IPE.
The proof is then obvious comparing two optimal price conditions, the NPP

condition (2.26) and the NPPA condition (2.53).
k

Example. Let d2(p) = dM(p) = αp−β, which corresponds to the isoelastic pricing
function (2.3). Assume that α > 0 and β > 1. Then, after substituting d2(p) into
(2.53), we obtain

∂Π(a, p, z)
∂p

= (β − 1)d2(p)
p

[µ − Θ(z)]

⎧⎨⎩pM
Ψ + β

β − 1

[
(c − v)Λ(z) + sΘ(z)

µ − Θ(z)

]
− p

⎫⎬⎭,

where pM
Ψ is the optimal riskless profit. Then, the optimal price expression is

equal to the optimal price of the NPP (see Lemma 3) and satisfies

p∗ = pM
Ψ + β

β − 1

[
(c − v)Λ(z) + sΘ(z)

µ − Θ(z)

]
.

If we set ∂Π(a,p∗,z∗)
∂a

= 0 and substitute d(a, p∗) = d1(a)d2(p∗) we get the
necessary optimal condition for advertising a as follows:

∂d1(a)
∂a

= 1
d2(p∗)[(p∗ − c)µ − l(z∗, p∗)] . (2.54)

The optimal advertising condition (2.54) depends on the choice of price p as
well as on the shape of the function d2(p). Moreover, with increasing p (or p∗,
respectively) the value of d2(p) decreases. Therefore, the optimal advertising for
the NPPA model depends both on d1(a) and d2(p).
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Example. Consider d1(a) = d0+βaα, which corresponds to the concave advertising
response function without threshold (2.30). Then the optimal advertising a∗ can
be expressed by substituting d1(a) into (2.54):

a∗ = 1−α

√
αβd2(p∗)[(p∗ − c)µ − l(z∗, p∗)],

which is equal to the NPA result (2.46) if we multiply (2.46) by 1−α

√
d2(p∗).

Remember that the optimal stocking quantity x∗ is determined as x∗ =
z∗d(a∗, p∗).

Comparison with riskless problem

Let Ψ be the the riskless problem of the MDPM for which Ψ(a, p) = (p −
c)d1(a)d2(p)µ − a.

Then taking ∂Ψ(a,p)
∂p

= 0 gives the optimality condition for the riskless price
pΨ that is

d2(p) + (p − c)∂d2(p)
∂p

= 0. (2.55)

Example. If we set d2(p) to be the isoelastic function, i.e. d2(p) = αp−β, then the
optimal riskless pricing is pΨ = βc

β−1 which is the optimal riskless pricing pM
Ψ in

the multiplicative NPP, see Lemma 3.
Then we can derive an equivalent relation between the optimal pricing in

absence and presence of uncertainty as in the NPP. See the first paragraph after
Lemma 3 for comparison.

Theorem 14 (Hrabec (2016)). For the isoelastic response function is the optimal
riskless pricing pΨ in the MDPM model, given by condition (2.55), always greater
or equal to the optimal pricing p∗.

Proof. We found the same property in section 2.1.2 (between Lemma 3 and
Theorem 4). The proof is similar.

k

And taking ∂Ψ(a,p)
∂a

= 0 gives the optimality condition for the riskless adver-
tising aΨ that is

∂d1(a)
∂a

= 1
d2(p)(p − c)µ. (2.56)

Then we can derive an equivalent relation between the optimal advertising in
absence and presence of uncertainty as in the NPA if we adjust appropriately
assumptions for the NPPA.
Note. (Assumption 2.2) Assumption 2 needs adjustment, compare Assumption 2
and (2.54). Then Assumption 2.2 is ∂d1(0)+

∂a
> 1

d2(p∗)[(p∗−c)µ−l(z∗,p∗)] and ∂d1(amax)−

∂a
<

1
d2(p∗)[(p∗−c)µ−l(z∗,p∗)] , where a ∈ [0, amax].

If the response function d1(a) is either concave or S-shaped and Assumption
2.2 holds, the necessary optimal condition given by (2.56) is also sufficient optimal
condition for the riskless optimal advertising aΨ. Notice that Assumption 1 is
always satisfied because d2(p∗) is always positive in (2.54).
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Theorem 15 (Hrabec (2016)). For the MDPM, based on the optimality condition
(2.56), if d1(a) is either concave or S-shaped, then, under Assumptions 1 and 2.2,
the optimal advertising a∗ is always less than or equal to the optimal riskless
advertising aΨ.

Proof. Analogically to the proof of Theorem 12.
k

Example. If we consider d1(a) = d0 + βaα, then the optimal riskless advertising
is

aΨ = 1−α

√
αβd2(p)(p − c)µ.
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Chapter 3

Multicriteria and multiproduct
extensions of the newsvendor
model

3.1 Multicriteria extensions
Until now we dealt with the single-criteria optimization problems. It is due to

the fact that we maximized the expected profit that was represented by a single
objective function. Extending the stochastic problem for multiple criteria mean
that we add another objective functions capturing problems that we want to han-
dle. This additional objective functions can be either maximized or minimized.
Generally speaking, the multicriteria optimization problem with random element
is defined as

”max” [f1(x, ω), . . . , fK(x, ω)]
subject to ”g(x, ω) ≥ 0”, x ∈ X,

where X ⊂ Rn is non-empty set, ω is s-dimensional random vector from given
probability space (Ω, A, P ), fk : Rn ×Ω → R, k = 1, . . . , K and g : Rn ×Ω → Rm

are given real functions.
We show addition of a single objective function in this paper. It has been

pointed out in the literature that maximizing the expected profit is not satisfac-
tory from practical point of view, and managers are usually more concerned with
other types of objectives.

For instance, the risk-sensitive newsvendor might be interested in lowering
leftovers and shortages that often occur while still maximizing the expected profit.
Such a scenario could happen in case the newsvendor’s financial resources are not
ample enough to survive a streak of several above-average losses. One of the ways
how to handle the demand fluctuations is to establish an appropriate risk measure
and add it to the problem. Therefore, a condition specifying that the riskiness
of the profit does not exceed a predetermined risk level is added to the problem.
In this paper, we use the Conditional Value at Risk (CVaR) at level η ∈ (0, 1] to
quantify the riskiness. CVaR is widely used risk measure that is popular mainly
in financial risk management. For the CVaR definition and properties see section
3.1.1 and for the problem formulation see section 3.1.2.

On the other hand, other newsvendors try to reach a predetermined fixed
target profit. However, this is still insufficient criterion as it might lead to the
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significant loss. To reduce such a risk arising from the variation of the profit one
could minimize the riskiness of the profit. Such a scenario could happen in case
the newsvendor needs to cover on average his daily out-of-business costs at any
cost. For the problem formulation see section 3.1.3.
Note. (Jammernegg and Kischka, 2007) The classical newsvendor maximizes its
expected profit. Within the expected utility theory, this is equivalent to the as-
sumption of risk-neutral behaviour: the expected profit derived from the optimal
order quantity Eω[π(x∗; ω)] is considered indifferent to the random profit π(x∗; ω).
At the setting with the CVaR, the newsvendor is considered risk-averse. In the
decision theory the risk-aversion is characterized by the fact that the expected
value Eω[π(x∗; ω)] is prefered to the random variable π(x∗; ω).

3.1.1 Conditional Value at Risk
We briefly describe the CVaR performance measure and show some most

important properties. The CVaR maximizes the average profit of the profit falling
below a certain quantile level (or VaR) which is defined as the maximum profit
at a specified confidence level. Formally, CVaR of profit π(x; ω) given by (1.1) is
defined as (see Pflug and Römisch (2007) for the definition that is derived from
Rockafellar and Uryasev (2002))

CVaRη[π(x; ω)] = max
ϕ∈R

Γη(π(x; ω), ϕ), (3.1)

where
Γη(π(x; ω), ϕ) = ϕ − 1

η
Eω[ϕ − π(x; ω)]+.

The parameter η ∈ (0, 1] reflects the degree of risk aversion for the newsvendor.
The smaller the η is, the more risk-averse newsvendor is.

The CVaR is also known as a risk measure that is coherent (Artzner et al.,
1999), and consistent with the second (or higher) order stochastic dominance
(Ogryczak and Ruszczýnski, 2002). A coherent risk measure has better com-
putational properties than a non-coherent risk measure. The consistency with
the stochastic dominance implies that maximizing the CVaR never conflicts with
maximizing the expectation of any risk-averse utility function (Ogryczak and
Ruszczýnski, 2002). Furthermore, notice that, by (3.1), the CVaR of η = 1
equals to the expected profit.

CVaR only objective

Some researchers address the newsvendor problem as minimizing the downside
risk of the profit. Hence the objective of the risk-averse newsvendor is to maximize
the CVaR, i.e.

max
x

CVaRη[π(x; ω)]. (3.2)

The following theorem gives a closed form solution of the unconstrained prob-
lem (3.2).
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Theorem 16 (Gotoh and Takano, 2007, Proposition 3.3). Assume that there
exists the inverse of the distribution function of the product demand. Then, (3.2)
with η ∈ (0, 1] has an optimal solution (x∗

CVaR, ϕ∗) defined by

x∗
CVaR = p − v

p − v + s
F −1

(
η

p−c+s

p−v+s

)
+ s

p − v + s
F −1

(
(p−v+s)−η(c−v)

p − v + s

)
,

ϕ∗ = (p−c+s)(p−v)
p − v + s

F −1
(
η

p−c+s

p−v+s

)
− (c − v)s

p−v+s
F −1

(
(p−v+s)−η(c−v)

p − v + s

)
.

(3.3)

Proof. The proof is conducted in Gotoh and Takano (2007) with different nota-
tion or in Xu and Li (2010, Theorem 2) with similar notation.

k

In case the shortage penalty is set to zero, i.e. s = 0, we obtain the following
simplier solution.
Corollary. (Gotoh and Takano, 2007, Corollary 3.4) Under the same assumptions
as in Theorem 16 with s = 0, the optimal ordering quantity of the risk-averse
newsvendor is

x∗
CVaR\s = F −1

(
η

p − c

p − v

)
. (3.4)

Notice that (3.4) is similar to the classical NP problem solution (1.7) with only
difference in the coefficient in the argument of the inverse F −1. Consequently,
the difference between the optimal ordering given by (3.3) or (3.4) and the classic
one (1.7) depends only on two parameters s and η. The higher the degree of
risk aversion is in (3.4), i.e. the smaller the η is, the less items is order by the
newsvendor. We kindly refer reader to Gotoh and Takano (2007) or Xu and Li
(2010) for the sensitivity analysis of the optimal ordering x∗

CVaR and x∗
CVaR\s.

Wu et al. (2013) note that although the CVaR has better computational char-
acteristics, as a coherent risk measure, and is often used in financial management,
there exists a limitation when the CVaR is applied to this specific newsvendor
modification. If v converges to c, the newsvendor should order as many items as
possible since there is almost no risk of overstocking. However, under the CVaR
only criterion (3.2) with s = 0, the newsvendor orders only F −1(η) from (3.4).
Interpretation of this issue is that the CVaR only criterion is too conservative in
some cases because only the worst outcome is considered. Generally speaking,
for small η, the CVaR only criterion describes the risk-aversion and neglects a
large part of the profit distribution; whereas for large η, the CVaR only crite-
rion comprises a large part of the profit distribution and does not reflect the real
newsvendor’s risk attitude. To address issues mentioned, the decision makers
dealing with the portfolio optimization/inventory problems usually put their in-
terest into the tradeoff between the expected profit and the risk. This concept is
defined and further analyzed in section 3.1.4.

General formulation and efficient solution

Symbolically, the multicriteria optimization problem of maximizing the ex-
pected profit and minimizing the variation of the profit using CVaR is as follows
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”maximize”
x

[
Eω[π(x; ω)], CVaRη[π(x; ω)]

]
subject to x ≥ 0.

(3.5)

In order to find the optimal solution with respect to the multiobjective pro-
gramming problem (3.5) we introduce a concept of solution x which is acceptable
from the point of view of ”maximization” of all considered objective functions.
The definition is to be found in Dupačová et al. (2003).
Definition 5 (efficient solution). A solution x∗ ≥ 0 is an efficient solution of the
multicriteria optimization problem (3.5) if there is no element x ≥ 0 for which[

Eω[π(x; ω)], CVaRη[π(x; ω)]
]

≥
[

Eω[π(x∗; ω)], CVaRη[π(x∗; ω)]
]

and [
Eω[π(x; ω)], CVaRη[π(x; ω)]

]
̸=
[

Eω[π(x∗; ω)], CVaRη[π(x∗; ω)]
]
.

Interpretation is clear: no other feasible decision is uniformly better with
respect to all considered criteria.

3.1.2 Expected profit in the objective
Consider a newsvendor who wants to maximize its expected profit while keep-

ing the risk below some reasonable level. Denote R as a maximal risk that can
the newsvendor take. Then the optimization problem is to

maximize
x

Eω[π(x; ω)]

subject to CVaRη[π(x; ω)] ≥ R,

x ≥ 0,

(3.6)

where π(x; ω) is the NP profit function given by (1.1) and the CVaR is considered
on the confidence level η and is defined in section 3.1.1.

3.1.3 Conditional value at risk in the objective
Consider a newsvendor who wants to minimize its risk while keeping the return

at least as large as a predetermined target profit. Denote G as a minimal profit
that the newsvendor wants to achieve. Then the optimization problem is to

maximize
x

CVaRη[π(x; ω)]

subject to Eω[π(x; ω)] ≥ G,

x ≥ 0,

(3.7)

where π(x; ω) is the NP profit function given by (1.1) and the CVaR is considered
on the confidence level η and is defined in section 3.1.1.

Gotoh and Takano (2007) provide a linear program (LP) transformation in
case the demand distribution is given by a finite number of scenarios. The advan-
tages of such LP transformation are significant especially when the newsvendor
deals with the multiproduct problem and many constraints are imposed since
LP can handle efficiently huge number of constraints and variables. Apart from
that, when we are not able to compute any closed form solution, we can find an
(approximating) optimal solution and find the optimal distribution of any related
random variable in an approximate manner.
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3.1.4 Expected profit and CVaR in the objective
As stated above, the CVaR only criterion (3.2) has some weaknesses and

thus, in order to overcome them, researchers propose a more general performance
measure. Specifically, an objective function that is a combination of the expected
profit and the CVaR of the profit. Such an objective reflects the desire of the risk-
averse newsvendor to minimize the downside risk of the profit at one hand, and
to maximize the expected profit on the other hand. Hence, the newsvendor seeks
for a balance/tradeoff between the profit and the risk. The objective function of
the mean-CVaR model can be expressed as

λ Eω[π(x; ω)] + (1 − λ)CVaRη[π(x; ω)], (3.8)

where λ ∈ [0, 1] is a weight that represents the relative importance of the expected
profit compared to the CVaR. Note that if λ = 0 then (3.8) turns into the CVaR
only criterion (3.2), i.e. the newsvendor cares only about the risk of the profit
and does not consider the expected profit into his decision. On the other hand,
if 0 < λ < 1, then the newsvendor’s decision criterion is a convex combination
of the expected profit and the CVaR, i.e. the newsvendor is also risk-averse with
both the expected profit and the CVaR in the objective. And lastly, if λ = 1,
then the decision criterion becomes the expected profit. For any λ ∈ [0, 1], when
η = 1, the objective (3.8) is reduced to the classical NP model (1.4).

We know from section 1 that the newsvendor’s profit function π(x; ω) is jointly
concave in x and ω. The objective function (3.8) is therefore equivalent to the
following concave single-stage stochastic program

maximize
x∈R+,ϕ∈R

(1 − λ)ϕ + Eω

[
λπ(x; ω) − 1 − λ

η
(ϕ − π(x; ω))+

]
.

The following theorem gives a closed form optimal ordering or an equation
that the optimal ordering solves depending upon a specific condition.

Theorem 17 (Xu and Li, 2010, Theorem 3). Suppose that the newsvendor is
risk-averse with the tradeoff objective function given by (3.8). If (p − c + s) −
λ(p − v + s)F (s · F −1(1 − η)/(p − v + s)) ≤ 0, then the optimal order quantity is

x∗
E-CVaR = F −1

(
p − c + s

λ(p − v + s)

)
, (3.9)

otherwise, the optimal order quantity x∗
E-CVaR solves

(p − v + s)x = (p − v)F −1
(

η
(p − c + s) − λ(p − v + s)F (x)

(1 − λ)(p − v + s)

)

+ sF −1
(

η(p − c + s) + (p − v + s)[(1 − λ)(1 − η) − ηλF (x)]
(1 − λ)(p − v + s)

)
. (3.10)

Proof. The proof is conducted in Xu and Li (2010).
k
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Notice that when λ = 0, the optimal order quantity x∗
E-CVaR given by (3.10) is

reduced to the optimal solution of the CVaR only criterion x∗
CVaR (3.3). Further-

more, when λ = 1, the optimal order quantity x∗
E-CVaR given by (3.9) is reduced

to the optimal solution of the classical NP problem x∗ (1.7). We refer to Xu and
Li (2010) for further details, solution properties and the sensitivity analysis.

Gotoh and Takano (2007) propose a slightly different optimization model
compared to (3.8), i.e. the objective is defined as

Eω[π(x; ω)] + λCVaRη[π(x; ω)].

They provide a numerical procedure to find the optimal ordering solution in case
s > 0 and give the closed form solution for the ordering policy in case s = 0.
Moreover, they provide an equivalent LP model of the constrained mean-CVaR
model for the multiple products case.

Wu et al. (2013) warn that although the mean-CVaR criterion (3.8) can cap-
ture the tradeoff between the expected profit and the risk of the profit and, on
top of that, the criterion is a coherent risk measure which means it has better
computational characteristics, it may not be easy for the managers to determine
the appropriate value of the weight λ. And because the optimal ordering quantity
heavily depends on the choice of λ, an effective mechanism for the selection of λ
should be developed in order to make the mean-CVaR criterion implementable
in practice.
Note. Apart from so called ϵ-constrained programming approach represented by
section 3.1.2 and 3.1.3, and the weighted sum programming approach for which
section 3.1.4 gives the typical example, there exists a method called the goal
programming that is not present in this paper. These methods and their combi-
nations are typical approaches of solving the multicriteria stochastic optimization
problems.

3.1.5 Model with pricing and CVaR
Suppose that a risk-averse newsvendor faces the price-dependent demand.

Hence, in this section, we combine results on the NPP (section 2.1) with the
risk-averse newsvendor results performed in previous sections of this chapter. In
this paper, we analyze the mean-risk model that is studied in section 3.1.4 with
additional pricing decision. Other formulations in section 3.1.2 and 3.1.3 could
be considered as well. However, due to their simplicity and analogous solving
procedure we skip them.

Let us refresh the notation used in the NPP sense and add an assumption
on the expected value of the random element. Let ω(p, ϵ) is the price-dependent
product demand that is decreasing in p and strictly increasing in ϵ, where ϵ ∈
[A, B] is the random price-independent component. Next, we assume that the
mean demand Eϵ[ω(p, ϵ)] is a continuous, strictly decreasing, nonnegative, twice-
differentiable function and defined on a closed interval [pl, pu], where pl and pu are
the minimal and maximal admissible price, respectively, satisfying c < pl < pu.
Moreover, let Eϵ[ω(p, ϵ)] has an increasing price elasticity (IPE; see definition 4)
and let the cdf F (·) of the random element ϵ has either generalized strict increasing
failure rate or increasing failure rate depending upon context (GSIFR or IFR; see
definition 3). Similarly to the NPP, the additive and the multiplicative demand
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functions are considered. In case of the additive demand see (2.2) for the demand
function and (2.4) for the response function. In case of the multiplicative demand
see (2.1) and (2.3), analogically.

Due to the simplicity, we assume that the shortage penalty is zero in this
section, i.e. s = 0. The procedure for s > 0 is analogous and is not covered in
this paper. Moreover, we suppose that E[ϵ] = 0 in the additive demand case and
E[ϵ] = 1 in the multiplicative demand case.

General model

Consider a general demand model, i.e. we do not distinguish between the ad-
ditive and the multiplicative demand cases yet. Then the profit function π(x; p; ω)
can be obtained by substituting ω(p, ϵ) into the NP profit function (1.1). Obvi-
ously, the general model includes both the additive and the multiplicative mod-
els. Chen et al. (2009) suggest the mean-CVaR criterion to solve the newsvendor
model with pricing incorporating the CVaR. Consequently, we get an objective
function as

λ Eω[π(x; p; ω)] + (1 − λ)CVaRη[π(x; p; ω)],
that is similar to (3.8) with only differences that the random element is included
in other manner and the price p becomes a decision variable together with the
order amount x. Chen et al. (2007) states that it is extremely difficult or even
impossible to find structural properties of the optimal ordering and pricing policy
under such a general performance measure. Therefore, they suggest utilizing the
numerical analysis to investigate the tradeoff between the expected profit and
the risk of the profit, and to fully understand the two extreme cases. The case
when λ = 1 is extensively analyzed in section 2.1 for both the additive and the
multiplicative demand case. We focus on the joint optimal ordering and pricing
when λ = 0 in this section.

We showed that substituting the stocking factor z in the NPP and finding
the optimal solution of z leads to the classical NP solution (see (2.19) for the
additive case; z∗ for the multiplicative case can be expressed by similar steps as
in the additive case and is identical to the additive demand case optimal stocking
factor, i.e. (2.19)). Analogically, after substituting z in π(x; p; ω) and fixing the
price p, we obtain from corollary of Theorem 16 that

z∗ = z∗(p) = F −1
(

η
p − c

p − v

)
.

Next, we consider the case where the price p is also a decision variable. From
the results of Theorem 16 we know that for any fixed p the optimal value of ϕ
in the general definition of CVaR (3.1) satisfies ϕ∗(p) = (p − c)z∗(p). Hence, the
objective function can be converted to a single variable function,

g(p) = Γη(π(z∗(p); p; ω), ϕ∗(p)) = p − v

η

F −1(η p−c
p−v

)∫
A

ω(p, ϵ) dF (ϵ). (3.11)

The problem simplifies to the task of finding a price p∗ ∈ [pl, pu] that maximizes
(3.11). From that we easily get the stocking factor z∗(p) and the order quantity
x∗ by substituting back.
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Before investigating the optimal pricing decision under the CVaR only crite-
rion, we first find the optimal price without demand uncertainty. In the riskless
problem the demand is simply d(p), that is given either by (2.3) or (2.4), and the
order quantity should be d(p). The profit function becomes

πd(p) = (p − c)d(p).

The following lemma is easily verifiable compilation of Theorem 13 and Theorem
14 (and its surrounding calculations). The lemma is thus given without proof.

Lemma 18 (Yao et al. (2006)). If the demand function d(p) has the IPE, πd(p) is
quasi-concave (or unimodal) in p on the interval [pl, pu], then the optimal riskless
price p∗

d is determined by the first order condition, i.e. (p − c)d′(p) + d(p) = 0.

Additive demand case

Consider the demand captured by

ω(p, ϵ) = dA(p) + ϵ = α − βp + ϵ, (3.12)

where E[ϵ] = 0 and dA(pu) + A ≥ 0. Thus, price affects the location of the de-
mand distribution, but not the demand variance. From (3.11), the newsvendor’s
objective in the additive case is to maximize

ga(p) = p − v

η

F −1(η p−c
p−v

)∫
A

dA(p) + ϵ dF (ϵ)

= p − v

η

F −1(η p−c
p−v

)∫
A

ϵ dF (ϵ) + (p − c)(α − βp).

Lemma 19 (Chen et al. (2009)). The optimal selling price in the additive demand
case, denoted by p∗

a, is less than or equal to the optimal riskless price p∗
d.

Proof. See Chen et al. (2007, Lemma 4) for proof.
k

The following theorem gives a sufficient condition for the uniqueness of the opti-
mal price p.

Theorem 20 (Chen et al. (2009)). For the additive demand model, if distribution
of F (·) has the IFR and dA(p) has the IPE, then ga(p) is quasi-concave in p on
the range [pl, pu]. Therefore, there is a unique maximizer of ga(p) in [pl, pu] which
is determined by the first order condition ∂ga(p)

∂p
= 0.

Proof. See Chen et al. (2007, Theorem 2) for proof.
k

Thus, under the given conditions on the distribution and the response function,
we found again that the optimal solution must satisfy the first order condition
due to the quasi-concavity of ga(p).
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Multiplicative demand case

Consider the demand represented by

ω(p, ϵ) = dM(p)ϵ = αp−βϵ, (3.13)

where E[ϵ] = 1 and A ≥ 0. Therefore, price influences the scale of the distribution,
but not the coefficient of variation. From (3.11), the newsvendor’s objective in
the multiplicative case is to maximize

gm(p) = (p − v)dM(p)
η

F −1(η p−c
p−v

)∫
A

ϵ dF (ϵ).

Lemma 21 (Chen et al. (2009)). The optimal selling price in the multiplicative
demand case, denoted by p∗

m, is greater than or equal to the optimal riskless price
p∗

d.

Proof. See Chen et al. (2007, Lemma 3) for proof.
k

From Lemma 19 and 21, we know that p∗
a ≤ p∗

d ≤ p∗
m. This result is consistent

with results obtained in the NPP (section 2.1) if we would assume E[ϵ] = 1 and
E[ϵ] = 0 in the multiplicative and additive demand case, respectively, and the
response functions are identical for both demand cases.

The following theorem gives a sufficient condition for the uniqueness of the
optimal price p.

Theorem 22 (Chen et al. (2009)). For the multiplicative demand model, if distri-
bution of F (·) has the GSIFR and dM(p) has the IPE, then gm(p) is quasi-concave
in p in the range [pl, pu]. Therefore, there is a unique maximizer of gm(p) in [pl, pu]
which is determined by the first order condition ∂gm(p)

∂p
= 0.

Proof. See Chen et al. (2007, Theorem 2) for proof.
k

Once again, the solution satisfying the first order condition is optimal, if we
enforce specific properties on the demand distribution and the response function,
since then the function gm(p) is quasi-concave. The sensitivity analysis of both
the additive and multiplicative demand case is performed in Chen et al. (2009,
2007) and hence we refer reader there for further analysis.

3.2 Multiproduct extensions
Assume that the newsboy faces uncertain demand for multiple products. The

problem description is similar to the NP model. However, we have to introduce
new notation in order to capture the multiple product NP problem. See section
1 for description. Denote i = 1, . . . , n index of products, where n is the total
number of products. Then parameters are defined as
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• pi the unit selling price of product i,

• ci the unit buying cost of product i,

• vi the unit salvage value (in case of overstocking) of product i,

• si the unit shortage penalty (in case of understocking) of product i,

• ωi the random demand for product i,

• xi the quantity of product i purchased, a decision variable.

3.2.1 Independent demands model
Suppose that the demand do not influence each other, i.e. ∀i ωi are indepen-

dent, and that the total profit is sum of the individual product’s profit. Let M be
the budget, i.e. the amount of money that the newsboy allocated for the selling
period. Thus the objective of maximizing the total expected profit for multiple
independent products is formulated as:

maximize
xi

n∑
i=1

⎛⎝(pi − ci)xi −

⎡⎣si

∞∫
xi

(ωi − xi) dFi(ωi)

+ (pi − vi)
xi∫

0

(xi − ωi) dFi(ωi)
⎤⎦⎞⎠ (3.14)

subject to xi ≥ 0, i = 1, . . . , n,
n∑

i=1
cixi ≤ M. (3.15)

The budget constraint (3.15) was added to the problem to capture real sit-
uations where the newsvendor’s access to money is limited and he cannot order
infinitely many items.

When we skip the budget constraint (3.15) from the model (3.14)-(3.15), the
problem becomes separable and, under general assumptions on the NP, the prob-
lem can be treated as n independent problems. It is then obvious that the optimal
decision is to order

x∗
i = F −1

i

(
pi − ci + si

pi − vi + si

)
, (3.16)

where Fi is the cdf of demand ωi. See Choi (2012, Chapter 1) for details. In case
ωi are independent and identically distributed (iid) then the cdf of demand ωi

satisfies Fi = F ∀i.

Optimal seeking algorithm

Consider the full model (3.14)-(3.15) with zero shortage penalty, i.e. si = 0 ∀i.
Then a simple heuristic/algorithm could be developed in order to obtain a feasible
solution that is optimal as well. In the previous paragraph we found the optimal
ordering x∗

i given by (3.16) without the budget constraint (3.15). Therefore,
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under the full model, the solution (3.16) might not be feasible. The following
algorithm gives optimal solution of the full model (3.14)-(3.15).

Remember that the NP is considered as a continuous problem in this thesis.
Moreover we can naturally assume that Eωi

[πi(x∗
i ; ωi)] > 0 ∀ i which yields x∗

i >
0 ∀ i. Other solutions are not profitable for the newsvendor and hence they are
excluded from the algorithm (obviously their optimal ordering and expected profit
are both zero).

1. If the budget constraint (3.15) is not violated for x∗
i by (3.16), then x∗

i is
the optimal solution. Otherwise proceed to the next step with x∗

i given by
(3.16) with si = 0.

2. Order items xi with non-zero ordering x∗
i according to its profit relative

per-item margin mi , i.e. the ratio between the optimal expected profit and
the products purchasing cost,

mi = Eωi
[πi(x∗

i ; ωi)]
cix∗

i

. (3.17)

If x∗
i = 0 we set mi = 0. Hence m1 ≤ m2 ≤ . . . ≤ mn and ordering

(m1, . . . , mn) corresponds to the items ordering (x1, . . . , xn).

3. Take the item j with the lowest margin mj and non-zero optimal ordering
x∗

j given by (3.16). Set x∗
j to zero.

4. Check whether the budget constraint (3.15) is satisfied. If yes, proceed to
the next step. Otherwise go back to step 2.

5. Set the optimal ordering of product k ∈ {1, . . . , j} to

x∗
k =

M −∑n
i=j+1 cix

∗
i

ck

=
M −∑n

i=j+1 ciF
−1
i

(
pi−ci

pi−vi

)
ck

(3.18)

for which
k = argmax

h=1,...,j
Eωh

[
πh

(
M−
∑n

i=j+1 cix
∗
i

ch
, ωh

)]
.

We found the feasible optimal ordering policy. Furthermore, the budget
constraint (3.15) is satisfied with equality.

Note. In the last iteration of step 3 we found the item j that makes the problem
feasible. This, however, does not guarantee that ordering more items of j makes
the solution optimal due to the different distributions of the random demands ωi.

It is worth noting that ordering (3.18) units of item k is profitable due to
the shape of the expected profit function Eω[π(x; ω)]. As we can see in figure 3.1
and proved in section 1, the expected profit with respect to ordering x is concave
and, under zero shortage penalty, does not allow negative expected profit for
x ∈ (0, F −1

(
p−c
p−v

)
)
.

The following theorem summarizes the output of the algorithm.
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Figure 3.1: Graph of the expected profit Eω[π(x; ω)] where shortage penalty s = 0
and demand is continuous.

Theorem 23. Let the items are ordered according to the per item relative profit
margin mi (3.17) and let the unconstrained optimal ordering x∗

i is given by (3.16).
Then the ordering decision

x∗ =
(
0, . . . , 0,

1
ck

(M −
n∑

i=j+1
cix

∗
i ), 0, . . . , 0, x∗

j+1, . . . , x∗
n

)
(3.19)

with the index j found in step 5 of the algorithm is the optimal decision for the
multiproduct independent demand model (3.14)-(3.15) with si = 0 ∀i.

Proof. Let y∗ is a better solution of (3.14)-(3.15) than x∗. Then

Eω[π(y∗; ω)] > Eω[π(x∗; ω)], (3.20)

where x∗ is given by (3.19). Moreover, we can allocate y∗
i ∈ [0, F −1

i ( pi−ci

pi−vi
)] since,

due to the concavity of the expected profit, ordering more items than optimal
leads to decrease in the expected profit (see figure 3.1) and increase in overall
costs. This move would hence make the solution more infeasible.

If y∗ ≤ x∗ & y∗ ̸= x∗, i.e. ∃ i ∈ {1, . . . , n} : y∗
i < x∗

i and for the other items
y∗

k ≤ x∗
k ∀ k ∈ {1, . . . , n} \ {i}, then, due to the concavity of expected profit,

Eω[π(y∗; ω)] < Eω[π(x∗; ω)].
Therefore, since in the algorithm we decrease the ordering quantity of items

that have the worst contribution to the profit with respect to the purchasing
cost, the following must hold in order to inequality (3.20) being satisfied: y∗ ≥
x∗ & y∗ ̸= x∗, i.e. ∃ i ∈ {1, . . . , n} : y∗

i > x∗
i and for the other items y∗

k ≥ x∗
k ∀ k ∈

{1, . . . , n} \ {i}.
From step 5 of the algorithm we know that the index j identifies an item that

makes (3.14) feasible with respect to the solution x∗. Thus ∑n
i=j+1 cix

∗
i ≤ M . If

48



we add ckx∗
k to the left-side of inequality, we obtain

n∑
i=j+1

cix
∗
i + ckx∗

k =
n∑

i=j+1
cix

∗
i + ck · 1

ck

(
M −

n∑
i=j+1

cix
∗
i

)
= M.

Hence the budget constraint (3.15) is satisfied with equality for x∗ because the
optimal ordering of items 1 . . . , k − 1, k + 1, . . . , j is zero. Therefore, since y∗ ≥
x∗ & y∗ ̸= x∗ and ci > 0 ∀i, we get that

n∑
i=1

ciy
∗
i >

n∑
i=1

cix
∗
i = M.

That is, however, contradiction as solution y∗ becomes infeasible. Thanks to the
products’ ordering being determined with respect to the highest profit-cost ratio,
the ordering policy x∗ is optimal.

k

Note. The algorithm provided could be easily modified for the NP with a discrete
random demand.

3.2.2 Dependent demands model
Suppose now that the newsvendor’s product portfolio is composed of prod-

ucts whose demands are correlated (dependent). E.g. cor(ω1, ω2) = ρ ̸= 0.
Therefore, the objective function is not decomposable anymore and a multidi-
mensional joint distribution of demand F (ω) = F (ω1, . . . , ωn) must be consid-
ered with the variance matrix Σ that has some nonzero off-diagonal elements.
Denote bold symbols as vectors; for instance (p1, . . . , pn)⊤ = p. Furthermore, let
T = [x1, ∞) × [x2, ∞) × . . . × [xn, ∞) and C = [0, x1) × [0, x2) × . . . × [0, xn) be
n-dimensional half-closed domains. Then the objective of maximizing the total
expected profit for multiple dependent products is formulated as:

maximize
x

(p − c)⊤x −

⎡⎣ ∫
T

s⊤(ω − x) dF (ω)

+
∫

C
(p − v)⊤(x − ω) dF (ω)

⎤⎦
subject to x ≥ 0,

c⊤x ≤ M,

where condition x ≥ 0 is meant componentwise.
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Chapter 4

Distributional robustness of the
newsvendor model

In stochastic optimization, similarly to the previous chapters, we usually as-
sume that the demand distribution or the random element distribution P is pre-
cisely known from the data and we neglect the fact that data contain a noise
(uncertainty). Such a noise might originate in an inaccurate measurement or an
incomplete knowledge about the underlying demand distribution at the moment
when the ordering decision is being made, for instance. Such problems motivate
us to use optimization methods that are immune to the noise in historical data.
Small change in the demand should lead into a small change in the result and a
great change should not cause an enormous loss. In practice, a newsvendor has to
estimate the demand distribution P using only a limited structural information
about the demand and historical data, or even expert opinions. Therefore, the
assumption of complete and accurate information about P is unrealistic.

On the other hand, solving the stochastic problem with respect to all possible
demand distributions, i.e. the robust optimization approach, results in overly
conservative decision. Problem is that the newsvendor does not take the benefit
of knowing a partial information about the demand in the robust optimization
models. Decision makers can typically deduce specific properties of the demand
distribution from existing domain knowledge (e.g., bounds of the customer de-
mand or symmetry in the deviations) or from statistical analysis (e.g., estimation
of mean and covariance from historical data).

In cases where the newsvendor is risk-averse and/or he has some (but not full)
knowledge of underlying demand distribution, an alternative approach is to use
distributionally robust stochastic programs. Hence, we study the distributionally
robust newsvendor problem (DRNP) in this paper. In the DRNP, the goal is to
find a decision that maximizes the worst-case expected profit, where worst-case
refers to a set of distributions called ambiguity sets.

The classical NP problem, where the demand distribution is known, and the
robust optimization approach are special cases of the DRNP, since we get the
classical NP if the ambiguity set contains only one distribution and we get the
classical robust optimization if the ambiguity set involves all possible demand
distributions with the same support. Hence, the DRNP lies between these two
approaches. Moreover, Wiesemann et al. (2014) show that distributionally robust
optimization problems are computationally tractable.
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For deeper introduction into the distributionally robust optimization we rec-
ommend paper by Wiesemann et al. (2014) or newer paper by Hanasusanto et al.
(2015).

4.1 Ambiguity set
As stated above, the ambiguity set is a set of distributions that follow a spe-

cific properties. Properties could range from the appropriate family distribution,
exact mean and varying variance, to the bounds of the domain for which the
demand falls within the predetermined bounds with 95% confidence and many
more. Consequently, there are numerous ways how to define the ambiguity set.
For instance, Wiesemann et al. (2014) give the general definition of the ambigu-
ity sets that are highly expressive and involve many ambiguity sets from recent
literature as special cases. However, their framework does not cover ambiguity
sets that impose infinitely many moment restrictions, that would be necessary
to describe symmetry, independence or unimodality characteristics. Paper by
Hanasusanto et al. (2015) provide wider list of ambiguity sets that are not cov-
ered in Wiesemann et al. (2014). Moreover, they provide convenient tractable
reformulations and properties.

In this paper we use the ambiguity set as follows. Let P denote the set of
all distributions on N0 that are consistent with the known properties of demand,
such as its first and second order moment and its support. Since demand can
acquire only nonnegative values and is usually bounded from above, we assume
that support of P belongs to N0

n, where N0
n = {0, 1, . . . , n} has n + 1 elements.

Hence ω is a discrete random variable. Moreover, let µ ∈ N0
n is the mean and

σ2 ∈ R+ is the variance of random demand ω under the true distribution Q.
Thus, we implicitly assume finite second order moments of Q. Specifically, we
assume that P is the ambiguity set of all distributions on N0

n with the same first
order moment as Q and second order moment bounded above by σ2, that is,

P =
{

P ∈ Q(N0
n) : EP[ω] = µ, EP

[
(ω − µ)2

]
≤ σ2

}
. (4.1)

4.2 General model
Assume the classical NP defined in section 1 with zero shortage penalty, i.e.

s = 0. Furthermore, we assume that the probability distribution P describing
the product demand ω is unknown. Hence the DRNP with the profit function
π(x; ω) given by (1.1) is formulated as:

max
x

inf
P

EP[π(x; ω)]

subject to x ≥ 0,

P ∈ P ,

(4.2)

where P , given by (4.1), is an ambiguity set built up from the newsvendor’s
knowledge about the product demand.

Let us denote W as the worst possible distribution from P and suppose that
W somehow depends on the optimal choice of ordering x. If we denote FW (x)
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as the cdf of distribution W and substitute the expected profit EP[π(x; ω)] as in
(1.2) and (1.3), we obtain the reformulation of (4.2) as

maximize
x

(p − c)x − (p − v)
x∫

0

(x − ω) dFW (x)(ω)

subject to x ≥ 0,

(4.3)

where
W (x) = argmin

P∈P
EP[π(x; ω)].

The problem (4.3) is easily solvable convex optimization problem given we know
the worst cdf FW (x).

4.2.1 Best and worst distribution
A newsvendor might be interested in the fact which distribution from the

ambiguity set P gives him the largest and lowest expected profit. Hence, in this
section, we try to find the best and the worst possible distribution of the model
(4.3).

Best distribution

Consider the model (4.3). In the following theorem we provide the best possi-
ble distribution B that belongs to P , i.e. the distribution with fixed support, the
same first order moment and second order moment within the bounds set, that
leads to the largest profit that the newsvendor can achieve.

Proposition 24. The best possible distribution B of the problem (4.3), where B
is drawn from the ambiguity set P given by (4.1), is degenerate distribution with
the single value that equals to the mean µ with probability one. Hence the cdf of
B is

FB(ω) =
{

0 if ω < µ,
1 if ω ≥ µ.

Proof. From the definition of the optimal ordering for the discrete NP (1.9)
and concavity of the expected profit obviously follows that the optimal ordering
is x∗ = µ. Optimality is guaranteed thanks to the presence of the single possible
demand value.

k

Worst distribution

We introduce a simulation in order to find the worst possible distribution
W(x) with respect to the ordering x. Then, from the results, we might find a
closed form of the worst cdf FW (x). Moreover, we assume a special case n = 10.

Since we assume the discrete random demand ω, we can rewrite the expected
profit as

Π(x) = EP[π(x; ω)] =
10∑

i=0
π(x; ωi)qi =

10∑
i=0

π(x; i)qi, (4.4)
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where ω acquires values from ω0 = 0 to ω10 = 10 with probabilities q0, . . . , q10 for
which hold ∀i ∈ N10

0 : qi ≥ 0 and ∑10
i=0 qi = 1. Allowing probabilities qi to attain

zero value yield that the worst possible distribution W (x) might have less than
11 atoms. Equation (4.4) may be reformulated as

Π(x) = (p−c)x− (p−v)
∑

{i:ωi≤x}
(x−ωi)qi = (p−c)x− (p−v)

∑
{i≤x}

(x− i)qi. (4.5)

Hence, the objective of finding the worst distribution for given x is determined
from (4.5) as

min
q0,...,q10

(p − c)x − (p − v)
∑

{i≤x}
(x − i)qi, (4.6)

where probabilities q0, . . . , q10 are the decision variables because all the other
parameters are known (e.g. the mean and values of ω). The objective (4.6) can
be then simplified to

max
q0,...,q10

∑
{i≤x}

(x − i)qi. (4.7)

Now, we have to add constraints to (4.7). More precisely, the properties of
the discrete random variable probabilities:

qi ≥ 0, ∀i = 0, . . . , 10 &
10∑

i=0
qi = 1; (4.8)

the properties of the distribution drawn from the ambiguity set P given by (4.1):

µ =
10∑

i=0
iqi & σ2 ≥

10∑
i=0

(
i − µ

)2
qi; (4.9)

and, lastly, conditions to guarantee that x is the optimal decision with respect to
the discrete random variable given by (1.9):

x∑
i=0

qi ≥ p − c

p − v
&

x−1∑
i=0

qi <
p − c

p − v
. (4.10)

Combining the objective function (4.7) and constraints (4.8)-(4.10) gives the
following deterministic linear optimization program for given x:

maximize
q0,...,q10

∑
{i≤x}

(x − i)qi

subject to qi ≥ 0, i = 0, . . . , 10,
10∑

i=0
qi = 1,

10∑
i=0

iqi = µ,

10∑
i=0

i2qi ≤ σ2 + µ2,

x∑
i=0

qi ≥ p − c

p − v
,

x−1∑
i=0

qi <
p − c

p − v
.

(4.11)
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Example. Consider the model (4.11) with parameters p = 10, c = 7, v = 1, µ = 5
and σ2 = 16. Then p−c

p−v
= 1

3 ≈ 0.333. Let σ̃2 is the variance of the optimal solution
and let Qx and Qx correspond to the sums ∑x

i=0 qi and ∑x−1
i=0 qi, respectively. The

table 4.1 gives results for orderings x = 0, . . . , 10.
Firstly, as we can see in table 4.1, for x ≥ 8 we cannot find a feasible solution

under the given conditions. Even increasing the variance σ2 of P would not help
as the problem lies in the support size and the mean value of P . An increment in
variance would only change optimal probabilities and increase the objective value
for items x ∈ {1 . . . , 5} since the variance limitation constraint is active in these
cases, i.e. ∑10

i=0 i2qi = σ2 + µ2.
Furthermore, it is obvious from the optimal distribution probabilities and

values of Qx that the rounding error is present in the solution. For instance the
optimal (worst) demand distribution in case the newsvendor orders x = 3 items
is approximately

W =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 with probability q0 → 1
3

−
,

3 with probability q3 → 0+,
5 with probability q5 = 4

15 ,
6 with probability q6 = 1

9 ,
10 with probability q10 = 13

45 ,

where y → g+ = limy→g+ y and y → g− = limy→g− y are one-sided limits.
Probability q3 must be positive and q0 less than 1

3 in order to the constraint∑x−1
i=0 qi < p−c

p−v
≤ ∑x

i=0 qi being satisfied.
The R code for finding the optimal solution of model (4.11) is provided in the

attachment (electronic version only).
Example. Again consider the model (4.11). The parameters are p = 5, c = 3, v =
2, µ = 6 and σ2 = 12 this time. Thus p−c

p−v
= 2

3 ≈ 0.667. The notation used is
the same as in the previous example. The table 4.2 gives results for orderings
x = 0, . . . , 10.

Again, orderings x ∈ {0, . . . , 3} are not solvable under given parameters. This
time the rounding problem does not occur.

The optimal (worst) demand distribution in case the newsvendor orders x = 6
items is

W =

⎧⎪⎨⎪⎩
1 with probability q1 = 4

15 ,
6 with probability q6 = 4

10 ,
10 with probability q10 = 1

3 .

This time the probabilities of W are given precisely.
Tables 4.1 and 4.2 does not indicate there would exist a closed form repre-

sentation of the worst demand distribution W (x) with or without respect to x or
any other variable.
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x sola q0 q4 q5 q6 q7 q8 q10 σ̃2 Qx Qx

0 y .333 .083 0 0 0 .583 0 13.7 .333 0
1 y .333 0 .267 0 .111 0 .289 16 .333 .333
2 y .333 0 .267 0 .111 0 .289 16 .333 .333
3 y .333 0 .267 0 .111 0 .289 16 .333 .333
4 y .333 .083 0 .292 0 0 .292 16 .417 .333
5 y .333 0 .267 0 .111 0 .289 16 .6 .333
6 y .333 0 0 .417 0 0 .25 15 .75 .333
7 y .333 0 0 0 .556 0 .111 13.3 .889 .333
8 n
9 n
10 n
Note: a Indicator whether the model (4.11) has feasible solution (y=yes;n=no).

Table 4.1: The table of results of model (4.11) with given parameters (p = 10, c =
7, v = 1, µ = 5 and σ2 = 16). Probabilities q1, q2, q3 and q9 are omitted as they
are equal to zero.

x sola q1 q3 q4 q5 q6 q7 q8 q9 q10 σ̃2 Qx Qx

0 n
1 n
2 n
3 n
4 y 0 0 .667 0 0 0 0 0 .333 8 .667 0
5 y .167 0 0 .5 0 0 0 0 .333 10 .667 .167
6 y .267 0 0 0 .4 0 0 0 .333 12 .667 .267
7 y .167 .25 0 0 0 .25 0 0 .333 12 .667 .417
8 y .19 0 .333 0 0 0 .143 0 .333 12 .667 .524
9 y .167 0 .4 0 0 0 0 .1 .333 12 .667 .567
10 y .148 0 .444 0 0 0 0 0 .407 12 1 .593
Note: a Indicator whether the model (4.11) has feasible solution (y=yes;n=no).

Table 4.2: The table of results of model (4.11) with given parameters (p = 5, c =
3, v = 2, µ = 6 and σ2 = 12). Probabilities q0 and q2 are omitted as they are
equal to zero.
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Chapter 5

Numerical example

In this chapter we show the data-driven NP reformulation. More precisely, we
give reformulation of the basic single-period newsvendor problem (NP; see section
1) and the newsvendor problem with pricing (NPP; see section 2.1). At the end,
we compare results of the NP and the NPP approach. The method used to apply
the real data on the NP and the NPP is called Sample Average Approximation
(SAA).

For purpose of the practical example we use the data about the sales of the
specific model and brand of wet wipes from a major Czech e-commerce retailer
in the period from the mid-October of 2014 to the mid-April of 2018. The wet
wipes appear to be a product whose overall demand is constant over the year
and advertising or price policy are main drivers for changes in the sales numbers.
The collected data contain information about the selling price per item pt, the
purchasing cost per item c and the number of products that were sold ωt, where
t = 1, . . . , 182 represents the week in the given period. In order to get a complete
weekly observation we require to have availability of the sales numbers for every
day of the week. The selling price pt is aggregated via the weighted average, where
weight is the order quantity, since the daily and other discounts are present in the
data. On the other hand, the purchasing cost c is the average value of costs over
the whole period as the number of items bought for given cost is not provided.
The weekly demand ωt is simply the sum of order volumes for the given week.
Moreover, we know that ωt is indeed the demand since it never happened that
the retailer would run out of stock.

In figure 5.1 we can see how the per-item price effects the demand. It is
obvious that wet wipes are price sensitive product which is probably caused by
vast number of competitive products and substitutes.

NP reformulation

Consider the NP as in section 1. In case the distribution of demand ω is
known, we can easily use cdf F to compute the optimal solution x∗. However,
in many practical applications the demand distribution is not known. We have
already shown one approach to use real data for finding the optimal solution,
the DRNP in section 4. Another approach is to apply the SAA method that is
commonly used in such cases.

Suppose we have a random sample {χ1, . . . , χT } where χ1, . . . , χT are inde-
pendently drawn from the distribution of ω and T is the sample size. The main
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Figure 5.1: The demand and price scatter plot for wet wipes.

idea of the SAA method is to approximate the real distribution with the empirical
cumulative distribution function. Based on the particular sample, the empirical
distribution is formed by putting a weight of 1

N
on each of the demand data.

Formally, we denote the empirical cdf as F̂T (x) = 1
T

∑T
k=1 1[χk≤x], where 1[·] is the

indicator function. Denote the profit expected expressed by the empirical cdf as
Π̂T . Then, the resulting objective function is maximized.

Let us have T independent realizations of the random sample from the real dis-
tribution Q which we denote {χ1, . . . , χT }. Then, by applying the SAA method,
we obtain

max
x≥0

Π̂T (x) = 1
T

T∑
t=1

[(p − c)x − s(χt − x)+ − (p − v)(x − χt)+]. (5.1)

The optimal solution of (5.1) is again p−c+s
p−v+s

-quantile. Thus, x∗
T is the p−c+s

p−v+s
-

quantile of the random sample:

x∗
T = max

⎧⎨⎩x : F̂T (x) ≤ p − c + s

p − v + s

⎫⎬⎭. (5.2)

Note that x∗
T is a random variable since its value depends on the particular

realization of the random sample.
The reason why the SAA method is suitable for the newsvendor type problems

is because the solution can be found effectively by ordering the random sample.
Moreover, as it shown in (Šedina, 2015, Theorem 5), the optimal quantile of
empirical distribution (5.2) converges almost surely (a.s.) to the optimal quantile
of true distribution Q of the original NP.
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Due to the manner of our data we modify (5.1) so that it fits our case the
most. Firstly, we set the shortage penalty and salvage value to zero, i.e. s = 0
and v = 0. Then, since we need a fixed selling price for the whole period, we set
p = p1ω1+...+pT ωT

ω1+...+ωT
which is the weighted average. Moreover, the per-item cost is

c = 24.02. Then for χt = ωt the model (5.1) turns into

max
x≥0

1
T

T∑
t=1

[(p − c)x − p(x − ωt)+]. (5.3)

We do not execute the model (5.3) in this paper since the optimal ordering de-
cision is the quantile of the empirical cdf (5.2). However, the model (5.3) is still
not implementable because it contains the function of positive part of number
(·)+. See the next subsection on how to turn (5.3) into the model that could be
solved in GAMS software - the optimization solving tool.

NPP reformulation

Consider the NPP as in section 2.1. We have to fit the data in figure 5.1 in
order to obtain a demand function ω(p; ϵ) with respect to the price. We can pick
from an additive demand function (2.2) and a multiplicative demand function
(2.1).

The additive model ω(p, ϵ) = α − βp + ϵ derived in (2.2) and (2.4) performs
poorly and many assumptions on the linear model residuals are not heavily satis-
fied (e.g. normality, homoscedasticity, independence). The performance measure
R2 has a value of 0.57.

The multiplicative model ω(p, ϵ) = αp−βϵ derived in (2.1) and (2.3), that is
equivalent with the linear model

log(ω(p, ϵ)) = α̃ − β̃ log(p) + ϵ̃ (5.4)

using the log-transformation, performs better than the additive model. The per-
formance measure R2 attains a value of 0.68. The normality of errors is probably
satisfied since the Shapiro-Wilk test’s p-value is 0.33 and hence we do not re-
ject the null hypothesis of normally distributed errors at the 5% confidence level.
Hereafter, the heteroscedasticity is most likely not present in the errors since both
the studentized and nonstudentized Breusch-Pagan test’s null hypothesis is not
rejected at the 5% level.

However, the errors are correlated. For instance, the Durbin-Watson test
statistic that measures the first order correlation is equal to 0.96. Moreover, the
autoregressive function reveals the fourth order correlation of the errors as well.
Therefore, an addition of lagged response variables to (5.4) solves the dependence
of errors. Nevertheless, it also causes the violation of the normality assumption
(although we could rely on the asymptotic properties). Despite the fact we would
probably obtain a better model, we use the model (5.4) mindful of the presence
of error’s correlation because it is consistent with the theoretical results derived
in section 2.1 (NPP). The description of tests used to validate the model is in
Komárek (2017).

After fitting the model (5.4) we obtain that the scale parameter

α = eα̃ = e28.71 ≈ 2.94 · 1012
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and the power parameter for price p is
β = β̃ = 6.32.

With respect to the figure 5.1 we set the lower and upper bound on price as
pl = 28 and pu = 40

Then the model (2.6) with zero shortage penalty and salvage value after ap-
plying the SAA method changes to

max
x;p

1
T

T∑
t=1

[
(p − c)x − p

(
x − αp−βϵt

)+]
s.t. x ≥ 0, p ∈ [pl, pu],

(5.5)

where ϵt = eϵ̃t .
However, the model (5.5) still contains the positive number function (·)+. In

order to obtain a model without the positive part function we have to introduce
a series of real valued decision variables τt. Hence, the model (2.21) changes to
the nonlinear programming (NLP) problem as follows:

maximize
x;p;τ1,...,τT

1
T

T∑
t=1

[(p − c)x − pτt]

subject to x ≥ 0,

p ≤ pu,

pl ≤ p,

τt ≥ x − αp−βϵt, t = 1, . . . , T,

τt ≥ 0, t = 1, . . . , T.

(5.6)

Decision variables τt serve as the decision whether the x − αp−βϵt is greater than
zero for given t. We select the larger value due to the maximization type of
the programming problem. The model (5.6) is now implementable in the GAMS
software and the code is provided in the attachment (electronic version only).

Optimal ordering comparison

Results of models (5.3) and (5.6) for given parameters are visualized in the
table 5.1.

The resulting optimal prices differ significantly. However, the difference be-
tween the optimal ordering is even greater. The optimal solution of the NPP
model (5.6) suggests the newsvendor to order more than three times more items
than the NP model (5.3) and sell them for roughly 10 % lower price. If we com-
pare the result of the NP model (5.3) with the figure 5.1 we can conclude that the
NP optimal ordering is fairly very conservative for the given price. The riskless
price for the multiplicative NPP is 28.54.

x∗ p∗

NP 300.46 33.82
NPP 1064.23 29.45

Table 5.1: The table of results of models (5.3) and (5.6). Note that the price p is
fixed in the NP.
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Conclusion

This thesis provides an overview of the newsvendor problem models. In the
first chapter the classical newsvendor problem is analyzed. We assume the con-
tinuous and discrete demand distribution and for both of them the closed form
optimal solution is derived. In the rest of the thesis the continuous demand is
assume if not specified otherwise.

The next chapter adds to the problem description a parameter-dependent
demand for which the optimal ordering and parameter are jointly seeked. Specif-
ically, the parameter is price, advertising or both together. In each case, the
additive and the multiplicative dependency of the parameter on the demand is
assumed. For each case the relation to the riskless problem is provided. More-
over, we show how would the variance and the coefficient of variation of profit
change in case the parameter is shifted.

In the third chapter we assume a risk-averse newsvendor whose aversion is
represented by the CVaR of the profit. We form several models that are common
in the multicriteria stochastic optimization and give a closed form solution in case
the objective is tradeoff between the expected profit and the riskiness. However,
finding the weight between the two terms is crucial and an effective mechanism
should be developed. The chapter continues with the section where we assume the
mean-CVaR model which demand is price-dependent. The last part is devoted
to the multiproduct extension depending upon the dependency between random
demands. For the independent demand case we provide an algorithm to find an
optimal solution of the budget constrained model from the optimal ordering of
the unconstrained newsvendor model. Moreover, the solution of the algorithm is
proven to be optimal.

The fourth chapter deals with the distributionally robust newsvendor problem,
where the ambiguity set is given by its support, first order moment and limitation
on the second order moment. For the given ambiguity set we provide the best
possible distribution, that is degenerate and its only value is equal to the given
mean. First, we assume that the worst distribution depends in some way on
the ordering amount and run couple of simulations to see whether there is any
pattern in the distribution giving the lowest profit for given ordering. However,
the results do not indicate any systematic behaviour.

The last chapter devotes to the practical example with given dataset from a
major Czech e-commerce company. The observations are included in the model
with the SAA method which idea is to approximate the true distribution with
the empirical cdf. The classical newsvendor problem and the model with pricing
are investigated. For the NP model, the optimal solution is a quantile of the
empirical cdf. However, the optimal solution of the NPP model must be found
using the optimization software. We find out, interestingly, that the ability to
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choose the pricing policy causes that the optimal decision is to lower the price
and increase significantly the number of ordered items compared to the classical
model.

Throughout the paper we discover that the results are consistent among the
models and a more complex formulation of the model is a generalization of the
simpler model of which it is derived from.

Applicability of the newsvendor problem and its modifications is wide. The
newsvendor type models might be very helpful tool in production planning (e.g.
production of vaccines where shortage might cause death and leftovers are de-
stroyed for large expenses) or retail with perishable products (e.g. fashion, food
with a short shelf life, etc.).

Further research might contain e.g. involving the price-dependency in the dis-
tributionally robust model and/or extending the framework for multiple periods.
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