
MASTER THESIS

Kateřina Koňasová
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Introduction
Point procesess serve as stochastic models for locations of objects that are ran-
domly placed in space. They are widely used in many scientific disciplines
as biology, ecology, particle physics, material science or astronomy. The points
may represent locations of trees of a given species in a forest stand, earthquake
epicenters, burrows or nests of animals, locations of stars or galaxies or defect
positions in industrial materials. Authors of the book Møller and Waagepetersen
[2004] claim that in last 30 years spatial point processes have been a major area

of research in spatial statistics and they expect that research in spatial point
processes will continue to be of particular importance. They also point out that
thanks to new technologies spatial point process data become more available
and a lot of new applications emerge.

In spatial statistics simulations can be used for a number of different aims,
e.g. exploring the sampling variation of estimated summary characteristics
or testing various hypotheses about the observed data using simulation-based
tests. In this text we focus on situations when we do not want to look for
an explicit parametric point process model (from which we could simulate)
for the observed data or the null hypothesis which we want to test is not specific
enough to enable simulations. In both of these cases we can use the stochastic
reconstruction approach instead of simulations to provide independent replicates
of point process data.

Stochastic reconstruction is an algorithmic procedure which has tradition in
statistical physics, see Chapter 12 in Torquato [2002]. In the context of sta-
tionary point processes the algorithm was described in Tscheschel and Stoyan
[2006]. Nowadays stochastic reconstruction is of particular interest in biology

and ecology. It can be used when monitoring forest ecosystems, see Getzin et.
al. [2014] or Lilleleht et al. [2014]. Of course, many other applications of this
technique can be found in recent scientific papers, for example the quasi-plus
sampling edge correction method in Tscheschel and Chiu [2008] or the model-free
isotropy test in Wong and Chiu [2016].

The main idea of the stochastic reconstruction approach consists in measuring
“similarity” of two point patterns. It is done by evaluating the deviation of their
estimated summary characteristics. For this purpose, the energy functional E is
established. While reconstructiong point process data, we start with an initial
point configuration with the same number of points as the data has. In each
iteration step of the stochastic reconstruction algorithm we try to move one
point of the current configuration in order to obtain new configuration with
lower energy (smaller value of the energy functional E). The smaller the value of
the energy functional E is, the smaller the deviation of the estimated summary
characteristics is. Since the summary characteristics contain information about
the point pattern structure, by minimizing the energy functional we will obtain
point pattern with similar form of the estimated summary characteristics as the
observed data and thus similar structure. Note, however, that the summary
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characteristics used in practice do not characterise distribution of a point process.

Example of the atochastic reconstruction method can be see in Figure 1.
In the top left corner the point process data can be seen. The data are obviously
clustered, i.e. we observe a number of different clusters randomly placed in the
observation window. Next to the data the initial configuration can be seen.
As the number of iteration steps growths, the values of the energy functional
decrease and the intermediate states of the algorithm start to look similar to
the observed data. In fact the points of the initial configuration are stepwise
moved (each point may be moved several times) to form clusters with the size
and shape similar to the observed data. Evolution of the values of the energy
functional E for this particular run of the stochastic reconstruction algorithm
can be see in Figure 2. In this case the estimated summary characteristics are the
empirical distribution functions of the distances to the k-th nearest neighbour
for k = 1, 2, . . . , 5.

Let us now demonstrate the use of the stochastic reconstruction algorithm
on an practical example. We will work with the BCI dataset (see Hubbell et
al. [2005]) which contains information about locations of 311 species of trees
in the tropical forest at Barro Colorado Island, Panama. For further information

Figure 1: Illustration of the stochastic reconstruction method. Observed data
to be reconstructed (top left corner), initial configuration, intermediate states
of the stochastic reconstruction algorithm after 100, 200, 300, 400, 800, 1000,
1100, 1300 and 1400 iteration steps (from left to right and from top to bottom),
output of the stochastic reconstruction algorithm (bottom right corner). Values
of the energy functional can be seen in Figure 2.
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Figure 2: Values of the energy functional E during the run of the stochastic
reconstruction algorithm from Figure 1. We have stopped the run of the algorithm
after rejecting the proposed new configuration 100 times in a row.

see Condit [1998] and Hubbell et al. [1999].

Our attention will focus on two related species, namely the Zanthoxylum ekmanii
which will be refered to as population A and Zanthoxylum panamense which will
be refered to as population B. Our observation window is a rectangle, the shorter
edge is 500 meters long and the longer edge is 1000 meters long. The area of the
observation window is hence 50 hectares. The observed data which can be seen
in Figure 3 consists of locations of 235 individuals from the population A and
188 individuals from the population B.

B

A

Figure 3: BCI dataset: locations of the Zanthoxylum ekmanii (black circles) and
Zanthoxylum panamense (blue triangles) in the tropical forest at Barro Colorado
Island. The data can be considered as clustered.
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The data corresponds to a realisation of planar marked point process. It means
that to each point of the process a mark (i.e. some supplemental information)
is attached. In our case a point gets the mark A if it represents location of a tree
from the population A and mark B if it represents location of a tree from
the population B. We want to test the hypothesis that these two populations are
independent, i.e. occurence of individuals from population A in the observation
window is not affected by the locations of individuals from population B (and vice
versa).

The hypothesis that populations A and B are independent corresponds to
the so-called random superposition hypothesis. It means that the observed
point pattern is formed by two independent point patterns (one cointains only
the points with mark A and will be denoted as ϕA, the other contains only
the points with mark B and will be denoted as ϕB) that have been joined into
one point configuration. While dealing with real data, we can be never sure if it
is a realisation of a stationary point process or not. Thus we will treat the data
as a realisation of an inhomogeneous point pattern with non-constant intensity
function. It means that we suppose that ϕA and ϕB are realisations of inhomo-
geneous point processes. Therefore we will use the inhomogeneous counterpart
of the cross K-function KAB(r), r > 0, as the test statistic. More details can
be seen in Section 4.4.1 in Møller and Waagepetersen [2004]. When estimating
KAB(r), we are counting pairs of points with different marks that are closer
together than the distance r. Such pairs of points do not contribute to the final
sum with the same weight – for each of them the weight includes the edge
correction factor and the normalisation by the non-constant intensity functions.

If we want to test a hypothesis about a point process data, the simulation-based
tests are usually used. It means that we generate a large number of simulations
from a null model, we compute the test statistics for these simulations and for
the observed data and we compare how extreme is the value of the test statistic

Figure 4: Reconstruction of the locations of points with mark A: the observed
data (top left corner), three different reconstructions.
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computed for the data compared to the values computed for the simulations.
If the test statistics is a function (as the cross K-function) we can use the global
rank envelope test. It gives us a recipe how to order the curves computed for
the simulated patterns and how to decide whether the data curve is extreme
(compared to the simulated ones) or not. Moreover, the global rank envelope
test has a graphical representation. Based on the simulated curves we are able to
draw the envelope (i.e. the bounded region in which the observed curve should
lie, with a given probability, under the null hypothesis). If the data curve leaves
the envelope for any value of the patameter r we reject the null hypothesis.

The key element to perform the simulation-based test are the simulations from
the null model. But the null hypothesis that two different populations are inde-
pendent is not specific enough to enable simulations. Fortunately, we can use the
stochastic reconstruction instead. Locations of points with mark B stay fixed and
we generate 2499 reconstructions of the locations of points with mark A (three
of these 2499 reconstructions can be seen in Figure 4). Then we superimpose
the patterns and we obtain 2499 marked point patterns. Once we have these
patterns we can compute the test statisticKAB(r), r > 0, and create the envelope.

The global rank envelope test is in this situation performed on the significance
level α = 0.05. For the stochastic reconstruction we use the energy functional E
which is modified for inhomogeneous point patterns. In Section 3.3.1 this func-
tional will be refered to as E ′

5. The algorithm is stopped if the energy functional
E does not decrease in the 500 iteration steps in a row. The global rank envelope
can be seen in Figure 5. The p-interval (whose bouns correspond to the most lib-
eral and the most conservative p-values) given by the global rank envelope test is
(0.029, 0.061) and thus it is not clear whether we should reject the null hypothesis
or not.
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Figure 5: Left: test statistic KAB(r), r > 0 computed for the data (red dashed
curve) and for the 2499 superimposed patters. Right: global rank envelope (red
dashed curve is the data curve) for the test statistic KAB(r), r > 0, made from
the 2499 superimposed point patterns.
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The main aim of this work is to discuss the difficulties that may arrive when
extending the stochastic reconstruction algorithm described in Tscheschel and
Stoyan [2006] for inhomogeneous point processes. We will cover the direct
method of minimizing the energy functional including a simulation study in
which the quality of reconstructions will be investigated for three different
point proces models. Also a brief discussion about the use of a special case
of the Metropolis-Hastings algorithm described in Section 7.1.1 in Møller and
Waagepetersen [2004] will be given.
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1. Point processes in Rd

In this chapter we will introduce the space of all locally finite point configurations
in Rd and we will state the formal definition of a point process on a d-dimensional
Euclidean space. We will also state the definition of some important sum-
mary characteristics and we will discuss the difference between a homogeneous
and an inhomogeneous point process. Also four well-known models for spatial
point paterrns will be mentioned. Note that most of notation and basic defini-
tions are taken from Møller and Waagepetersen [2004].

1.1 Basic definitions
Take d ∈ N. By Rd we mean the d-dimensional Euclidean space. Let us denote
by Bd the Borel σ-algebra on Rd. Moreover denote by Bd

0 the set of all bounded
Borel subsets of Rd. Let ζ be a subset of Rd. Denote by N(ζ) the cardinality
of the set ζ, i.e. the number of elements of ζ. If ζ is not finite, set N (ζ) = ∞.

Definition 1. We say that ζ ⊂ Rd is locally finite, if N (ζ ∩B) < ∞ for all
B ∈ Bd

0. Set
Nlf =

{
ζ ⊂ Rd : N(ζ ∩B) < ∞ ∀B ∈ Bd

0

}
.

Nlf is the set of all locally finite point configurations in Rd. Elements of Nlf

will be denoted by ζ, ξ, η . . . , while x, y, z . . . denote points in Rd. We need
to equip the space Nlf with some σ-algebra. Denote

Nlf = σ
(
{ζ ∈ Nlf : N(ζ ∩B) = m} , B ∈ Bd

0, m ∈ N0
)
,

where N0 = N ∪ {0}. Obvoiously, Nlf is a σ-algebra. Hence (Nlf ,Nlf ) is a mea-
surable space. Since Rd is a Polish space, Nlf is a countably generated σ-algebra,
see Proposition B.1 in Møller and Waagepetersen [2004]. This fact will be used
in Section 4.2.1. Now fix (Ω,A,P) a probability space. We have already prepared
all ingredients needed to state the definition of a point process.

Definition 2. A measurable mapping Φ : (Ω,A,P) −→ (Nlf ,Nlf ) is called
a point process on Rd.

Remark. The measurability of Φ implies that N (Φ ∩B) is a random variable
for any B ∈ Bd, see Definition B.1 in Møller and Waagepetersen [2004].
Remark. Note that in a very same way we can define a point proces on S ⊆ Rd.
In Møller and Waagepetersen [2004] point processes defined on S ⊆ Rd are called
spatial point processes.
This is not the only possibility how to define a point process in Rd. It is also
possible to consider all locally finite random counting measures µ as point
processes, see Daley and Vere-Jones [2008]. Our definition 2 corresponds
to so-called simple point process. It means that corresponding random counting
measure µ satisfies µ ({y}) ≤ 1 ∀y ∈ Rd. In this case we can identify µ with
its support supp µ which is a locally finite point configuration in Rd. We get
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µ(B) = N (supp µ ∩B) for all B ∈ Bd.

Let Φ be a point process, i.e. a random locally finite subset of Rd. Let us
denote NΦ (B) = N (Φ ∩B) for all B ∈ Bd. As we have mentioned above
NΦ (B) is a random variable for any B ∈ Bd. Naturally, its moments such as the
expectation are of particular interest.

Definition 3. The intensity measure Λ of a point process Φ is given by

Λ (B) = E [NΦ (B)] , B ∈ Bd.

Once we have defined the intensity measure, we are able to speak about homo-
geneity and inhomogeneity of a point processes.

Definition 4. Suppose that the intensity measure Λ of a point process Φ is trans-
lation invariant, i.e.

Λ(x+B) = Λ(B), for all x ∈ Rd and B ∈ Bd,

where x+B = {x+ b : b ∈ B}. Then Φ is said to be homogeneous point process.
Ohterwise, Φ is said to be inhomogeneous.

Definition 5. Suppose that the intensity measure Λ of a point process Φ is abso-
lutely continuous with respect to d-dimensional Lebesgue measure, i.e. there exists
a measurable function λ : Rd −→ [0,∞) such that

Λ(B) =
∫

B
λ(u) du ∀ B ∈ B.

Then λ is called the intensity function of Φ. If λ is a constant, then it is called
intensity.

Remark. Roughly speaking, λ(y) dy is the probability that a point of the process Φ
will occure in an infinitesimally small ball with centre y and volume dy, see Section
4.1.1 in Møller and Waagepetersen [2004].
Instead of saying that Φ is homogeneous, we can call Φ first order stationary.
It is not the same property as stationarity, which is defined as follows.

Definition 6. A point process Φ on Rd is stationary, if its distribution (the prob-
ability measure PΦ(F ) = P [Φ ∈ F ] , F ∈ Nlf) is invariant under translations.
It means that the distribution of Φ + s = {X + s : X ∈ Φ} is the same as that
of Φ for any s ∈ Rd. Further Φ is called isotropic, if its distribution is in-
variant under rotations about the origin in Rd. That is to say, the distribution
of OΦ = {OX : X ∈ Φ} is the same as that of Φ for any rotation O around
the origin.

Remark. Let Φ be a stationary point process. From the definiton of stationarity,
it is clear that the intensity measure Λ of Φ must be translation invariant. It is
know that the d-dimensional Lebesgue measure is (up to the multiplication by
a constant) the unique translation invariant measure on Rd, see Lemma 1.29 in
Kallenberg [2002]. Thus, the intensity measure Λ of a stationary point process
Φ is the d-dimensional Lebesgue measure multiplied by a positive constant λ.
Therefore, stationary point process is also homogeneous with intensity λ.
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1.2 Examples of point process models
As we have mentioned before point procesess serve to model the arrangement
of objects that are randomly placed in space. In this section we will mention
some well-known models for spatial point patterns. We will first state a definition
of binomial and Poisson point processes which are used in case that there are
no interactions among modeled objects. Then we will introduce Thomas point
procees as an example of models for clustered patterns and Matérn hard-core
process of type II which can be used when modelling regular data.

Definition 7. Let ν be a diffuse measure on Bd, i.e ν ({y}) = 0 for all y ∈ Rd.
Fix n ∈ N and take B ∈ Bd such that 0 < ν(B) < ∞. Let X1, X2, . . . , Xn be in-
dependent identically distributed random elements with values in B and suppose
that

P [X1 ∈ A] = ν(A)
ν(B) , A ⊆ B, A ∈ Bd.

Then Φ = {X1, X2, . . . , Xn} is called a binomial point process in B (with n points
and a measure ν).

Remark. We want ν to be diffuse to ensure that the binomial point process will
be simple.
It is easy to see that in this case random variable NΦ(A) has binomial distribu-
tion with parameters n and ν(A∩B)

ν(B) for all A ∈ B2. Three different realisations
of a planar binomial point process can be seen in Figure 1.1.

Definition 8. A measure µ on
(
Rd,Bd

)
is said to be locally finite if µ(K) < ∞

for each K ⊂ Rd a compact set.

Definition 9. Let Λ be a locally finite diffuse measure on Bd. A planar point
process Φ is said to be (simple) Poisson point process with intensity measure Λ
if the following properties are satisfied:

(a) for any B ∈ Bd
0 the random variable NΦ(B) has the Poisson distribution

with parameter Λ(B) (if Λ(B) = 0 then NΦ(B) = 0),

(b) NΦ(B1), NΦ(B2), . . . , NΦ(Bn) are independent random variables for all n ∈ N
and B1, B2, . . . , Bn ∈ Bd

0 pairwise disjoint.

Remark. Our assumpltions that ν is locally finite and diffuse ensures existence
and uniqueness of Poisson point process, see Proposition 9.2.III and Corollary
9.2.VIII in Daley and Vere-Jones [2008].
Remark. A homogeneous Poisson process is stationary and isotropic, this obser-
vation is discussed in Section 2.3.2 of Illian et al. [2004].
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Figure 1.1: Three different realisations of planar binomial point process with
50 uniformly distributed points on unit square.

Poisson point process is a very fundamental point process model. It plays the role
of a referential object in point pattern analysis and there exist more complex
models that are constructed from the Poisson process. Homogeneous Poisson
process represents the hypothesis of complete spatial randomness, i.e. the situa-
tion when there are no interactions between points. Three realisations of a planar
stationary Poison point process with differen intensities can be seen in Figure 1.2.

Another natural situation is when the observed objects form divers clusters
which are randomly placed in space. Imagine for example that we want to
model locations of young plants dispersed around the adult ones. It is clear
that Poisson point process is not a good model for this situation. We will need
a finer model that captures the interactions between the adult “parent” plant
and its young “daughter” plants. Definitions and notation concerning cluster
point processes is taken from Chiu et al. [2013].

Figure 1.2: Three realisations of a planar stationary Poisson point process with in-
tensity λ equal to 50, 100 and 200. Numbers of observed points are 50, 77 and 211,
respectively.
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Definition 10. Let us have a point proces Φp (the so-called parent point process)
and a collection of finite point processes

{
Θx : x ∈ Rd

}
. Finite means that for all

x ∈ Rd NΘx(Rd) is almost surely finite. Take

Φ =
⋃

X∈Φp

ΘX .

If NΦ(B) < ∞ almost surely for all B ∈ Bd
0 then Φ is called a cluster point

process. For every X ∈ Φp the process ΘX is said to be the daughter process
corresponding to the parent point X.

Definition 11. Cluster point process Φ such that
{
Θx : x ∈ Rd

}
are mutually

independent and independent on the parent point process Φp is called cluster point
process with independent clusters. If Φp is moreover a Poinsson process, the Φ is
said to be Poisson cluster point process.

Definition 12. Let us have a probability density p on Rd. Assume that Φ
is a Poisson cluster process such that:

• Θx(Rd), x ∈ Rd, are independent identically distributed random variables,

• for all x ∈ Rd Θx is formed by a random number of independent identically
distributed random vectors with probability density p(• − x).

Then Φ is called Neyman-Scott process. If moreover Θx(Rd) have Poisson dis-
tribution with parameter γ > 0, then Φ is called Neyman-Scott Poisson point
process.

Remark. Suppose that Φ is a Neyman-Scott Poisson point proces. Denote by κ
the intensity of the underlying Poisson point process Φp. Then Φ is a stationary
point process with intensity λ = γκ, see Section 5.3 in Møller and Waagepetersen
[2004]. Constant γ corresponds to the expected number of points per cluster.

Definition 12 says that parent points form a stationary Poisson point pro-
cess with intensity κ and a random number of daugter points in every clus-
ter is scattered independently and with identical distribution around the parent
point. Note that in the resulting process, we do not observe the parent points.
Neyman-Scott processes were introduced in Neyman and Scott [1958] in order to
model patterns formed by the locations of galaxies in space. Of course they can
be used to model many others natural phenomena such as trees in a forest (for
more details see Section 6.3.2 in Illian et al. [2004]). Let us now define a special
type of Neyman-Scott Poisson processes, so-called Thomas process.

Definition 13. If p in Definition 12 is given by

p(y) = 1
(2πσ2)

d
2

exp
{

−∥y∥2

2σ2

}
, y ∈ Rd,

then Φ is called Thomas point process.

Remark. Note that p is a density of centered multivariate normal distribution
with the covariance matrix σ2Id, where Id denotes the d-dimensional identity
matrix.
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Figure 1.3: Two realisations of planar Thomas point process with different
parametrs. Two left pictures: daughter points (grey circles) and the underly-
ing parent points (black crosses), daughter points form a realisation of a Thomas
process (black circles) with parameters κ = 40, σ = 0.02 and the expected number
of points per cluster equal to 6. The same situation is in the two right pictures,
only the daughter points form a realisation of a Thomas process with parameters
κ = 8, σ = 0.04 and the expected number of points per cluster equal to 30.

Figure number 1.3 shows two different realisations of Thomas point process.
We should realize that some of the parent points can lie outside the observation
window even though we can see their daughter points in the resulting pattern.
Also sometimes clusters that corresponds to different parent points may overlap.
Therefore it is sometimes imposible to decide which daughter points match
with one particular parent point.

Third situation that we would like to cover includes point patterns in which
there are no pairs of points that are closer to each other than a specific minimum
distance r0. Such situations are modeled by so-called hard-core point processes.
Hard-core point patterns arise when representing centres of non-overlapping
objects, typically circles or spheres with radius R ≤ r0

2 .

Hard-core processes provide a typical examples of processes with a tendency
towards regularity, which is caused by repulsive interactions among the points
of the process. As it is said in Section 6.5 in Illian et al. [2004], there are two
main types of hard-core processes: processes resulting from interaction of hard
objects (objects represented by the pattern are hard and non-penetrable, hence
they cannot be closer together than permitted by their sizes) and processes result-
ing from thinning operations (these oparations will with given probability remove
or retain every point of a process).

Definition 14. Let Φp be a stationary Poisson point process with intensity κ > 0.
We equip each point X ∈ Φp independently with a mark m(X) which is a random
number uniformly distributed in (0, 1). Fix r > 0. For each X ∈ Φp denote
by b(X, r) the ball centred at X with radius r and put

βX = 1 {N (b(X, r) ∩ {Y ∈ Φp : Y ̸= X, m(Y ) ≤ m(X)}) = 0} ,

the indicator that b(X, r) contains no points of Φp with marks smaller than m(X).
Then Φ = {X ∈ Φp : βX = 1} is called Matérn hard-core process of type II with
hard-core distance r.
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Figure 1.4: From left to right: realisation of stationary planar Poisson point
process with intensity λ = 100, two realizations of Matérn hard-core process
of type II with the intensity κ of the underlying Poisson point process equal to
100 and hard-core distance r equal to 0.05 and 0.1 respectively.

Remark. Matérn hard-core process of type II is a stationary point process with
intensity

λ = 1 − e−κωdrd

ωdrd
,

where ωd is the d-dimensional Lebesgue measure of the unit ball. Sketch
of the proof can be found in Section 6.5.2 in Illian et al. [2004].
Definition 14 says that for every pair of distinct points X, Y ∈ Φp satisfy-
ing 0 < ∥X − Y ∥ ≤ r we delete the point with bigger mark. Two realisations
of Matérn hard-core process of type II can be seen in Figure 1.4.

1.3 Summary characteristics and point pattern
analysis

According to the authors of the book Illian et al. [2004], the aim of summary
characteristics is to provide a brief and concise description of point patterns
using numbers, functions or diagrams. They are used when analyzing properties
of point process data (as the regular or clustered nature of the data) and they
serve as a basis for parametric statistical approaches.

Let Φ be a spatial point process. We have already mentioned the random counts
NΦ(B), B ∈ Bd. Note that joint distribution of

NΦ(B1), NΦ(B2), . . . , NΦ(Bm), B1, B2, . . . , Bm ∈ Bd
0, m ∈ N

determines the distribution of Φ. Proof can be found in Appendix B of Møller
and Waagepetersen [2004], Lemma B.2. The first and second order properties
of these random variables are described by the intensity measure and the second
order factorial moment measure defined as follows.
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Definition 15. The second-order factorial moment measure α(2) on Bd ⊗ Bd

is given by

α(2)(C) =
̸=∑

X,Y ∈Φ
1 {(X, Y ) ∈ C} , C ∈ Bd ⊗ Bd.

The symbol
̸=∑

X,Y ∈Φ
means that we sum trough all pairs of distinct points of Φ.

Remark. Take B ∈ Bd. The second-order factorial moment measure α(2)

can be expressed as α(2) (B ×B) = E [NΦ(B) (NΦ(B) − 1)]. This formula fol-
lows from Equation (4.1) in Section 4.1.1 of Møller and Waagepetersen [2004]
The second-order factorial moment measure is thus related with second-order
factorial moment of NΦ.
At the same time we can define the second-order product density in a very similar
way as we did it with the intensity function.

Definition 16. Suppose that the second-order factorial moment measure α(2)

can be written as

α(2)(C) =
∫
Rd

∫
Rd

1 {(x, y) ∈ C} λ(2)(x, y) dx dy, C ∈ Bd ⊗ Bd.

Then the function λ(2) : Rd × Rd −→ [0,∞) is called the second-order product
density.

Remark. Roughly speaking, λ(2)(x, y) dx dy is the probability that a pair of points
of a point process Φ will occure jointly in each of two infinitesimally small balls
with centres x, y and volumes dx, dy. Therefore, λ(2) contains information about
interaction between pairs of points.
One of the first things to do in point pattern analysis is to study whether
(and how) a point pattern deviates from a realization of Poisson point process.
For this purpose it is useful to normalise the second-order product density λ(2).

Definition 17. If both λ and λ(2) exist, then the pair correlation function
g is given by the ratio

g(x, y) = λ(2)(x, y)
λ(x)λ(y) , for all x, y ∈ Rd such that λ(x), λ(y) > 0.

If λ(x) or λ(y) equals zero, we set g(x, y) = 0.

Remark. The second-order product density λ(2) gives us some information about
interactions between pairs of points of the process. At the same time the infor-
mation can be distorted by the intensity function λ. We can always ask if the fact
that we see lot of points in one particular area is caused by interactions or high
intensity function in this area. Hence we define the pair correlation function g
as the normalised second-order product density in order to obtain better infor-
mation about interactions (free of the effect of the intensity function). For this
reason we can use the pair correlation function to compare character of inter-
actions between pairs of points for two point processes with diferent intensity
functions.
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It is know that for Poisson point process g(x, y) ≡ 1 (see Section 4.1.1. in Møller
and Waagepetersen [2004]). Suppose that we have g(x, y) > 1 for some point
process Φ. It means that pairs of points of Φ are more likely to appear jointly at
the locations x, y than for a Poisson point process with the same intensity function
as Φ, see the discussion after Definition 4.4 in Møller and Waagepetersen [2004].

Definition 18. We say that g is translation invariant, if g(x, y) = g̃(x−y) for all
x, y ∈ Rd and some g̃ : Rd −→ [0,∞).

Remark. Definition 18 says that a function g of two variables x and y can be ex-
pressed as a function g̃ of the difference x − y. We will abuse the notation
and denote by g also the function g̃ which describes how the pair correlation
depends on differences.
Remark. If Φ is stationary, then g is translation invariant, see Section 4.1.1
in Møller and Waagepetersen [2004]. At the same time there exist cases where
g is translation invariant but Φ is an inhomogeneous process, we will se an ex-
ample later. If Φ is isotropic, then g(x, y) is a function of the distance from x
to y, see discussion in Section 4.3.1 in Illian et al. [2004]. Again we abuse the
notation and write g(x, y) = g (∥x− y∥).
Suppose that Φ is a point process with translation invariant pair correlation
function g. Then for r > 0 g(r) > 1 reveals clustering on a scale r and g(r) < 1
indicates regularity. If Φ is a hard-core process with the hard-core distance r0,
then g(r) = 0 for all r ≤ r0. For more details see Section 4.3.1 in Illian et al.
[2004]. We will now introduce the class of second-order intensity reweighted

stationary point processes. It includes for example every Poisson point process
with intensity function λ (see [Baddeley et al. , 2000]).

Definition 19. Suppose that Φ has the intensity function λ. Fix A ∈ Bd

such that 0 < |A| < ∞, where |A| denotes the d-dimensional Lebesgue measure
of A. We define a measure KA by

KA(B) = 1
|A|

E
̸=∑

X,Y ∈Φ

1 {X ∈ A, Y −X ∈ B}
λ(X)λ(Y ) , B ∈ Bd.

We set 1 {X ∈ A, Y −X ∈ B}
λ(X)λ(Y ) = 0 if λ(X) or λ(Y ) is equal to 0.

Definition 20. Let Φ be a point process with intensity function λ. If the mea-
sure KA from definition 19 does not depend on the choice of A, then Φ is called
second-order intensity reweighted stationary (SOIRS). KA is in this case denoted
by K and it is called the second-order reduced moment measure.

Remark. Stationarity of Φ implies that Φ is also second-order intensity reweighted
stationary, see Section 4.1.2 in Møller and Waagepetersen [2004].
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If the pair correlation function exists and is translation invariant, then Φ
is second-order intensity reweighted and K can be represented as follows:

K(B) =
∫

B
g(z) dz, B ∈ Bd.

For the sketch of the proof see Section 4.1.2 in Møller and Waagepetersen [2004].
Once we have defined the second-order reduced moment measure, we are able
to introduce two of the most popular point process summary characteristics: K
and L-function.

Definition 21. Let Φ be a second-order intensity reweighted stationary point
process. Then the K-function is given by

K(r) = K (b(o, r)) =
∫

b(o,r)
g(z) dz, r > 0,

where b(o, r) denotes the ball centered at the origin with radius r.

Remark. Definition 21 is an extension of the definition of Ripley’s K-function
(see Ripley [1976]) and originally comes from the paper Baddeley et al. [2000].

Definition 22. Let us have a second-order intensity reweighted stationary point
process Φ. L-function is then defined by

L(r) =
(
K(r)
ωd

) 1
d

, r > 0.

If we have a stationary point process Φ with intensity function λ, the quantity
λK(r) can be interpreted as the expected number of further points of the process
Φ within distance r from the origin given that Φ has a point at the origin.
It is known that for the Poisson point process K(r) = ωdr

d. There is one
to one correspondence between K and L-function and in the applications,
L-function is used more often. It is due to the fact that for homogeneous
Poisson process, the transformation from K to L is variance stabilising when
K is estimated by nonparametric methods, see Section 4.2.1 in Møller and
Waagepetersen [2004]. Also, for Poisson point process L-function becomes the
identity, i.e. L(r) = r for all r > 0. We can again compare the L-function of an
arbitrary point process with the one of the Poisson point process. Bigger values
(for some r > 0) suggests aggregation or clustering (at distances less than r),
smaller values indicates regularity. Again you can see the discussion in Section
4.2.1 in Møller and Waagepetersen [2004].

Last but not least summary characteristics that we want to mention are based
on interpoint distances. Namely it is the spherical contact distribution function
and the nearest-neighbour distance distribution function.

Definition 23. Assume that Φ is stationary. Then

F (r) = P [NΦ (b(o, r)) > 0] , r > 0,

is called the spherical contact distribution function.
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In fact the spherical contact distribution function in nothing else than the distri-
bution function of the distance from the origin (or, due to stationarity, any other
fixed point in Rd) to the nearest point of the process Φ. When analyzing point
patterns we can go a bit further. Sometimes it can be useful to ask how does
the (empirical) distribution function of the distances from the origin to the second
or third or even k-th nearest point looks like. Now we will focuse on the distances
between points of the process Φ.

Definition 24. Let us have a stationary point process Φ with intensity λ.
Then the nearest-neighbour distance distribution function D is given by

D(r) = 1
λ|A|

E
∑

X∈Φ∩A

1{N(Φ\{X}∩b(X,r))>0}, r > 0,

where A is an arbitrary Borel set satisfying 0 < |A| < ∞.

Under the assuption of stationarity, D can be interpreted as the distribution
function of the distance from the “typical” point of the process to its near-
est neighbour. The word typical refers to the Palm distribution and reduced
Palm distribution of a point process. We will not give here the exact defini-
tion but it can be found in Appendix C of the book Møller and Waagepetersen
[2004]. Again we can be interested in the (empirical) distribution function of

the distances to the second or k-th neighbour. For the stationary Poisson point
proces with finite intensity λ the explicit formula for F and D is known. So let
Φ be a stationary Poisson point proces with finite intensity λ. Then

F (r) = D(r) = 1 − exp
{
−λωdr

d
}
, r > 0.

It is possible to define another characteristic, so-called J-function, as the ratio

J(r) = 1 −D(r)
1 − F (r) , r > 0.

Then obviously J ≡ 1 for the Poisson point process and at least for small values
of r it holds that J(r) < 1 implies agregation or clustering whereas J(r) > 1
implies regularity. All of the stated facts can be found in Section 4.2.3 of the
book Møller and Waagepetersen [2004].

1.4 Nonparametric estimation
Take A ∈ Bd. The d-dimensional Lebesgue measure of A wil be denoted as |A|.
In the next two chapters we will have one single point pattern ζ on a bounded
observation window W ∈ Bd

0, 0 < |W | < ∞. Thus we will need some estimators
for summary characteristics mentioned above. The observation window W
is bounded and hence we will have to deal with edge effects. Imagine that for
each point x ∈ ζ we want to measure the distance to its nearest neighbour.
What if x lies very close to the boundary of W? It it possible that the nearest
neighbour of x lies outside the observation widnow, hence we have no information
about it. In fact we will take the distance from x to the nearest point from ζ that
lies in W . But it is possibly not the right distance. This situation is illustrated

18



x

x

Figure 1.5: Illustration of the phenomenon called edge effects. Left: only 2 out
of 7 points that hit the disc centered at point x with some radius r lie in the ob-
servation window. Right: the nearest neighbour of the point x lies outside the ob-
servation window W , if we take the nearest neighbour lying in W , this distance
will be much bigger than the true one.

in Figure number 1.5.

It is important to realize that ignoring edge effects can lead to distorted
conclusion about the investigated point process characteristic. There exist
several methods how to deal with this phenomenon and how to reduce the effect
of wrongly evaluated quantities. We will suggest one estimator for each of the
characteristic λ, g, K, F and D. These particular estimators will be used in
Chapter 3.

Suppose that Φ is a stationary point process with intensity λ. Suppose that
we observe Φ only on a bounded observation window W , |W | > 0. It follows

from the definition 5 that λ̂ = NΦ(W )
|W |

is an unbiased estimator of λ.

For an inhomogeneous process Φ we use so-called non-parametric kernel estima-
tors. Take b > 0 and ub a kernel function with bandwidth b. It means that
ub(x) = u( x

b
)

bd , where u is some probability density. Id d = 1 we often take

u(x) = 3
4 (x− 1)2 , x ∈ [−1, 1] ,

the Epanechnikov kernel. Other common choices are the density functions of uni-
form distribution on a ball or the Gaussian distribution. Put

CW,b(x) =
∫

W
ub(x− y) dy

the correction on edge effects. Then the estimator of λ is given by

λ̂(x) = 1
CW,b(x)

∑
Y ∈Φ∩W

ub(x− Y ), x ∈ W. (1.1)
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If u is symmetric then the following holds:

E
∫

W
λ̂(x) dx =

∫
W
λ(x) dx.

It can be prooved in a very similar way as Lemma 4.1 in Møller and
Waagepetersen [2004] (authors use a slightely different version of the estimator
(1.1)).

Suppose that Φ is stationary and isotropic. Then the kernel estimator of the pair
correlation function g is given by

ĝ(r) = 1
λ̂2

̸=∑
X,Y ∈Φ∩W

ub (r − ∥X − Y ∥)
σdrd−1|W |

eW,r(X, Y ), (1.2)

where ub is a suitable kernel function, σd is the surface of a unit ball in Rd

and eW,r(X, Y ) is the so-calle edge correction factor. We use the translation edge
correction factor in a form

eW,r(X, Y ) = |W |
|W ∩ (W +X − Y ) |

.

Translation edge correction factor is not the only possibility, we can use for
example the Ripley’s isotropic edge correction or the minus sampling. For more
details see Section 4.2.2 in Illian et al. [2004]. Note that the common estimator
of λ̂2 is Φ(W )(NΦ(W )−1)

|W | instead of
(

NΦ(W )
|W |

)2
. In the case of inhomogeneous SOIRS

process we replace λ̂2 by λ̂(X)λ̂(Y ) in the denominator of each summand.

Suppose that Φ is an SOIRS process. Then the estimator of K-function with
translation edge correction factor has the form

K̂(r) =
̸=∑

X,Y ∈Φ∩W

1 {∥X − Y ∥ ≤ r}
λ̂(X)λ̂(Y )|W ∩ (W +X − Y ) |

. (1.3)

The estimate (1.3) is biased as well as the estimate of L(r) which is obtained from
transforming (1.3). We say that an estimate is ratio-unbiased, if it is in the form
θ̂ = Y/Z where θ = EY/EZ. If Φ is stationary then λ̂(X)λ̂(Y ) = λ̂2 for all
X, Y ∈ Φ ∩W . If λ̂2 is an unbiased estimator of λ2, then (1.3) is ratio-unbiased,
see Section 4.3.2. in Møller and Waagepetersen [2004].

For the spherical contact distribution function and the nearest-neighbour dis-
tance distribution function we will present so-called raw estimate. There are
other possibilities as reduced-sample or Kaplan-Meier method, see Section 4.3.6
in Møller and Waagepetersen [2004]. Our choice of none edge correction will
be commented in Section 3.1. Suppose that Φ is stationary. Take X ∈ Φ.
Set e(X) = d (X,Φ \ {X} ∩W ) the distance from X to its nearest neighbour
in Φ ∩W . The estimate is then given by

D̂(r) = 1
NΦ(W )

∑
X∈Φ∩W

1 {e(X) ≤ r} .
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Now chose a regular grid Ia in Rd, i.e.

Ia = y + aZd =
{
(y1 + a1z1, . . . , yd + adzd) ∈ Rd : zi ∈ Z

}
,

where y = (y1, y2, . . . , yd) ∈ Rd and a = (a1, a2, . . . , ad) ∈ Rd such that ai > 0
for all i ∈ {1, 2, . . . , d}. The estimator of F is then given by

F̂ (r) = 1
N (Ia ∩W )

∑
x∈Ia∩W

1 {d (x,Φ ∩W ) ≤ r} ,

where d (x,Φ ∩W ) denotes the distance from x to the nearest point of the process
Φ lying in W .

In Chapter 3 we will use D̂k the empirical distribution function of the dis-
tances to the k-the nearest neighbour and F̂k the empirical distrubution function
of the distances from a fixed set of points to the nearest point of the process.
Let us now denote by ek(X) the distance of the point X ∈ Φ to its k-th nearest
neighbour in Φ ∩W . Then we will compute D̂k as follows:

D̂k(r) = 1
NΦ(W )

∑
X∈Φ∩W

1 {ek(X) ≤ r} .

Similarly, let use denote by dk (x,Φ ∩W ) the distance from a fixed point x to
the k-th nearest point of the process Φ lying in W . Then F̂k is given by

F̂k(r) = 1
N (Ia ∩W )

∑
x∈Ia∩W

1 {dk (x,Φ ∩W ) ≤ r} .
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2. Stochastic reconstruction
In this chapter we will focuse on an algorithmic procedure described in Tscheschel
and Stoyan [2006]. Even though the authors call it statistical reconstruction,
concerning this work we will call the procedure stochastic reconstruction
or stochastic reconstruction algorithm. It is due to the fact that the term
stochastic reconstruction is commonly used in the literature when talking about
this procedure. Before we start with description and explanations, let us talk
for a while about point pattern analysis.

When analysing point pattern data, various hypotheses can be tested using sum-
mary characteristics introduced in Secction 1.3. Often the distribution of the test
statistics (i.e. the estimator of some summary characteristic) is very complicated
or untracable. For this reason simulation-based tests are needed. In this text
we are primarily interested in situations when we are not able to simulate from
the null model (the null hypothesis is not specific enough). Example of such
situation was given in Introduction (testing independence of two diverse pop-
ulations). In this context, the stochastic reconstruction algorithm can be used
instead of simulations to generate independent point configurations with the same
form of selected summary characteristics as the data.

2.1 The algorithm
Authors of the paper Tscheschel and Stoyan [2006] mention that the stochastic
reconstruction has some tradition in statistical physics, where it is used when sim-
ulating random closed sets. More details can be found in Chapter 12 of Torquato
[2002]. The procedure was for the first time adapted for spatial point processes

in the diploma thesis of André Tscheschel (see Tscheschel [2001]). Another vari-
ant of the stochastic reconstruction approach can be found in Pommerening
[2006], where it is discussed in a forestry context. In the next paragraphs we are
going to describe the algorithm as it is presented in Tscheschel and Stoyan [2006].

Suppose we have a bounded observation window W such that 0 < |W | < ∞.
Let us have ϕ a point pattern observed in W . We suppose that ϕ is a re-
alisation of a stationary point process Φ. Take I and J natural numbers.
Let ni, i = 1, 2, . . . , I be some numerical summary characteristics, for example
the intensity, Pielou’s index of randomness or Clark-Evans index. The last two
can be found in Section 4.2.4 of the book Illian et al. [2004]. Similarly,
let fj, j = 1, 2, . . . , J be some functional summary characteristics. We have seen
examples of functional summary characteristics in Section 1.3. To be more
concrete we can mention the L-function or the nearest-neighbour distance
distribution function D. Note that for every fj we have to choose a constant Rj

which depends on the observation window W and which limits the domain of fj.
It means that we are interested in the values fj(r), 0 < r ≤ Rj, j = 1, 2, . . . , J .
By n̂i (ϕ) and f̂j (ϕ, r) we denote empirical estimators of ni and fj(r) for
the observed point pattern ϕ. Examples of estimators for intensity and various
functional summary characteristics (with particular edge correction) were given

22



in Section 1.4.

The main idea of the algorithm is to generate a point configuration ζ in the ob-
servation window W which has the estimated characteristics n̂i(ζ), i = 1, 2, . . . , I
and fj(ζ, r), j = 1, 2, . . . , J similar to the observed point pattern ϕ. We em-
phasize that the algorithm is designed in such a way that all generated point
configurations have the same number of points as the observed pattern ϕ which
is reconstructed. In detail, we want to create a point configuration ζ such that
N(ζ ∩W ) = N(ϕ ∩W ) and

n̂i(ζ) ≈ n̂i(ϕ), i = 1, 2, . . . , I,
for all 0 < r ≤ Rj f̂j(ζ, r) ≈ f̂j(ϕ, r), j = 1, 2, . . . , J.

The “similarity” of two point configurations ϕ and ζ, i.e. the deviation of esti-
mates of a collection of numerical and functional summary characteristics, is mea-
sured by a functional E which we will call the energy functional. Let us define

Eni
(ϕ, ζ) = [n̂i(ϕ) − n̂i(ζ)]2 , i = 1, 2, . . . , I,

Efj
(ϕ, ζ) =

Rj∫
0

[
f̂j(ϕ, r) − f̂j(ζ, r)

]2
dr, j = 1, 2, . . . , J.

Then the energy functional E is given by the weighted sum

E(ϕ, ζ) =
I∑

i=1
wni

Eni
(ϕ, ζ) +

J∑
j=1

wfj
Efj

(ϕ, ζ), (2.1)

where wni
, i = 1, 2, . . . , I and wfj

, j = 1, 2, . . . , J are positive real numbers.
Example. Suppose that we have observed a planar point pattern ϕ in the ob-
servation window W = [0, 1]2. Based on our knowledge about the data, we
have decided that the pair correlation function g reveals the property of ϕ that
is of particular interest. We hawe also decided that we do not want to use any
other characteristics in the energy functional E. Thus I = 0, J = 1, f1 = g,
R1 = 0.25, wg = 1 and for any ζ point configuration in W we have

E(ϕ, ζ) = Eg(ϕ, ζ) =
0.25∫

0

[ĝ(ϕ, r) − ĝ(ζ, r)]2 dr.

The weight wg can be choosen arbitrarily and for the choice of R1 we follow the
common recommendation of the one fourth of the shortest side of the observation
window.
Let us now make few remarks about the energy functional. The weights wni

and wfj
could be used to give different importance to the individual terms in

(2.1). Note that different terms may take values on different scales and thus
the weights may serve to ensure that each of the terms Eni

, Efj
contributes

to the final sum by values on the same scale. Usually the weights are chosen
experimentally. Imagine we want to base the neregy functional on two different
terms. First we will run the algorithm based only on the first term to see
the scale of the values. Then we will do the same for the second term. Once
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we have did these experimental runs we are able to compare the scale of values
of the first and the second term and thus we are able to chose the weights
appropriately.

Also, it is possible to modify the term Efj
by adding weights uj(r) for all of the

admissible values of the parameter r. The term hence becomes

Efj
=

Rj∫
0

uj(r)
[
f̂j(ϕ, r) − f̂j(ζ, r)

]2
dr.

This modification can be useful when we have a reason to think that for some
values of r the estimate f̂j is unreliable. Described situation may arise for
example when we are estimating the pair correlation function g with r close
to zero or when we want to compensate the increasing variability of estima-
tor of K-function. Summary characteristics in the energy functional E are
chosen based on our information about the data and the purpose for which
the reconstructed patterns would be used. For example, if we want to use
a simulation-based test to test the null hypothesis that ϕ is a realisation of a sta-
tionary Poisson point process, the test statistic could be L-function (because for
the Poisson point process we know the analytic formula for L-function). Then
the energy functional should not be based on L-function.

Once we have described the energy functional E, we can start describing the al-
gorithm itself. The observed point pattern ϕ will be sometimes called the input
of the stochastic reconstruction algorithm. Suppose now that N(ϕ∩W ) = n ∈ N,
then the initial step of the algorithm is a realisation of a binomial point process
on W with n points and a 2-dimensional Lebesgue measure. It will be denoted
by ζ(0). Suppose that after l iteration steps we have obtained point configuration
ζ(l) with n points. In the iteration step number l + 1 we:

• randomly (with probability 1
n
) choose one point z from the configuration

ζ(l) to be deleted,

• generate a new point y uniformly (with respect to the Lebesgue measure)
in W ,

• denote by ζnew the configuration ζnew =
(
ζ(l) \ {z}

)
∪ {y},

• accept the configuration ζnew to be ζ(l+1) if and only if

E (ϕ, ζnew) ≤ E
(
ϕ, ζ(l)

)
,

• otherwise we set ζ(l+1) = ζ(l).

Individual parts of each iteration step are executed independently and each itera-
tion step is independet on the previous steps. The run of the algorithm is stopped
when an exact number (apriori chosen) of iteration steps have been executed or
when the energy functional E

(
ϕ, ζ(l)

)
is small enough, i.e. smaller than some

constant ϵ > 0. It is also possible to stop the algorithm if the new configuration
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Figure 2.1: Illustration of an iteration step of the stochastic reconstruction algo-
rithm: we randomly choose one point (blue diamond), choosen point is deleted,
we generate a new point (red diamond) uniformly in the observation window, we
compute the enrgy functional for the possible new configuration (blue dimond
deletad and replaced by red one), if it is smaller than it was before (for the con-
figuration with blue diamond) the deleted point is replaced by the new one.

ζnew is not accepted for m times in a row, where m ∈ N. Illustration of an it-
eration step ot the stochastic reconstruction algorithm can be found in Figure 2.1.

In other words, in every iteration step of the stochastic reconstruction algorithm
we move one (randomly chosen) point of the current point configuration ζ(l)

to another place in the observation window W in order to get a new configuration
with lower energy E. We emphasise that outputs of the stochastic reconstruction
algorithm has always the same number of points as the input. The stopping
rule should be choosen so that every point of the initial configuration ζ(0) has
a chance to be moved several times.

From the description of the algorithm it is clear that it is in fact an optimization
problem. We want to minimize the energy functional E(ϕ, ζ) as a function
of the point configuration ζ, ϕ is fixed and represents the input of the algorithm,
i.e. the observed data. After a number of iteration steps we will end up in
a local minimum of E(ϕ, •) and the output will be a point configuration with
low energy. Examples of outputs of the stochastic reconstruction algorithm can
be seen in Figure 2.2. Note that during the run of the algorithm it is impossible
to leave the local minimum, because configurations with higher energy could not
be accepted. However, this is not a big limitation. Take t ∈ N. Suppose that
we want to obtain t reconstructions (i.e. outputs ot the algorithm) of the point
pattern ϕ. We will thus run the algorithm t times, each run will start from a dif-
ferent initial configuration ζ(0) (different realisation of a binomial point process)
and different runs may end up in different local minima. Evolution of values
of the energy functional during the run of the algorithm can be seen in Figure 2.3.

It is important to realize that E(ϕ, ϕ) = 0 and thus there exists at least one
global minimum, where the energy functional equals 0. Our aim is not to attain
this particular global minimum, because we do not want to get copies of the ob-
served point pattern. It is worth to remember that the stochastic reconstruction
approach aims to provides independent replicates of the data, i.e. independent
point patterns with low enrgy that come from various local (or possibly global,
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Figure 2.2: Illustration of the stochastic reconstruction approach (from left
to right): input of the algorithm (a realization of a planar Thomas point process
on the unit square), three different outputs (from three different runs of the al-
gorithm). Energy functional is based only on the pair correlation function.
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Figure 2.3: Values of the energy functional (based on pair correlation function)
during the run of algorithm. Input is the same as in Figure 2.2. We stop the run
if the new configuration is not accepted for 100 times in a row. Left picture
corresponds to the first output in Figure 2.2, 1423 iterations were executed. Right
picture corresponds to the third output in Figure 2.2 and 2022 interation were
executed.

but different from ϕ) minima of E(ϕ, •). Another key point is that the use of
this method does not require any explicit assumptions on the theoretical model
for observed data. We work only with estimates of selected summary characteris-
tics which depend on the observation window W and the edge correction method.

As we have seen in the previous paragraphs the crucial part of the stochastic
reconstruction algorithm is the energy functional. Thus we should pay atten-
tion to the choice of summary characteristics used in the equation (2.1). We
have already said that the choice should be based on our information about
the data, but it is important to realize that some characteristics may contain
more information about the data than others. For example, it is known that
the K-function (and hence also the L-function) does not determine the distribu-
tion of a point process. In other words, there exist a number of point processes
with different distributions and the same K-function, see Baddeley and Silver-
man [1984]. Therefore there could be a large variability among the results of the
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reconstruction algorithm with the energy functional based only on L-function.
In Tscheschel and Stoyan [2006] the authors suggest to use a combination of
the k-th nearest-neighbour distance distribution functions instead. It is known
that there is a relationship between K-function and the k-th nearest-neighbour
distance distribution functions Dk. If we have a stationary point process with
intensity κ, then

κK(r) =
∞∑

k=1
Dk(r), r > 0,

see Section 4.3.1 in Illian et al. [2004]. Thus the sequence of all functions Dk

contains more information then the K or L-function.

At the begining of this chapter we have mentioned that the outputs of stochastic
reconstruction algorithm may be used instead of simulations when performing
simulation-based tests. Equally important is the use of simulations when explor-
ing the sampling variation of estimated summary characteristics. In this context,
simulations can be also replaced by the stochastic reconstruction approach in or-
der to construct confidence interval and bands for estimates of various summary
charracteristics, even though this application does not appear in the literature.
Moreover, Tscheschel and Stoyan [2006] suggest to use the algorithm for con-
structing neighbours of points lying close to the edges of the observation window.
This idea leads to the procedure that Tseschel and Stoyan call conditional sim-
ulation - positions of points in some region are fixed while points in the other
regions have to be reconstructed. In this text conditional simulation will be
called conditional reconstruction. We will list some examples of the practical use
of the stochastic reconstruction method in the next section.

2.2 Examples of use of the stochastic recon-
struction method

Nowadays the method of stochastic reconstuction is of particular interest in biolo-
gy and ecology. Note that references to the paper Tscheschel and Stoyan [2006]
can be found in many specialized articles and only few of them will be cited in
the next subsections.

2.2.1 Testing statistical hypotheses
We have already encountered the first example in the Introduction when testing
the independence of populations of two related species of trees in Barro Colorado
Island. This experiment is inspired by the paper Getzin et. al. [2014], where
authors are interested in testing independence of locations of adult and recruit
trees. Another example of use of the stochastic reconstruction algorithm when
testing independence of two point patterns can be found in Mundo et al. [2013].

The hypothesis of independence of two point pattern is a typical example of hy-
pothesis that is not specific enough to enable simulations. Another example
could be the isotropy hypothesis. Wong and Chiu [2016] introduce a model-
free isotropy test based on stochastic reconstruction approach. They affirm that
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the null distribution of the test statistic is approximated by the empirical dis-
tribution obtained from bootstrap-type samples, i.e. outputs of the stochastic
reconstruction algorithm. To ensure that the reconstructions correspond to real-
isations of an isotropic point process, only characteristics which do not take into
account any directional properties are used in the energy functional.

2.2.2 Quasi-plus sampling edge correction method
Last example we would like to mention is the employment of the conditional recon-
struction when dealing with edge effects. Tscheschel and Chiu [2008] introduce
the quasi-plus samping edge correction method based on conditional reconstruc-
tion (we are able to reconstruct positions of points lying outside the observation
window W conditioned on the points lying in W ) and they compare it with other
edge correction methods. The idea of conditional reconstruction outside the ob-
servation widnow is also used in applied papers concernig forest ecosystems mon-
itoring. For more detail see Pommerening and Stoyan [2008] and Lilleleht et al.
[2014].

28



3. Stochastic reconstruction of
inhomogeneous point patterns
So far we have given a brief introduction to the theory of spatial point processes
and point pattern analysis. Also, we have introduced stochastic reconstruction,
an algorithmic procedure which can be used to provide independent replicates
of point process data. In Chapter 2 we have supposed that we observe a re-
alisation of some stationary point process on a bounded observation window.
Main aim of this work is to discuss the possibility of extension of the stochastic
reconstruction algorithm to the situation when we observe a realisation of an in-
homogeneous point process. In this chapter we consider only point processes
whose intensity function exists and it is a non-constant function.

Note that this text is not the first work concerning stochastic reconstruction
for point processes with non-constant intensity function. In the paper Wiegand et
al. [2013] authors modify the algorithm described in Section 2.1 in the following
way:

• initial configuration ζ(0) is a realisation of an inhomogeneous binomial
point process (with probability measure ν whose density with respect to
the Lebesgue measure is proportional to the estimated intensity function
of the observed point pattern),

• new point y in the configuration ζnew is also generated from the probability
distribution ν.

We will show that these two modifications are not sufficient to produce recon-
structions which actually correspond to the observed point pattern. Moreover,
we will show that the main problem is the intensity function. We will also suggest
a solution to this problem and we will discuss how efficient it is for different point
process models (clustered, Poisson and regular).

3.1 The algorithm
Let us suppose that we observe a point pattern ϕ on a bounded observation
window W ∈ Bd

0, 0 < |W | < ∞. We assume that ϕ is a realisation of a spatial
point process Φ with non-constant intensity function λ. Let us denote by λ̂ϕ the
estimate (based on ϕ) of λ on W .

As we have mentioned in the second paragraph of this chapter, there are some ob-
vious modifications of the stochastic reconstruction algorithm for inhomogeneous
point patterns. Let νϕ be a probability measure on W given by

νϕ(A) =
∫

A

1
CW,λ

λ̂ϕ(x) dx, A ∈ Bd, A ⊆ W,

where
CW,λ =

∫
W
λ̂ϕ(x) dx
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is the normalising constant.

Remark. The intensity function λ is estimated in such a way that CW,λ < ∞ for
arbitrary ϕ.
Suppose that N (ϕ ∩W ) = n ∈ N. Then the initial step ζ(0) of the algo-
rithm from Section 2.1 is now a realisation of a binomial point process on W
with n points and the measure νϕ. It means that points of ζ(0) are realisations
of n independent random elements with probability distribution νϕ. Suppose that
after l iteration steps we have obtained point configuration ζ(l) with n points.
In the iteration step number l + 1 we:

• randomly (with probability 1
n
) choose one point z from the configuration

ζ(l) to be deleted,

• generate a new point y in W from the probability distribution νϕ,

• denote by ζnew the configuration ζnew =
(
ζ(l) \ {z}

)
∪ {y},

• accept the configuration ζnew to be ζ(l+1) if and only if

E (ϕ, ζnew) ≤ E
(
ϕ, ζ(l)

)
,

• otherwise we set ζ(l+1) = ζ(l).

We emphasise that these two modifications are exactly the same as in Wiegand
et al. [2013]. In the next sections we will show that we have to do more if we
want to obtain “reasonable” results. What the word reasnable means will be
explained in Section 3.2. For now let us say that these two modifications do not
ensure that the estimated intensity function of reconstructions corresponds to
the estimated intensity function of the observed point pattern. This algorithm
will be sometimes refered to as the improvement-only algortihm.

Now we would like to discuss which summary characteristics are available for
the energy functional E. First characteristic that we have in mind when talking
about interactions among points of a process is the pair correlation function.
Let us thus suppose that for the point process Φ the pair correlation function
exists. If we moreover assume that it is translation invariant, we obtain that
Φ is a SOIRS point process and we can use the inhomogeneous L-function.
In the paper van Lieshout [2010] a definion of J-function for SOIRS point
processes is given, but we are not going to use it. The main reason is that
the interpretation of J function for SOIRS point processes is very complicated
(in contrast to the stationary case) and our experiments with this characteristic
in the software R showed that the variability of its estimator is too large and
thus it is not a suitable characteristic when we want to describe precisely
the properties of the observed point pattern that should be preserved during
the reconstruction. So next to the inhomogeneous initial configuration and
non-uniform distribution of the proposed points we may improve the algorithm
by using inhomogeneous pair correlation function and inhomogeneous L-function.
Recall that the estimators of these two characteristics take into account the
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non-constant intensity function of the investigated point pattern. We emphasise
that (until the end of this text) every time we speak about the pair correlation
function and the L-function we mean their inhomogeneous counterparts (even if
we do not say the word inhomogeneous explicitly).

When working with point process data, it is never guaranteed that the data
comes from a model satisfying the SOIRS condition. We are convinced that it is
useful to use the inhomogeneous pair correlation function and the inhomogeneous
L-function even if the SOIRS property is not guaranteed. In such situations we
use these characeristics as empirical and we do not give them the theoretical
interpretation from Section 1.3. But they are still useful because they contain
information about pairs of points of the observed point pattern with a special
property (e.g. pairs of points that are closer together than some distance r > 0
for L-function) and moreover the influence of the non-constant intensity function
is taken into account.

Recall that in Section 1.3 we have defined the nearest-neighbour distance
distribution function D and the spherical contact distribution function F for
stationary point processes. In the Section 2.1 we have mentioned that in the
stationary context Tscheschel and Stoyan [2006] suggest to use a combination
of the k-th nearest-neighbour distance distribution functions Dk in the energy
functional. The main question is whether it makes sense to use these distribution
functions when working with inhomogeneous point processes.

When dealing with inhomogeneous point patterns we will use the empirical
distribution function of distances to the k-th nearest neighbour D̂k and the dis-
tribution function of the distances from a set of fixed points in the observation
window W to the k-th nearest point of the process F̂k. In the stationary context,
D̂k is the empirical estimator of Dk. In the inhomogeneous case we use D̂k

only as a useful empirical characteristic without claiming that it is an estimator
of some theoretical characteristic. The same for F̂k.

However, we think that it is still useful to work with such empirical characteristics
because they can contain detailed information about the sructure (geometry)
of observed point pattern. Additionally, if we combine only the empirical
distribution functions in the energy functional, the choice of weights is very
natural (every empirical distribution function will get the same weight). Thus
the weights can be chosen before running the algorithm (if we want to combine
the L-function or the pair correlation function with other characteristics we
have to choose the weights experimentally). On the other hand we should not
forget that they do not take into account the non-constant intensity function.
In the papers van Lieshout and Baddeley [1996], Baddeley et al. [2000] and van
Lieshout [2010] we can find inhomogeneous counterparts of the sperical contact
distribution function F and the nearest-neighbour distance distribution function
D. We do not use these characteristics because it is not obvious if they can be
generalised for k > 1 and we do not wan to treat D̂k and F̂k differently for k = 1
and k > 1.
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To estimate selected characteristics mentioned above we use the estimates given
in Section 1.4. For D̂k and F̂k we use so-called raw estimates, i.e. we do not use
any edge correction. If we use some of the classical edge correction methods,
some properties of the empirical distribution function (e.g. the monotonicity
or maximal value equal to 1) can be violated, see Section 4.2.6 in Illian et
al. [2004]. Using uncorrected estimator does not cause any trouble since
the observation window does not change during the run of the algorithm. Size
and shape of the observation window have impact on the values of the raw
estimates, it means that raw estimates of the same process computed on different
observation windows may actually differ a lot. For this reason we should use
the edge correction if we want to perform the conditional reconstruction. Note
that the conditional reconstruction outside the observation window W is not
possible (at least without additional assumptions on the intensity function)
in the inhomogenous context since we do not have the information about
the intensity function outside the observation window.

In the simulation studies, we will consider 8 different versions of the energy fun-
tional:

E1(ϕ, ζ) =
∫ R(L)

0

[
L̂(ϕ, r) − L̂(ζ, r)

]2
dr,

E2(ϕ, ζ) =
∫ R(g)

0
[ĝ(ϕ, r) − ĝ(ζ, r)]2 dr,

E3(ϕ, ζ) =
5∑

k=1

(∫ R(Fk)

0

[
F̂k (ϕ, r) − F̂k (ζ, r)

]2
dr
)
,

E4(ϕ, ζ) =
20∑

k=1

(∫ R(Fk)

0

[
F̂k (ϕ, r) − F̂k (ζ, r)

]2
dr
)
,

E5(ϕ, ζ) =
5∑

k=1

(∫ R(Dk)

0

[
D̂k (ϕ, r) − D̂k (ζ, r)

]2
dr
)
,

E6(ϕ, ζ) =
20∑

k=1

(∫ R(Dk)

0

[
D̂k (ϕ, r) − D̂k (ζ, r)

]2
dr
)
,

E7(ϕ, ζ) =
5∑

k=1

(∫ R(Fk)

0

[
F̂k (ϕ, r) − F̂k (ζ, r)

]2
dr
)

+

+
5∑

j=1

(∫ R(Dj)

0

[
D̂j (ϕ, r) − D̂j (ζ, r)

]2
dr
)
,

E8(ϕ, ζ) =
20∑

k=1

(∫ R(Fk)

0

[
F̂k (ϕ, r) − F̂k (ζ, r)

]2
dr
)

+

+
20∑

j=1

(∫ R(Dj)

0

[
D̂j (ϕ, r) − D̂j (ζ, r)

]2
dr
)
.

In the functionals E3 - E8 we have put all of the weights equal to 1. It is because
we want to combine the empirical distribution functions which take values in [0, 1].
If we give to each function the weight 1, each of them will contribute to the final
sum by values on the same scale. Note that the assumption of the existence of
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the pair correlation function which is moreover translation invariant is not needed
when using variants 3 - 8. For each energy functional the algorithm is stopped
if we do not accept the new configuration for 100 times in a row. We emphisize
that we do not want to give here any strong recommendation about the choice
of characteristics (and their weights) to be combine in the energy functional.
Actually, we aim to illustrate the the advantages and disadvantages of use of the
stochastic reconstruction method.

3.2 Quality of the reconstructions
Recall that we observe a point pattern ϕ on a bounded observation window W .
We assume that ϕ is a realisation of a point process Φ for which the intensity
function exists and it is a non-constant function. Suppose that we are able
to simulate from the distribution of Φ. If we want to use the stochastic
reconstruction algorithm, we shoud show that it gives “reasonable” results.
If the input ϕ is a realisation of a particular theoretical model Φ, we want
the reconstructions (i.e. the outputs of the algorithm) to correspond to the data
and thus to the theoretical model Φ. By this we mean that a simulation based
test will not reject the outputs too often. In the next paragraphs we will discuss
what kind of simulation-based test will be used.

We will first describe the accumulated persistence function introduced in Biscio
and Møller [2017]. This functional characteristic aims to describe geometrical
structure of a point pattern by studying topological properties of the union of
discs centered at the observed points.

Suppose now that N (ϕ ∩W ) = n ∈ N, i.e. ϕ is a configuration of n points in W .
Thus we can write ϕ = {x1, x2, . . . , xn}. Let Ci

r be a disc centered at point xi with
radius r ≥ 0, i = 1, 2, . . . , n. Denote Cr =

n⋃
i=1
Ci

r the union of discs with radius
r centered at points of ϕ. We are interested in how the s-dimensional topological
features of Cr vary for different values of parameter r and for s = 1, 2, . . . , d− 1.
Thus in case of planar point patterns it is only relevant to take s = 0 and s = 1.
If s = 0 we focus on how connected components of the union Cr are changing
when the parameter r is growing. If s = 1 the 1-dimensional holes (loops) are
of particular interest. Figure 3.1 shows Cr for a realisation of a planar Thomas
point process on unit square (with the intensity of the underlying Poisson process
equal to 40 and the mean number of points per cluster equal to 6) and for three
different values of the parameter r. We will denote the accumulated persistence
function computed for a point patter ϕ by

APFs(ϕ,m), m > 0, s = 1, 2, . . . , d− 1.

For more details and the general definiton see Appendix A.1 and Biscio and
Møller [2017]. Note that the accumulated persistence function is again only
an empirical characteristic and we do not give it any theoretical meaning.

Now we aim to test the null hypothesis HAP F . Suppose that we have a point
pattern ϕ which is a realisation of a point process Φ. We want ϕ to be recon-
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Figure 3.1: A union of discs centered at points of a realisation of planar
Thomas point process for r0 (left), r1 (middle) and r2 (right), where 0 = r0
and r0 < r1 < r2 < rmax.

structed. Let us denote as ξ the reconstruction, i.e. the output of the stochastic
reconstruction with ϕ as input. We should realize that ξ is a random object
(if we run the algorithm with the same input several times we will obtain different
outputs). By APFs(ξ,m),m > 0, s = 0, 1, we denote the accumulated persis-
tence function computed for ξ. In Section 3.3 we will work only with planar point
processes and thus we consider only s = 0 and s = 1. Since ξ is a random object,
APFs(ξ,m) is a random function and therefore it has a distribution. Similarly,
APFs(Φ,m),m > 0, s = 1, 2, denotes the accumulated persistence function com-
puted for the point process Φ. Again, APFs(Φ,m) is a random object and thus
it has a distribution. It is important to distinguish between APFs(Φ,m) which
is a random function and APFs(ϕ,m) (computed for the concrete realisation ϕ
of Φ) which is a deterministic object. We aim to test the hypothesis

HAP F : APFs(ξ,m), m > 0, s = 0, 1, has the same distribution as
APFs(Φ,m), m > 0, s = 0, 1.

Since we do not know the distribution of APFs(•,m), m > 0, s = 0, 1 under
the null hypothesis, a simulation-based test will be used. Let us now explain the
basic principle of such tests.

Suppose we want to test the hypothesis that an observed point pattern corre-
sponds to a given model. Assume we have a suitable test statistic S and its
estimate for the observed pattern Ŝ. First we generate N independent simu-
lations from the given model and for each simulation we estimate S. Hence we
obtain Ŝ1, Ŝ2, . . . , ŜN . Now we rank the estimates from the smallest to the largest.
We get an ordered sample Ŝ(1) ≤ Ŝ(2) ≤ · · · ≤ Ŝ(N). If the observed pattern cor-
responds to the null model we have that Ŝ, Ŝ1, Ŝ2, . . . , ŜN are independent and
identically distributed. By symmetry, every ranking has the same probability and
therefore the probability that Ŝ is smaller than Ŝ(q), q ∈ {1, 2, . . . , N}, equals

q
N+1 . Suppose that we want to test the null hypothesis on the significance level
α. Then we find q in such a way that

α = 2q
N + 1 .

If α is a rational number, we can always choose such N for which we are able
to compute q. The null hypothesis (observed pattern corresponds to the null
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Figure 3.2: Left to right: the accumulated persistence function with s = 0 (conne-
cted components) for the point pattern from Figure 3.1, the accumulated per-
sistence function with s = 0 for 2499 simulations from the theoretical model
(Thomas point process with the intensity of the underlying Poisson point process
equal to 40 and the mean number of points per cluster equal to 6), black curve
is for the observed pattern from Figure 3.1, global rank envelope based on these
2499 simulations, red dashed curve is for the observed pattern from Figure 3.1.

model) is then rejected if Ŝ /∈
[
Ŝ(q), Ŝ(N−q+1)

]
. We will refer to this type of test

as the pointwise Monte Carlo test. Note that we have just described a two-sided
test. Modification to one-sided test is obvious: q is found in such a way that
α = q

N+1 and the null hypothesis is rejected if Ŝ < Ŝ(q) (or Ŝ > Ŝ(N−q+1)).

Note that the test statistic S in the pointwise Monte Carlo test is a single
number. But the accumulated persistance function is a function. We could test
the hypothesis HAP F using the accumulated persistence function for a particular
value of s and m, but we do not have any prior information how to choose these
parameters. Hence we would like to use another approach. Suppose now that
the test statistic S from the last paragraph is now a function, i.e. we consider
S(r) on an interval [rmin, rmax], where 0 < rmin < rmax are prescribed real
constants. Again Ŝ(r) denotes the estimate of S(r) for the observed pattern
and by Ŝ1(r), Ŝ2(r), . . . , ŜN(r) we denote estimates based on the simulations
from null model. Now for each value of r we are able to estimate Ŝ(q)(r)
and Ŝ(N−q+1)(r). If we join the values Ŝ(q)(r), r ∈ [rmin, rmax] we obtain so-called
lower envelope and by joining Ŝ(N−q+1)(r), r ∈ [rmin, rmax] we get the upper
envelope. This approach results in pointwise envelopes which can be used
for visualizing deviations from the null hypothesis. However, pointwise envelopes
should not be used to perform statistical tests because they do not take into
account the problem of multiple testing.

We will use the global rank envelope test described in Myllymäki et al. [2017]
instead. This approach gives us the recipe how to rank the observed and simulated
functional statistics in order to use the basic principle of Monte-Carlo testing
described above. It means that we give a rank Ri to each functional statistics
Ŝi(r), i = 0, 1, . . . , N , where by Ŝ0(r) we mean the data curve. It may happend
that the same rank is assigned to several functional statistics Ŝi(r). For this
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reason we compute the most liberal and the most conservative p-value as follows

p− = 1
N + 1

N∑
i=0

1 {Ri < R0} and p+ = 1
N + 1

N∑
i=0

1 {Ri ≤ R0} .

These values provide the lower and upper bounds for the p-value of the test.
Also this approach allows to display test results in a graphical manner - based
on the simulated functional statistics we are able to draw the global envlope.
We reject the null hypothesis if the data curve leaves the envelope anywhere.
This is equivalent with the situation that p+ ≤ α. If the data curve is fully
contained inside the enelope, the hypothesis is not rejected. This is equivalent
with p− > α. If the data curve does not leave the envelope but coincides with
the bounds of the envelope it is equivalent with p− ≤ α < p+. In this situation it
is not clear if we should reject the null hypothesis or not. To make this situation
unlikely, the expected width of the p-interval should be small. Myllymäki et al.
[2017] claims that using N = 2499 (at least) leads to the reasonable small wiidth
of the p-interval.

In Figure 3.2 we can see the accumulated persistence function for s = 0 and
the point pattern from Figure 3.1 (left) and the same for 2499 simulations
from the null model (Thomas point process with the intensity of the underlying
Poisson process equal to 40 and the mean number of points per cluster equal to
6) and the global rank envelope based on the 2499 simulations (right).

Since we suppose that the observed point pattern ϕ comes from the theoreti-
cal model Φ with a non-constant intensity function λ, we should also control
whether the intensity function of the output ξ corresponds to λ. Let us equip
the observation window W with a pixel grid V with vertices v. Consider a test
statistic

D(ξ) =
∑
v∈V

a(v)
[
λ(v) − λ̂ξ(v)

]2
.

By the symbol λ̂ξ we meant the estimated intensity function of the output ξ.
Since ξ is a random object, λ̂ξ is random function and for different realisations of
ξ it will take different values. Similarly, by D(Φ) we denote the test statistic D
computed for the null model Φ. We aim to test the hypothesis

Hλ : D(ξ) has the same distribution as D(Φ).

Suppose again that we have generated N simulations from the null model. We
compute the test statistics

Di =
∑
v∈V

a(v)
[
λ(v) − λ̂i(v)

]2
, i = 1, 2, . . . , N,

where λ̂i is the estimated intensity function computed for the i-th simulation
on the observation window W . By the symbol a(v) we mean that we multiply
the summands by the area of one pixel. In the same way we compute the value
of D for one particular reconstruction of ϕ (i.e. one particular realisation of ξ).
Again we can rank the quantities D1, D2, . . . , DN from the smallest to the largest.
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The null hypothesis Hλ is rejected if D > D(N−q+1), where q is chosen accordingly
to the required significance level. We will refer to this test as the deviation test.
Note that this test is one-sided and the p-value is computed as

p = 1 − 1
N + 1

N∑
i=1

1 {D > Di} ,

see Loosmore and Ford [2006].

We emphasise that statistical test used for thesting the hypothesis HAP F will be
always refered to as the global rank envelope test. Similarly, the test used for
thesting the hypothesis Hλ will be always refered to as the deviation test. Note
that we are able to perform these tests since we are investigating the properties
of the stochastic reconstruction algorithm in an controled experiment. On the
other hand, in practical applications we are not able to perform such tests.

3.3 Simulation study
In this section we will describe the simulation study we made in order to
compare the quality of outputs of the stochastic reconstruction algorithm based
on the 8 different energy functionals described in Section 3.1.

As the theoretical model Φ we will take the thinned Thomas point process,
inhomogeneous Poisson process and the transformed Matérn hard-core process
of type II respectively. Parameters of these models will be chosen in such a way
that all of these three models will have the same intensity function. We have
chosen the thinned Thomas process as a typical example of clustered processes
that are of particular interest in ecological applications. In spatial statistics
Poisson point process often serves as a benchmark to whom we compare other
processes. For this reason we have included the inhomogeneous Poisson point
process in the simulation study. Transformed Matérn hard-core process was
chosen as an example of regular processes. Even though we have not found in
literature an application of use of the stochastic reconstruction algorithm on
regular data, we want to investigate the properties of the algorithm under these
circumstances.

In the simulation study we will consider only planar point patterns and the ob-
servation window W will be always the unit square. We emphasise that for all
computations we use the software R (version 3.4.3) with packages spatstat
(version 1.55-0), TDA (version 1.6) and GET (version 0.1). The code for evaluation
the accumulated persistence function is not included in any of these packages
but it can be found on http://people.math.aau.dk/˜christophe/.

Let us now make few remarks about the implementation of the stochastic
reconstruction algorithm or more precisely the energy functionals from Section
3.1. The estimates of functional characteristics are computed for a finite number
of values of r. Hence the integrals are for simplicity of the implementation
considered as sums. The constants R(L) and R(g) are set to be 0.2. We have
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followed the common recommendation which says that we should not compute
the estimtes of L and g for r bigger than one fourth of the shorter side
of the observation window (which is [0, 1]2). For the empirical distribution
functions F̂k and D̂k we have run some experiments and we have decided to put
R(Fk) = R(Dk) = 0.3 if we work with k = 1, 2, . . . , 5 and R(Fk) = R(Dk) = 0.4
if we work with k = 1, 2, . . . , 20. We use the stopping rule mentioned in Section
3.1 – the algorithm is stopped if we do not accept the new configuration for 100
times in a row.

The aim of this work is not to find “the best” energy functional for some
particular observed point pattern. We try to describe the difficulties related
with the modification of the algorithm for inhomogeneous point patterns and
to suggest some solutions to these problems. For these reasons we do not want
to discuss here the choice of all possible parameters when computing estimates
of the functional characteristics in the software R. Let us just mention that the
estimates of the intensity function are computed using the spatstat function
density.ppp with default choice of parameters (Gaussian kernel). Estimates
of the pair correlation function are computed using the spatstat function
pcfinhom with the default choice of parameters (Epanechnikov kernel) except
the parameter divisor which is set to “d”. For more details see Chapter
II, Section 7 in Baddeley et al. [2015]. Edge corrections were specified in
Section 1.4. Illustration of the implementation of the stochastic reconstruction
algorithm can be found in Appendix A.6.

The global rank envelope test and also the deviation test will be performed
on the significance level α = 0.05 and they will be based on 2499 simulations
from the null model. We emphasise that for the global rank envelope test we
use the conservative test – we reject the null hypothesis if the upper bound of
the p-interval p+ is less than or equal to α. For the 2499 simulations the typical
width of the p-interval in our experiments is about 0.02.

3.3.1 Reconstructing thinned Thomas process
In this section we will investigate quality of stochastic reconstruction for thinned
Thomas process. We have stated the definition of Thomas point process in Def-
inition 13 in Section 1.2. Now we will define independent thinning – a point
process operation when we independently delete certain points of the process.

Definition 25. Let f : Rd −→ [0, 1] be a measurable function. Let Φthin be a clus-
ter point process with independent clusters. If for all x ∈ Rd we have

Θx =
{

{x} with propability f(x),
∅ with probability 1 − f(x),

then we call Φthin the independent thinning of the parent point process Φp.

Remark. We can set Φthin = {X ∈ Φp : R (X) ≤ p (X)}, where
{
R(x) : x ∈ Rd

}
is a collection of random variables with the uniform distribution on [0, 1] which
are mutually independent and independent of Φp.
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60 100 160

Figure 3.3: Three different realisation of ΦT,thin on the unit square. For detailed
description see Definition 25 and the main text below it. The leftmost picture
shows the values of the intensity function λ of ΦT,thin on the unit square.

If we apply the independent thinning given by the function f to a stationary point
process with intensity τ we obtain a second-order intenrity reweighted stationary
point process with intensity function λ given by

λ(x) = τf(x), x ∈ Rd,

see Section 6.2.1 in Illian et al. [2004] and Baddeley et al. [2000].

Now let ΦT be a stationary planar Thomas point process with the intensity
of the underlying Poisson point process κ = 40 and the expected number of points
per cluster γ = 6. As we have mentioned in Section 1.2, ΦT has the intensity
τ = γκ = 240. In order to get our first theoretical model ΦT,thin we will apply
the independent thinning given by the function

fthin(x, y) = min
{
Ke−Ax, 1

}
, (x, y) ∈ R2,

where K ≈ 0.986 and A = 1.3, on ΦT . Choice of such constants will be clarified
in Subsection 3.3.3. Note that the function fthin will be used only on the
observation window W = [0, 1]2. Together with the fact that K < 1 we obtain
that the term Ke−Ax is less than 1 for all (x, y) ∈ [0, 1]2. We emphasize that
ΦT,thin is a second-order reweighted stationary point process, see page 331 in
Baddeley et al. [2000].

The intensity function of ΦT,thin is then given by

λ(x, y) = 240fthin(x, y), (x, y) ∈ R2. (3.1)

Values of the intensity function λ on the unit square can be seen in Figute
3.3 as well as three different realisations of ΦT,thin on the unit square. Each
realisation has about 120 points. Usually, the stochastic reconstruction algorithm
stops after 1500 or 2000 iterations, hence each point of the initial configuration
has a chance to be moved approximately 10 or more times.

To investigate the quality of stochastic reconstruction for ΦT,thin we generate
15 different realisations of ΦT,thin on the observation window W = [0, 1]2.

39



Energy functional Summary characteristics
E1 inhomogeneous L-function
E2 inhomogeneous pair correlation function
E3 F̂1 up to F̂5
E4 F̂1 up to F̂20

E5 D̂1 up to D̂5

E6 D̂1 up to D̂20

E7 F̂1 up to F̂5 and D̂1 up to D̂5

E8 F̂1 up to F̂20 and D̂1 up to D̂20

Table 3.1: Reminder of the 8 energy functionals used in the simulation study.
More details can be found is Section 3.1.

We have then 15 different inputs for the stochastic reconstruction algorithm. For
each of these inputs we will generate 20 reconstructions for each of the energy
functionals E1 to E8. Hence for each energy functional we obtain 300 reconstruc-
tions. We aim to compare how many of these 300 reconstructions correspond,
for each energy functional, to the null model ΦT,thin. To achieve this we will use
the two statistical tests described in Section 3.2.

First we will test the null hypothesis HAP F . Recall that we have generated 2499
simulations from the model ΦT,thin for which we have computed the accumulated
persistence function (for both s = 0 and s = 1, it is possible to construct
the envelope from two different curves concatenated into one long curve). Based
on these curves we have constructed the envelope. This particular envelope will
be used for all of the 300 tests performed. For each of the energy functionals
we will check how many of the 300 curves computed from the reconstructions
leave the envelope. The significance level α is 0.05, thus we expect to see
about 5% of the 300 reconstructions rejected. Results are briefly summarized in
Table 3.2, detailed version can be found in Appendix A.2. Reminder of the 8
energy functionals that we are using can be found in Table 3.1.

Before testing the reconstructions, we have first tested the 15 inputs to see how
extreme they are with respect to the distribution under the null hypothesis
HAP F . We have discovered that 3 of the 15 outputs can be qualified as extreme,
i.e. the upper bound of the p-interval given by the global rank envelope test
is 0.05, 0.05 and 0.091 respectively. See Table A.2 in Appendix A.2.

For E1 and E2 we reject more than one half of the 300 reconstructions (see Table
3.2). It seems that the L-function (E1) and the pair correlation function (E2)
do not contain enough information about the structure (interactions and/or
the intensity function) of the investigated patterns. For L-function this result
corresponds to the conclusion made in Tscheschel and Stoyan [2006]. Even
though Wiegand et al. [2013] claim that the pair correlation function contains
the most information about a point pattern (comparing with the other character-
istics listed in Section 1.3), the stochastic reconstruction algorithm described in
Section 3.1 with the energy functional based only on the pair correlation function
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Percentage Mean SD
E1 56% 11.2 5.92
E2 68% 13.5 5.21
E3 25% 5.00 5.06
E4 77% 15.4 4.00
E5 25% 4.93 6.70
E6 16% 3.20 4.16
E7 6% 1.27 2.25
E8 13% 2.60 3.36

Percentage Mean SD
E ′

1 55% 11.0 5.59
E ′

2 40% 7.93 4.76
E ′

3 62% 12.4 4.44
E ′

4 96% 19.3 1.22
E ′

5 7% 1.47 2.92
E ′

6 23% 4.53 5.33
E ′

7 7% 1.40 2.29
E ′

8 23% 4.53 5.59

Table 3.2: Testing the hypothesis HAP F . Three different entries are given: per-
centage of the overall rejected reconstructions, mean number of rejected outputs
(per one input) and the standard deviation of the number of rejected outputs
(per one input). Left table corresponds to the 8 energy functionals described
in Section 3.1, right table corresponds to the situation when we add the term F̂λ

to each of the energy functionals.

(E2) does not provide reasonable reconstructions in the sense of the quality
criterion we use. Wiegand et al. [2013] also encourage to use more than one
summary characteristic.

For E3 and E5 we reject one fourth of the outputs. If we use E6 instead of E5
(i.e. we increase the number k of considered nearest neighbours from 5 to 20)
the number of rejected outputs decreases a little (see Table 3.2). This observation
corresponds to Tscheschel and Stoyan [2006] where the authors (in the stationary
context) suggest using the combination of D1, D2 up to D41. On the other hand
if we move from E3 to E4 we suddenly reject three times more reconstructions
than before. The functional E7 which combines both types of the characteristics
based on interpoint distances gives so far the the best results, we reject only
6% of reconstructions. If we add more terms, i.e. we use the functional E8 we
obtain slightly more rejections. Since we are trying to reconstruct clustered point
patterns, it is useful to work with the empirical distribution functions D̂k and
F̂k because they can describe the geometry of clusters properly. The number k
(i.e. the number of considered nearest neighbours or nearest points of the pattern
respectively) shoud be big enough to cover almost all points (or at least a major
part of points) in a cluster. In our case k = 5 seems to be enough. If we increase
k it may happend that the terms with high k no longer describes the geometry
of one cluster but they are describing the distances among different clusters.
In our model ΦT,thin the clusters are mutually independent and thus there is
no reason to try to reproduce distances among clusters that we have observed
for the input. For that reason the functionals E4, E6 and E8 may become less
informative and they may give worse results than E3, E5 and E7 respectively.

It seems that (except E4) the energy functionals based on interpoint distance
characteristics work in this case better than functionals based on L or g.
Moreover, energy functional E7 gives in the context of the APF reasonable
result and it seem that no more modifications are needed. Examples of outputs
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Figure 3.4: Input (on the left, same for all the rows) and three different outputs
of the stochastic reconstruction algorithm based on the energy functional E1
(first row), E2 (second row), E5 (third row) and E7 (last row). Functionals E1
and E2 do not contain enough information about the point pattern to reproduce
successfully the size and the shape of clusters. In contrary, for E5 and E7 the
structure of clusters of the outputs corresponds more or less to the structure
observed for the input. Note that in this moment we say nothing about the
intensity function.

of the stochastic reconstruction algorithm based on E1, E2, E5 and E7 can
be seen in Figure 3.4. We have chosen the functionals E1 and E2 for which
we reject more than one half of the outputs and the functionals E5 (one
fourth of the rejected outputs) and E7 (best results) in order to illustrate the
differences between the quality of the reconstructions. Since the APF describes
the geometrical structure of a point pattern (e.g. the shape and size of clusters),
there should be a visible difference between the outputs based on E1 and E7.
Indeed, in Figure 3.4 it can be seen that for the L-function (E1) or the pair
correlation (E2) the structure of clusters of the outputs does not correspond
to the structure we have observed for the input. in contrast, for E5 and E7
the shape and the size of clusters is reproduced in the right way. However, in
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Percentage Mean SD
E1 22% 4.33 5.97
E2 39% 7.73 7.26
E3 27% 5.33 7.86
E4 20% 4.07 7.23
E5 65% 13.0 7.46
E6 27% 5.33 8.11
E7 33% 6.53 8.83
E8 18% 3.60 7.18

Percentage Mean SD
E ′

1 7% 1.47 4.91
E ′

2 9% 1.87 5.19
E ′

3 14% 2.73 5.81
E ′

4 17% 3.47 6.66
E ′

5 15% 3.00 6.33
E ′

6 12% 2.33 5.70
E ′

7 14% 2.87 5.90
E ′

8 13% 2.60 5.79

Table 3.3: Testing the hypothesis Hλ. Three different entries are given: percent-
age of the overall rejected reconstructions, mean number of rejected outputs (per
one input) and the standard deviation of the number of rejected outputs (per one
input). Left table corresponds to the 8 energy functionals described in Section
3.1, right table corresponds to the situation when we add the term F̂λ to each
of the energy functionals.

this moment we say nothing about the intensity function. We must check also
results of the second test.

We will now test the hypothesis Hλ. Again, before testing the reconstructions,
we will first consider the extremeness of the inputs. This time, 4 of the 15 inputs
can be qualified as extreme, i.e. the p-values given by the deviation test are
0.058, 0.085, 0.090 and 0.027. Detailed results of the deviation test can be found
in Table A.2 in Appendix A.2.

After testing the inputs, we can start with testing the reconstructions. Re-
sults are briefly summarized in Table 3.3, detailed version can be found in
Appendix A.2. For the pair correlation function (E2) we reject almost two
times more outputs than for the L-function (E1). If we compare the estimators
(1.3) for L-function and (1.2) for the pair correlation function we can see that
the non-constant intensity function is treated similarly in both of them. It may
be interesting to examine if the choice of the bandwidth b of the kernel funtion ub

in the estimator of the pair correlation function (function pcfinhom in spatstat)
influences the number of rejected outputs. But in this text we do not perform
such experiments. For the L-function (E1) the major part of the rejected outputs
corresponds to the 4 extreme inputs. For the pair correlation function (E2) also
the non-extreme inputs cause many rejections, see Table A.2 in Appendix A.2.

Using E3 and E4 we reject about one fourth of the 300 outputs. At the same time
we rejcet almost exclusively the outputs corresponding to the 4 extreme inputs.
Even though the information about the geometrical sturcture of the input
contained in E4 may be misleading (and hence we reject more than three fourth
of the outputs when testing HAP F ) it seems that the intensity function of outputs
roughly corresponds to λ.

Concerning the deviation test, for E5 we reject the biggest number of outputs
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Figure 3.5: Values of the theoretical intensity function λ on the observation win-
dow W (leftmost). Values of the estimated intensity function on the observation
window W for inputs 1, 4 and 14.

among all the energy functionals, see Table 3.3. In this case we reject too much
outputs even for the non-extreme inputs. If we increase k from 5 to 20, the per-
centage of rejected outputs decreases. For the last two energy functionals only
the outputs corresponding to the 4 extreme inputs are rejected. In this moment
with the functional E8 we achieve the best reconstructions regarding both, the
APF and the intensity function. But we think we are able do better.

Even though there are four extreme patterns among our 15 inputs, the deviation
test showed that some of the energy functionals (e.g. E2 or E4) produce point
patterns whose estimaded intensity function deviates (on the observation window
W ) a lot from λ. Also for some of the extreme inputs we suppose that it is possi-
ble to improve the results. We have discovered that all of the energy functionals
we use do not contain enough information about the intensity function. Thus
we want to add some information about the intensity function to each of them.
For more details see the text below. In this moment we can conclude that
neither the two obvious modifications of the stochastic reconstruction algorithm
mentioned in Section 3.1 nor the use of inhomogeneous characteristics in the
energy functional really ensure that the estimated intensity function of outputs
corresponds to λ.

Let us now take again a pixel grid V in the observation window W . For every
point pattern on the observation window W we are able to compute values
of the estimated intensity function in vertices of V . Once we have these values,
it is easy to compute their empirical distribution function. We will denote
this empirical characteristic by F̂λ and we will add it to each of our 8 energy
functionals. This characteristic gives us information about the values of the
estimated intensity function of the investigated point pattern, but it does not tell
us where we have observed such values. It means that we have some idea about
how big or low the values of the estimated intensity function should be and how
large are the ares with high/low values, but we know nothing about how to place
the areas with high or low intensity function in the observation window W .

By adding the term F̂λ to the energy functionals we force the outputs to have
the right values of the estimated intensity function. What we do not enforce
is the right placement of the right values in the observation window. In other
words we do not enforce that the surface (e.i. right values plus placement) of the
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estimated intensity function on W corresponds to the surface of the theoretical
intensity function of ΦT,thin on W . The main reason why we do not want to
control the whole surface is that such characteristic would not be an empirical
distribution function and hence the advantage of choosing weights naturally when
combining empirical distribution functions would be lost. Moreover, it would be
useless to perform the deviation test (testing hypothesis Hλ), because this test
itself checks the whole surface of the estimated intensity function of outputs.
Values of the theoretical intensity function λ on the observation window W and
values of the estimated intensity function for inputs 1, 4 and 14 can be seen in
Figure 3.5. We emphasise that these inputs are not qualified as extreme.

We have empirically chosen weights for the first two energy functionals
and we have obtained the following

E ′
1 = 10E1 + F̂λ,

E ′
2 = E2 + 100F̂λ.

What we mean by the phrase “empirically chosen” is described in Section 2.1.
When testing the null hypothesis HAP F , we reject slightly less outputs for
E ′

1 than for E1. For E ′
2 the decrease of the number of rejected outputs is

even bigger, see Table 3.2. Performing the second test, i.e. the deviation test
of the null hypothesis Hλ, the percentage of rejected outputs is satisfyingly
small for both of these functionals, see Table 3.3. So adding the term F̂λ to
E1 and E2 really assures the right form of the intensity function. It may be
surprising because F̂λ assure the right values of the estimated intensity function
but not the right placement of the right values in the observation window W .
In contrary, the deviation test is testing the right values and the right placement.
In this situation the right placement is guaranted by the inhomogeneous initial
configuration and the non-uniform distribution of the proposed points. The fact
the estimated intensity function of the reconstructions corresponds to the
theoretical one influences positively results of the global rank envelope test based
on the APF. But still neither the L-function nor the pair correlation function
contain enough information to reproduce the interactions among points and the
geometry of clusters properly.

For the energy functionals based on the empirical distribution functions we have
in mind the following choice of weights – the weight of the term F̂λ will be the
same as the sum of weights of the other terms. For example if we work with
the empirical distribution functions of the distance to the k-th nearest neighbour
for k = 1, 2, . . . , 5 we combine 5 emprirical distribution functions. Each of them
has the weight 1. To make the information about the intensity function equally
importat as the information contained in the combination of the 5 empirical
distribution functions, we will give to the term F̂λ the weight 1+1+1+1+1 = 5.
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We thus obtain

E ′
3 = E3 + 5F̂λ,

E ′
4 = E4 + 20F̂λ,

E ′
5 = E5 + 5F̂λ,

E ′
6 = E6 + 20F̂λ,

E ′
7 = E7 + 10F̂λ,

E ′
8 = E8 + 40F̂λ.

We are aware that this choice of weights is arbitrary and in practical applications
there amy be reasons to choose the weights differently, possibly based on prior
knowledge about the problem.

For E ′
3 and E ′

4 the global rank envelope test rejects more outputs than before,
see Table 3.2. So it seems that in these cases adding the new term F̂λ does not
bring any benefits. The natural choice of weights may be wrong when combining
with F̂k. On the other hand, the deviation test rejects slightly less outputs, see
Table 3.5.

For E ′
5 the global rank envelope test (hypothesis HAP F ) now rejects only 7%

of outputs. That is a nice improvement compared to E5. So adding the term
F̂λ to the energy functional E5 has a positive impact on the accumulated
persistence function of the outputs. Concerning the deviation test (hypothesis
Hλ), the enhancementand is even more evident – for E ′

5 we reject only 15% of
outputs. For E5 it was 65%. We should remember that testing the hypothesis
Hλ, 4 of the 15 inputs were classified as extreme. For the combination of D̂1
up to D̂5 with F̂λ we reject almost no outputs for the non-extreme inputs and
hence we think that if we had less extreme inputs we would see the desired
5% (or less) of rejected outputs. Thus we can say that this energy functional
provides reconstructions with the correct form of the APF and the intensity
function. So far E ′

5 gives the best results regarding both of the two statistical
tests we have performed. Not only for E ′

5 but also for E ′
7 we get satisfying

results. The global rank envelope test rejects 7% and the deviation test rejects
14% of outputs.

To conclude this section, let us say that the stochastic reconstruction algorithm
based on the energy functional E7 produces outputs with the right form of the ac-
cumulated persistence function but the estimated intensity function of outputs
deviates from the theoretical one. If we add the term F̂λ to all considered energy
functionals, we enforce relatively small number of rejected outputs in the devia-
tion test (for all of the energy functionals). Energy functionals based on inhomo-
geneous L-function (E1) and the pair correlation function (E2) does not contain
enough information to reproduce the geometrical properties of clusters sucesfully,
even though the term F̂λ enforces the right form of the estimated intensity func-
tion of the reconstrutions. For the energy functionals based on the empirical
distribution functions D̂k and F̂k we have achieved the best results for E ′

5 and
E ′

7. These two energy functionals provide reconstructions that really corresponds
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Figure 3.6: Input (on the left, same for all the rows) and three different outputs
of the stochastic reconstruction algorithm based on the energy functional E ′

1 (first
row), E ′

2 (second row), E ′
5 (third row) and E ′

7 (last row). The correct form of
the estimated intensity function of the outputs is enforced by adding the term F̂λ

to the energy functionals. But still, E ′
1 and E ′

2 do not contain enough information
to reproduce the geometric properties of the clusters properly. On the other
hand for functionals E ′

5 and E ′
7 the outputs really correspond to the input (in the

context of testing hypotheses HAP F and Hλ).

to the observed data. Examples of outputs of the stochastic reconstruction algo-
rithm based on E ′

1, E ′
2, E ′

5 and E ′
7 can be seen in Figure 3.6. We have chosen

these functional in order to compare the outpusts with Figure 3.4.

3.3.2 Reconstructing inhomogeneous Poisson point pro-
cess

In this subsection we will focus on reconstruction of an inhomogeneous Poisson
process. We have already stated the definition of Poisson point process,
see Definition 9 in Section 1.2. So our second theoretical model will be inho-
mogeneous planar Poisson point process ΦP oiss with the intenity measure given
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Percentage Mean SD
E1 11% 2.13 4.16
E2 8% 1.67 3.79
E3 5% 1.07 2.34
E4 6% 1.13 2.07
E5 6% 1.27 2.28
E6 5% 1.00 1.89
E7 4% 0.80 2.24
E8 5% 0.93 2.46

Percentage Mean SD
E ′

1 4% 0.87 2.64
E ′

2 9% 1.80 3.93
E ′

3 8% 1.67 3.85
E ′

4 5% 0.93 2.34
E ′

5 3% 0.53 1.55
E ′

6 5% 1.00 2.10
E ′

7 4% 0.87 1.92
E ′

8 3% 0.60 1.68

Table 3.4: Testing the hypothesis HAP F . Three different entries are given: per-
centage of the overall rejected reconstructions, mean number of rejected outputs
(per one input) and the standard deviation of the number of rejected outputs
(per one input). Left table corresponds to the 8 energy functionals described in
Section 3.1, right table corresponds to the situation when we add the term F̂λ to
each of the energy functionals.

by the intensity function λ from Equation (3.1). So the theoretical intensity
function of ΦP oiss is the same as for the thinned Thomas process ΦT,thin. Also,
we recall that inhomogeneous Poisson process is a SOIRS process, see Section 1.3.

Again we generate 15 different realisations of ΦP oiss on the observation window
W = [0, 1]2 which will serve as inputs of the stochastic reconstruction algorithm.
For each of these inputs and each of the 16 energy functionals mentioned in Sub-
section 3.3.1 we will generate 20 reconstructions. For each energy functional we
will investigate how many of the 300 reconstructions do not contradict the null
hypotheses HAP F and Hλ.

Percentage Mean SD
E1 34% 6.73 5.82
E2 39% 7.73 5.52
E3 32% 6.47 6.17
E4 28% 5.67 5.89
E5 36% 7.27 6.30
E6 34% 6.73 5.79
E7 34% 6.87 5.97
E8 28% 5.67 6.13

Percentage Mean SD
E ′

1 30% 6.00 6.43
E ′

2 35% 7.00 6.01
E ′

3 32% 6.47 6.81
E ′

4 25% 5.00 6.02
E ′

5 36% 7.20 7.21
E ′

6 30% 5.93 6.54
E ′

7 32% 6.40 6.80
E ′

8 29% 5.80 6.85

Table 3.5: Testing the hypothesis Hλ. Three different entries are given: percent-
age of the overall rejected reconstructions, mean number of rejected outputs (per
one input) and the standard deviation of the number of rejected outputs (per one
input). Left table corresponds to the 8 energy functionals described in Section
3.1, right table corresponds to the situation when we add the term F̂λ to each of
the energy functionals.
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Figure 3.7: Input (on the left, same for all the rows) and three different outputs
of the stochastic reconstruction algorithm based on the energy functional E ′

1 (first
row), E ′

2 (second row), E ′
5 (third row) and E ′

8 (last row). For all of the rows the
estimated intensity function of the outputs deviates a lot from the theoretical
intensity function λ. For the energy functional E ′

2 (second row) the global rank
envelope test based on the APF rejects more than 5% outputs, for the other rows
we reject less than 5% outputs.

Before testing the outputs we should test the inputs to see whether there are
some extreme configurations or not. If we perform the global rank envelope test
based on the accumulated persistence function, two of the inputs can be qualified
as extreme (upper bound of the p-interval equals 0.089 and 0.066 respectively).
If we perform the deviation test, 4 of the 15 inputs can be qualified as extreme
(p-values are equal to 0.094, 0.004, 0.072 and 0.066 respectively). We should
realize that we expect to see 0.1 outputs with p-value smaller than 0.1. The four
extreme inputs may cause that we will see a lot of outputs rejected while testing
the hypothesis Hλ, see Table A.3 in Appendix A.3.

If we test the hypothesis HAP F , for almost all of the energy functionals we reject
about 5% of the outputs, see Table 3.4. For the energy functional based on
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L-function (E1) the number of rejected outputs is higher, but after adding the
term F̂λ it decreases. For both of the energy functionals based on the pair
correlation function we reject more than 5% of reconstructions. It seems that
E ′

1 and all of the functionals based on the empirical distribution functions
provide reconstructions with the APF corresponding to the APF computed
on simulations from the null model. For more details see Table A.3 in Appendix
A.3.

The results of the deviation test which is used to test the hypothesis Hλ

shows that for all of the energy functionals we reject more than one fourth
of the outputs, see Table 3.5. Even though there are 4 inputs that can be
qualified as extreme, the number of rejected outputs is too big. So it seems
that the intensity function of the outputs does not correspond to the theoretical
intensity function of the null model no matter what energy funtional we use.
Adding the term F̂λ, which controls the values of the estimated intensity
function of the outputs but not the right placement of the values in the ob-
servation window does not improve in this case the quality of the reconstructions.

This observation is in contrary to the results of the previous section. While
estimating intensit function for different realisations of thinned Thomas process,
which is clustered, there is a large variability among the estimates. But this is
no longer true for Poisson point process – here the variability of estimates from
different realisations is very small and thus we should control the whole surface
of the estimated intensity function of the investigated point pattern (even though
we would loose the possibility of testing the hypothesis Hλ). Examples of outputs
of the stochastic reconstruction algorithm based on E ′

1, E ′
2, E ′

5 and E ′
8 can be

seen in Figure 3.6. We have chosen the functionals E ′
1 and E ′

2 as examples of the
energy functionals based on inhomogeneous summary characteristics. E ′

5 and E ′
8

were chosen because they reject the smallest number of outputs regarding the
global rank envelope test based on the accumulated persistence function.

To conclude this subsection we can say that neither the two obvious modifications
of the stochastic reconstruction algorithm mentioned in Section 3.1 nor adding
the term F̂λ suffice to produce reconstructions with the correct form of the in-
tensity function. Also in this case it seems that the wrong form of the estimated
intensity function of the outputs does not influence the results of the global rank
envelope test based on the APF. Regarding this test, almost all energy function-
als provide reconstructions with the correct form of the APF. Detailed results
can be found in Apprendix A.3.

3.3.3 Reconstructing transformed Matérn process
of type II

We have already examined the difficulties that may arise while reconstructing
clustered data or a realisation of inhomogeneous Poisson process. Now we will
focus on the stochastic reconstruction approach for regular data. Namely, we will
try to reconstruct realisations of transformed Matérn process of type II. The
definition of Matérn hard-core process of type II were stated in Definiton 14 in
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Section 1.2. We will now explain how to transform this process into an inhomo-
geneous one.

Let Φ be a Matérn hard-core process of type II in R2 with the intensity of the un-
derlying Poisson process κ = 300 and the hard-core distance r = 0.05. We recall
that Φ is a stationary planar point process with the intensity

τ = 1 − e−κω2r2

ω2r2 ,

where ω2 is the volume of the unit ball in R2.

Let us now have an exponential transformation function

c ((x, y)) = 1
C0

(
eAx − 1

)
, (x, y) ∈ R2,

where A = 1.3 is the inhomogeneity parameter and C0 = eA − 1. Transformed
point process ΦM,trans is obtained by applying the transformation function
c on the process Φ, i.e. ΦM,trans = {c(X) : X ∈ Φ}. All of the realisations
of ΦM,trans will be observed on the observation window W = [0, 1]2. Subtracting
1 from the exponential and multiplying the formula by 1

C0
ensures that after

the transformation we will have a point pattern on W . Note that Φ is a point
process, i.e. a locally finite random configuration of points. If we transform
the first coordinate of the points with the transformation function c, we will still
have a locally finite configuration of points. Thus ΦM,trans is a point process.

We are interested in the intensity function λ of the transformed process ΦM,trans.
Let us take some B ∈ B2. Then the intensity measure Λ of ΦM,trans can be
expressed as follows:

Λ(B) = ENΦM,trans
(B)

= E
∑

Z∈ΦM,trans

1 {Z ∈ B}

= E
∑
Y ∈Φ

1 {c(Y ) ∈ B}

=
∫
R

∫
R

1 {c(u, v) ∈ B} τ du dv

=
∫
R

∫
R

1
{( 1

C0

(
eAu − 1

)
, v
)

∈ B
}
τ du dv

=
∫
R

∫
R

1 {(x, y) ∈ B} τ
C0

AeAx
1
{
x > − 1

C0

}
dx dy.

For the fourth equation we have used the Campbell theorem, see Proposition 4.1
from Section 4.1.1 of the book Møller and Waagepetersen [2004]. In the last
equation we have used the substitution 1

C0

(
eAu − 1

)
= x and v = y. It can be

seen that the intensity function of ΦM,trans has the form

λ(x, y) = τC0

AeAx
1
{
x > − 1

C0

}
, (x, y) ∈ R2.
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Figure 3.8: Illustration of the transformation of Matérn hard-core process of type
II. First two panels: realisation ϕ of the Matérn hard-core process Φ on the unit
square (left), ϕ after applying the trasformation fucntion c (right). The same
situation is for the other two panels.

Set K := τC0
240A

. Then K ≈ 0.986 and the intensity function of ΦM,trans can be
expressed as

λ(x, y) = 240Ke−Ax
{
x > − 1

C0

}
, (x, y) ∈ R2.

On the observation window W = [0, 1]2, the indicator function takes only the
value 1 and hence the intensity function λ is the same as for the thinned Thomas
process from Subsection 3.3.1, see Equation (3.1). Two realisations of ΦM,trans

on the unit square can be seen in Figure 3.8. Note that the hard-core distance
is changing in dependence on the position of a pair of points in the observation
window.

As in the previous subsections we will generate 15 realisations of ΦM,trans and
we will use these realisations as inputs of the stochastic reconstruction algorithm.
For each of the 16 energy functionals listed in Subsection 3.3.1 and each of the
inputs we will produce 20 reconstructions and we will test the hypothesis HAP F

and Hλ. Detailed results can be see in Appendix A.4.

Before testing the reconstructions let us have a look on the inputs. Concerning
the global rank envelope test based on the APF, none of the inputs can be
classified as extreme, see Table ?? in Appendix A.4. For the deviation test
which tests the hypothesis Hλ one of the 15 inputs can be classified as extreme,
the p-value is 0.047, see Table A.4 in Appendix A.4. So this time we do not
have to be worried that the results of our experiment will be distorted by the
influence of extreme inputs.

If we focus on the hypothesis HAP F , we will discover that almost all of the enrgy
functionals provide reconstructions whose accumulated persistence function
deviates a lot from the accumulated persistence function computed on the simu-
lations from our null model ΦM,trans, see Table 3.6. The global rank envelope test
rejects almost all of the 300 outputs no matter what energy functional we use.
There are only two exceptions – energy functional based on L-function without
the term F̂λ (E1) and functional based on the pair correlation function without
the term F̂λ (E2). For the L-function we reject 10% of the reconstructions, for the
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Percentage Mean SD
E1 10% 2.000 2.80
E2 45% 9.067 3.28
E3 100% 19.93 0.26
E4 100% 20.00 0.00
E5 71% 14.27 3.15
E6 95% 19.00 1.20
E7 72% 14.47 2.56
E8 97% 19.40 1.06

Percentage Mean SD
E ′

1 79% 15.80 2.21
E ′

2 99% 19.87 0.35
E ′

3 100% 20.00 0.00
E ′

4 100% 20.00 0.00
E ′

5 87% 17.33 1.50
E ′

6 100% 20.00 0.00
E ′

7 95% 18.93 1.22
E ′

8 100% 20.00 0.00

Table 3.6: Testing the hypothesisHAP F . Three different entries are given: percen-
tage of the overall rejected reconstructions, mean number of rejected outputs (per
one input) and the standard deviation of the number of rejected outputs (per one
input). Left table corresponds to the 8 energy functionals described in Section
3.1, right table corresponds to the situation when we add the term F̂λ to each of
the energy functionals.

pair correlation function it is 45%. Comparing to the results stated in Subsection
3.3.1, it is fairly opposite situation. The inhomogeneous characteristics give
better results than the characteristics based on the interpoint dostances.

This fact can be caused by the changing hard-core distance r. The smallest
hard-core distance occures in the parts of the observation window with highest
values of the intensity function while the largest hadcore-distance can be observed
in areas with lowest values of the intensity function. Since the characteristics
based on the interpoint distances do not take into account the non-constant
intensity function, they are not able to distinguish that pairs of points with
small interpoint dostance are typical in some part of the observation window but
they cannot occur in other parts, see Figue 3.9. It means that energy functionals
based on these characteristics produce point configurations where pairs of points
with small interpoint distance occures at the parts of the observation window
with the largest hard-core distance. The accumulated persistence function which
describes the geometrical structure of the investigated point pattern cointains
the information about the changing hard-core distance and thus most of the
outputs provided by the energy functionals based on the interpoint distances
are rejected. Adding the term F̂λ to these energy functionals does not bring any
improvement, the number of rejected outputs actually increases. This may be
caused by the fact that we are not controling the surface (right values plus right
positions) of the estimated intensity function of the outputs but only the right
values that can be placed completly wrong in the observation window. Also,
the choice of weights may not be righ – it is possible that by adding the term F̂λ

we weaken the information about the geometry of the investigated point pattern
contained in the energy functionals.

On the other hand the estimators of L-function and the pair correlation function
deal with the non-constant intensity function and thus the energy functionals
based on these characteristics are able to distinguish that in some part of the
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Percentage Mean SD
E1 50% 9.93 5.15
E2 57% 11.3 4.42
E3 54% 10.9 5.85
E4 27% 5.47 5.24
E5 64% 12.8 5.62
E6 48% 9.6 5.51
E7 58% 11.5 5.50
E8 30% 5.93 5.04

Percentage Mean SD
E ′

1 36% 7.13 5.24
E ′

2 41% 8.20 5.36
E ′

3 26% 5.20 4.66
E ′

4 23% 4.67 4.34
E ′

5 28% 5.60 5.60
E ′

6 24% 4.73 4.86
E ′

7 29% 5.87 4.84
E ′

8 26% 5.13 4.44

Table 3.7: Testing the hypothesis Hλ. Three different entries are given: percent-
age of the overall rejected reconstructions, mean number of rejected outputs (per
one input) and the standard deviation of the number of rejected outputs (per one
input). Left table corresponds to the 8 energy functionals described in Section
3.1, right table corresponds to the situation when we add the term F̂λ to each of
the energy functionals.

observation window smallest distances between pairs of points are typical while
in other parts the hard-core distance is bigger and thus small distances between
pairs of points are not allowed. If we add to these characteristics the term F̂λ,
we obtain worse results, see Table 3.6. It may be caused by the wrong choice
of the weights – it may happen that we disable the effect of the pair correlation
function or the L-function too much and we loose the advantage of capturing
the changing hard-core distance.

Concerning the second test, i.e. the null hypothesis Hλ, we can say that all
of the energy functionals produce reconstructions whose estimated intensity
function does not correspond to the theoretical intensity function λ, see Table
3.7. This may be again due to the fact that there is very small variability in the
estimated intensity function among simulations from the null model and even
a small deviation from the theoretical intensity function may cause the rejection.
We should also note that after adding the term F̂λ to the energy functionals
the number of rejected output slightely decreases, but it is still too high.
In contrast to the conclusion made in Subsection 3.3.1, while reconstructing
transformed Matérn process of type II it is not enough to control the values of
the estimated intensity function and not the positions of these values. Similarly
to the inhomogeneous Poisson process, we should control the whole surface of
the estimated intensity function on the observation window W .

Examples of the outputs of the stochastic reconstruction algorithm based on
the energy functionals E1, E2, E ′

4 and E7 can be found in Figure 3.9. We have
chosen the first two functionals because they give the best results in the global
rank envelope test (nul hypothesis HAP F ) and to illustrate that the use of
inhomogeneous characteristics takes into account the non-constant hard-core
distance. Functional E ′

4 was chosen because it gives the best results while testing
the hypothesis Hλ, even though the accumulated persistence function of the
outputs does not correspond to the accumulated persistence function computed
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on simulations from the null model. The last chosen functional E7 gives the
best result among the functionals based on the empirical distribution functions
regarding the global rank envelope test.

To conclude this subsection we have seen that the two obvious modifications
described in Section 3.1 are not enough to produce reconstructions of the trans-
formed Matérn process with the right form of the accumulated persistence func-
tion and the estimated intensity function. The main problem is dealing with the
non-constant hard-core distance and the fact that even small deviations of the sur-
face of the estimated intensity function of outputs from the theoretical intensity
function λ cause rejections of the null hypothesis. Energy functionals based on

Figure 3.9: Input (on the left, same for all the rows) and three different outputs
of the stochastic reconstruction algorithm based on the energy functional E1 (first
row), E2 (second row), E ′

4 (third row) and E7 (last row). For the firs two rows
we should not see (in any part of the observation window) pair of points that are
closer together than the non-constant hard-core distance. For the two last rows
pairs of points that are very close together may appear even in the parts of the
observation window where the hard-core distance is large (rightmost third of the
observation window).
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the inhomogeneous L-function (E1) and the pair correlation function (E2) give
better results than the rest of the functionals. It is due to the fact that they
are able to distinguish that in some parts of the observation window smallest
distances between pairs of points are typical while in other parts such small dis-
tances between pairs of points are not allowed. In this situation it is needed to
control the whole surface of the estimated intensity function, not only the values
as it does the term F̂λ. It is also possible that the inhomogenous binomial point
process is not an appropriate initial configuration for the transforemed Matérn
process and some other possibilities should be examined, e.g. a pattern uniformly
randomly producing one point in each cell of the Voronoi tesstelation generated
by the observed point pattern.

3.4 Summary
In this chapter we have discused the difficulties that may arise when trans-
forming the stochastic reconstruction algorithm described in Section 2.1 for
inhomogenenous point patterns.

We have stated two modifications of the algorithm that can be found in
litterature, namely in Wiegand et al. [2013]. In the course of the simula-
tion study we have compared the quality of reconstructions for 8 different
energy functionals. We have chosen three theoretical models with the same
intensity function – thinned Thomas process, inhomogeneous Poisson process
and transformed Matérn hard-core process of type II. Realisations of these
models were used as inputs of the stochastic reconstruction algorithm and we
have checked whether the outputs corresponds to the theoretical models or
not. More precisely, we have tested two hypotheses HAP F (distribution of the
accumulated persistence function of output corresponds to the distribution of
this characteristic under the null model) and Hλ (intensity function of output
corresponds to the theoretical intensity function λ on the observation window
W ) using simulation-based tests.

Results of the tests have shown that the two modifications described in Sec-
tion 3.1 are not sufficient, i.e. they do not assure the correspondence between
outputs of the stochastic reconstruction algorithm and the observed data. For
the thinned Thomas process the main problem was the intensity function.
We have improved the results by adding the term F̂λ to each of the energy
functionals. In contrast, adding the term F̂λ to the energy functional does not
assure the correct form of the intensity function while reconstructing Poisson
point process or Matérn hard-core process of type II.

It is due to the fact that the statistical test we perform control the deviation
of the estimated intensity function of the outputs from the theoretical intensity
function over the whole surface of the observation window W . The term F̂λ

controls only the values of the intensity function, not their placement in the
observation window. While estimating intensity function of thinned Thomas
process, there is a large variability among estimates for different realisations
from the model (it is due to the fact that the patterns are clustered and we use
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kernel smoothing) and thus it is sufficient to control only the values and not
the placement. But this is not true anymore for Poisson process or transformed
Matérn hard-core process of type II – here the variability of estimates from
different realisations is very small and thus we should control the whole surface
of the estimated intensity function.

Additionally, for the transformed Matérn hard-core process of type II we have
encountered the problem with non-constant hard-core distance. Energy func-
tionals based on empirical distribution functions of interpoint distances do not
contain enough information to distinguish that in some parts of the observation
window smallest distances between pairs of points are typical while in other
parts the hard-core distance is bigger and thus small distances between pairs
of points are not allowed. On the other hand, the inhomegeneous L-function and
the pair correlation function are able to deal with this problem.

In Section 2.1 we have claimed that one of the biggest advantages of the stochas-
tic reconstruction approach is that we do not need to specify any theoretical
model for the observed point pattern. But from Section 3.3 it is obvious that
the implementation of the stochastic reconstruction algorithm requires a lot of
parameters chosen by the user, e.g. the weights in the energy functional, the
choice of the constants R(•) or parameters of some spatstat functions. Choice
of these parameters should be based on prior knowledge about the data (includ-
ing the shape and size of the observation window etc). Also the choice of the
characteristics to be combined in the energy functional should be induced from
some preliminary analysis of the point process data, e.g. for clustered data we
should use another characteristics than for regular one.
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4. Metropolis-Hastings algorithm
So far we have considered the stochastic reconstruction as an optimization
problem, i.e. we have tried to find some local minima of the energy functional E
defined in Section 2.1. In this chapter another approach will be discussed. We
will focuse on the situation when we accept (with some probability) even the
proposed configurations with higher energy. To be more concrete, the possibility
of using a special case of Metropolis-Hastings algorithm for the stochastic recon-
struction will be discussed. In Møller and Waagepetersen [2004] it is mentioned
that it is possible to modify the improvement-only algorithm described in Section
2.1 into a special case of Metropolis-Hastings algorithm, but no futher details
are given.

First basic definitions and some essential results from the theory of Markov chains
will be stated. Then we will describe a special case of the Metropolis-Hastings
algorithm stated in Section 7.1.1 in Møller and Waagepetersen [2004]. Also appli-
cation of this algorithm to the stochastic reconstruction context will be specified
including the discussion about ergodicity and the convergence properties of the
Metropolis-Hastings algorithm. Subsection 4.2.2 then focuses on a short simu-
lation study – this new approach will be used to reconstruct thinned Thomas
proces.

4.1 Basic definitons and results
In the next sections we will talk about the Metropolis-Hastings algorithm. It
as an algorithmic procedure that generates a Markov chain so that after a
sufficiently large number of iteration steps we obtain approximately a sample
from prescribed probability distribution. To understand the algorithm and
its properties we have to state some basic definitions and results from the
theory of Markov chains on a general state space. We emphasise that all of the
definitions and theorems are taken from four different sources, namely Møller
and Waagepetersen [2004], Meyn and Tweedie [1993], Roberts and Rosenthal
[2004] and Tierney [1994].

Let (Ω,A,P) be a probability space. Let S be a general set and denote by B (S)
a countably generated σ-algebra on S. We will first define a transition probability
kernel.
Definition 26. Let us have a mapping P : S × B(S) −→ [0, 1] such that

• for each A ∈ B(S) P(•, A) is a non-negative measurable function on S,

• for each s ∈ S P(s, •) is a probability measure on B(S).
Then we call P a transition probability kernel on (S,B(S)).

Let us now denote by S the product space S =
∞∏

i=1
S, where the symbol ∏ repre-

sents the Cartesian product. Also we will denote as S the product σ-algebra on
S, i.e. S =

∞⨂
i=1

B(S).
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Theorem 1. For any probability measure µ on B(S) and any transition probabi-
lity kernel P on (S,B(S)), there exists a stochastic process X = {X0, X1, X2, . . . }
on S (measurable with respect to S) such that

P [X0 ∈ A0, X1 ∈ A1, . . . , Xn ∈ An] =

=
∫

A0
· · ·

∫
An−1

P(yn−1, An)P(yn−2, dyn−1) . . .P(y0, dy1)µ(dy0) (4.1)

for all A0, A1, . . . , An ∈ B(S) and n ∈ N ∪ {0}.

Proof. See Theorem 3.4.1 in Meyn and Tweedie [1993].

Now we have prepared the needed background to state the formal definition
of a Markov chain on a general state space S.

Definition 27. Stochastic proces X with a general state space S is called a time-
homogeneous Markov chain with transition probability kernel P and initial dis-
tribution µ, if the finite dimensional distributions of X satisfy the Equation (4.1)
for every n ∈ N ∪ {0}.

The next step is to define the n-step transition probability kernel and the invariant
measure π of a Markov chain X.

Definition 28. We set P0(s, A) = δs(A), s ∈ S, A ∈ B(S), where δs represents
the Dirac measure. For n ≥ 1 we define the n-th step probability kernel Pn

inductively

Pn(s, A) =
∫

S
Pn−1(y, A)P(s, dy), s ∈ S, A ∈ B(S). (4.2)

Definition 29. A σ-finite measure π on B(S) is said to be invariant if

π(A) =
∫

S
P(s, A)π(ds), A ∈ B(S).

If π is a probability measure, then it will be called invariant (or stationary) dis-
tribution of the chain X with the transition probability kernel P.

Definition 30. The invariant distribution π is called a limiting distribution of
the Markov chain X with the trasition probability kernel P if for π-almost all
s ∈ S

lim
n→∞

Pn(s, A) = π(A), for all A ∈ B(S).

A key notion is reversibility because it gives us information about invariant dis-
tributions of the chain X.

Definition 31. A Markov chain X on a state space S is reversible with respect
to a probability distribution π on B(S), if

π(dx)P(x, dy) = π(dy)P(y, dx), x, y ∈ S.

Theorem 2. If the Markov chain X is reversible with respect to π, then π is its
invariant distribution.

Proof. See Proposition 1 in Roberts and Rosenthal [2004].
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Another important notion in the theory of Markov chains with the general state
space is the concept of irreducibility.

Definition 32. Let η be a probability measure on B(S). We say that the Markov
chain X is η-irreducible if for any s ∈ S and A ∈ B(S) such that η(A) > 0
we have Pn(s, A) > 0 for some n ∈ N.

Theorem 3. Let η be a probability measure on B(S). If an invariant distribution
π exists, η-irreducibility of the chain X implies the following:

• X is π-irreducible,

• π is the unique invariant distribution.

Proof. See Proposition 7.2 in Møller and Waagepetersen [2004].

Definition 33. Suppose that the chain X is η-irreducible and admits an invariant
distribution π. Then X is called positive.

In order to study convergence of the Markov chain X we have to state the defi-
nition of Harris recurrence and aperiodicity.

Definition 34. We say that the Markov chain X is Harris recurrent if it is
η-irreducible (for some probability measure η) and for all s ∈ S and A ∈ B(S)
such that η(A) > 0 we have

P [Xm ∈ A for some m | X0 = s] = 1.

It is known that for an ψ-irreducible chain the whole space S can be decomposed
into sets A, D0, D1, . . . , Dd−1 such that P(s,Dj) = 1 for s ∈ Di and j = i + 1
mod d and ψ(A) = 0. The proof can be found in Meyn and Tweedie [1993],
Theorem 5.4.4. We will denote this decomposition as D.

Definition 35. If there exists the decomposition D of the state space S with d > 1
then we say that the chain X is periodic. Otherwise it is called aperiodic.

Definition 36. A Markov chain X is said to be ergodic if it is positive Harris
recurrent and aperiodic.

Once we have defined ergodicity, we are able to formilize the convergence of
the chain to its invariant distribution. But first we have to define a distance of
two probability measures on (S,B(S)).

Definition 37. Let µ and ν be two probability measures on (S,B(S)). The total
variation norm si given by

||µ− ν||T V = sup
A∈B(S)

|µ(A) − ν(A)|.

Remark. Note that ||µ− ν||T V ≤ 1, ||µ− ν||T V = 0 if µ = ν and ||µ− ν||T V = 1
if µ and ν have disjoint supports, see Section 7.2.2 in Møller and Waagepetersen
[2004].
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Theorem 4. Let X be an ergodic Markov chain with invariant distribution π.
Then for all s ∈ S we have

||Pn(s, •) − π(•)||T V −→ 0, n → ∞. (4.3)

Proof. See Theorem 1 in Tierney [1994] or Theorem 13.3.3 in Meyn and Tweedie
[1993].

Theorem 4 says that an ergodic Markov chain has its invariant distribution
(if it exists) as a limiting distribution.

In order to have some information about the speed of convergence (and hence
we would be able to state Central limit theorem for Markov chains) we will need
a stronger property than ergodicity.

Definition 38. A Markov chain X with invariant distribution π is called uni-
formly ergodic if ||Pn(s, •) − π(•)||T V converges to 0 uniformly in s for n → ∞,
e.i.

sup
s∈S

||Pn(s, •) − π(•)||T V −→ 0, n → ∞.

Definition 39. A Markov chain X with invariant distribution π is geometrically
ergodic if there exists 0 ≤ ϱ < 1 and a real-valued function M on S such that
M(s) < ∞ for π-almost all s ∈ S and

||Pn(s, •) − π(•)||T V ≤ M(s)ϱn, n = 1, 2, 3, . . .

It is known that uniform ergodicity implies geometrical ergodicity and geometrical
ergodicity implies ergodicity, see p. 1741 in Tierney [1994]. To state the necessa-
ry and sufficient conditions for uniform ergodicity, we will need the definition of
a small set.

Definition 40. A set C ∈ B(S) is said to be (m,µ)-small if there exists m ∈ N
and a non-zero measure µ on B(S) such that

Pm(s, A) > µ(A) for all s ∈ C and A ∈ B(S).

Theorem 5. Suppose that a Markov chain X has invariant distribution π. Then
uniform ergodicity is equivalent to that S is a (m,µ)-small set (for some m ∈ N
and a non-zero measure µ on B(S)). Moreover it holds that

||Pn(s, •) − π(•)||T V ≤ (1 − µ(S))n/m , n = 1, 2, 3, . . .

Proof. See Proposition 7.8 in Møller and Waagepetersen [2004] and Theorem
16.2.2 in Meyn and Tweedie [1993].
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4.2 Stochastic reconstruction based on
Metropolis-Hastings algorithm

This section will be devoted to a special case of Metropolis-Hastings algorithm
described in Section 7.1.1 of the book Møller and Waagepetersen [2004] and
its application to the stochastic reconstruction context. Metropolis-Hastings
algorithm is one of the so-called MCMC (Markov chain Monte Carlo) algorithms
which permets simulations of complex stochastic systems. We have already
encountered the expression “Monte-Carlo” in Section 3.2 – we have described
the pointwise Monte-Carlo test.

An MCMC algorithm is a reciept for generation of a Markov chain with pre-
scribed invariant distribution. It can be used to simulate spatial point processes
defined by an unnormalised density, e.g. Gibbs point processes. MCMC
algorithms can be also used to compute complex (typically multidimensional)
integrals, which may arise when analysing theoretical model that was chosen for
observed data. For more details see Chapter 8 in Møller and Waagepetersen
[2004].

Before we start describing the algorithm we have to state a definition of a finite
point process with a density. Suppose that Φp is a Poisson point process with
finite intensity measure Λ, e.i. Λ(Rd) < ∞. Recall that point process is a random
element with values in measurable space (Nlf ,Nlf ). Take U ∈ Nlf . The distri-
bution Π of a finite Poisson point process Φp can be expressed as follows:

Π(U) = P [Φp ∈ U ] =

= e−Λ(Rd)
∞∑

n=1

1
n!

∫
Rd

· · ·
∫
Rd

1 {{x1, . . . , xn} ∈ U} Λ(dx1) . . .Λ(dxn),

see Proposition 3.1 in Møller and Waagepetersen [2004].

Assume we have W ⊂ Rd such that |W | < ∞. We will denote the set of finite
point configurations contained in W as

N W
f = {ζ ⊂ W : N(ζ) < ∞} .

We equip N W
f with a σ-algebra NW

f =
{
U ∩ N W

f : U ∈ Nlf

}
. In Definition

9 in Section 1.2 we have stated the definition of Poisson point process on Rd.
By Poisson point process on W we mean Poisson point process on Rd whose
intensity measure Λ is concentrated on W , i.e. the support of Λ is the set W .

Definition 41. Let us have f : N W
f −→ [0,∞) a measurable function and Φp

be a homogeneous Poisson point process on W with the intensity κ = 1. We will
say that Φ is a finite point process with density f with respect to the distribution
Π of the Poisson point process Φp if for all U ∈ NW

f we have

P [Φ ∈ U ] =

= e−|W |
∞∑

n=0

1
n!

∫
W

· · ·
∫

W
1 {{x1, . . . , xn} ∈ U} f ({x1, . . . , xn}) dx1 . . . dxn.

62



Let us have Φ a finite point process with a density. Denote by W n the set of all
n-points configurations in W , i.e.

W n = {{x1, x2, . . . , xn} : xi ∈ W, i = 1, 2, . . . , n, xi ̸= xj whenever i ̸= j} .

We will equip W n with the σ-algebra NW
n =

{
U ∩W n : U ∈ NW

f

}
. Suppose now

that we have conditioned on NΦ(W ) = n for some integer n. Assume that under
this condition, the distribution of Φ is given by

P [Φ ∈ U | NΦ(W ) = n] =

=
∫

W
· · ·

∫
W

1 {{x1, . . . , xn} ∈ U} fn ({x1, . . . , xn}) dx1 . . . dxn,

where U ∈ NW
f and fn : W n −→ [0,∞) is a measurable function such that∫

W
· · ·

∫
W
fn ({x1, . . . , xn}) dx1 . . . dxn = 1. We will denote the conditional dis-

tribution of Φ as π, i.e.

π(U) = P [Φ ∈ U | NΦ(W ) = n] , U ∈ NW
f . (4.4)

The distribution π will be alse refered to as target distribution.

In this moment assume that we have observed a point pattern ϕ on W such
that Nϕ(W ) = n. We would like to reconstruct the patter ϕ using the special
case of Metropolis-Hastings algorithm, namely the Algorithm 7.1, described in
Section 7.1.1 in Møller and Waagepetersen [2004]. Por this purpose set

fn (ζ) = 1
GW

n

exp {−KE (ϕ, ζ)} , ζ ∈ W n, (4.5)

where E is the energy functional defined in Section 2.1, K > 0 is a constant,
1

GW
n

is the normalising constant. Hence the distribution π is chosen in such
a way that the configurations with low energy are more likely to occur than
configurations with high energy. Our aim is to use the Metropolis-Hastings
algorithm to produce an ergodic Markov chain X with invariant distribution π.
After a sufficiently large number of iteration steps T we will obtain realisations
of a point process whose distribution is approximately π.

Since we are mainly interested in stochastic reconstruction for inhomogeneous
point processes, we will modify the improvement-only algorithm described in
Section 3.1. Suppose that the observed point pattern ϕ is a realisation of
an inhomogeneous point process such that its intensity function λ exists. Recall
that by λ̂ϕ we denote the estimated intensity fuction computed for the config-
uration ϕ and CW,λ we denote the normalising constant, i.e. CW,λ =

∫
W
λ̂ϕ(x) dx.

Now we will prepare the background for the Metropolis-Hastings algorithm from
Section 7.1.1 in Møller and Waagepetersen [2004]:

• for all configurations ζ ∈ W n and i ∈ {1, 2, . . . , n} set qi(ζ, •) = 1
CW,λ

λ̂ϕ(•),
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• for all ζ = {x1, x2, . . . , xn} ∈ W n, y ∈ W and i ∈ {1, 2, . . . , n} set

ri(ζ, y) = fn ((ζ \ {xi}) ∪ {y}) qi ((ζ \ {xi}) ∪ {y} , xi)
fn(ζ)qi(ζ, y) ,

if the denominator equals 0 then we set ri(ζ, y) = 1,

• for all ζ ∈ W n, y ∈ W and i ∈ {1, 2, . . . , n} set αi(ζ, y) = min {1, ri(ζ, y)}.

Remark. In the previous text we abuse a bit the notation and we write y ∈ W
even though we consider only y ∈ W such that the configuration (ζ \ {xi}) ∪ {y}
has exactly n-points.
In Section 7.1.1 in Møller and Waagepetersen [2004] the ratio ri is called the Hast-
ings ratio, qi is called the proposal density and αi is the acceptance probability.
We will now generate the Markov chain X0, X1, . . . in the following way. Let X0
be a realisation of inhomogeneous binomial point process with n points and a
measure νϕ given by the density function 1

CW,λ

λ̂ϕ. Suppose that after l-th iter-

ation step we have a configuration Xl = {x1
l , x

2
l , . . . , x

n
l }. In the iteration step

number l + 1 we

• with probability 1
n

choose a point xi
l of the configuration Xl to be deleted,

• generate a new point y in W with probability distribution given by the prob-
ability density qi(Xl, •),

• with probability αi(Xl, y) set Xl+1 = (Xl \ {xi
l}) ∪ {y}, otherwise we set

Xl+1 = Xl with probability 1 − αi(Xl, y).

Individual parts of each iteration step are executed independently and echach
iteration step is independet on the previous steps. The algorithm is almost the
same as the one from Section 3.1 – in each iteration step we choose (with equal
probabilities) one point of a current configuration an move it into another part
of the observation window W . The only difference is that in this case also con-
figurations with higher energies may be accepted. In the algorithm defined in
Section 3.1 it was impossible to accept a configuration with higher energy.

4.2.1 Convergence properties of the algorithm
In this Subsection we will focus on the convergence properties of the Markov
chain generated by the Metropolis-Hastings algorithm that has been described
above.

If we consider the stochastic reconstruction as an optimization problem (see
Section 3.1), we do not ensure the convergence of the intermediate states of
the algoritm to an optimal solution (local minimum). On the other hand,
if we use the Metropolis-Hastings algorithm, we are able to verify whether the
target distribution π is the limiting distribution. Moreover, we are able to say
something about the rate of convergence.
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The Markov chain produced by the Metropolis-Hastings algorithm will be
refered to as the Metropolis-Hastings chain. We will first check that the
Metropolis-Hastings chain is reversible with respect to the target distribution π,
see Equation (4.4). Then we will show that the chain is not only ergodic but
also uniformly ergodic. To prove these statements we will check the assumptions
of Proposition 7.11 in Møller and Waagepetersen [2004]. We emphasise
that all of the statements will be proven for a special choice of the summary
characteristics used in the energy functionals.

Let us denote by X the natural state space of the Metropolis-Hastings chain,
i.e. X = {{x1, x2, . . . , xn} ⊂ W : fn ({x1, x2, . . . , xn}) > 0}. For further details
see Remark 7.1 in Møller and Waagepetersen [2004]. From Equation (4.5) it can
be seen that X = W n. Denote by X the σ-algebra on X . Since X = W n we have
that

X = NW
n =

{
U ∩W n : U ∈ NW

f

}
.

In Section 4.1 we have supposed that state space is equiped by countably
generated σ-algebra. We should verify this assumption for X. In Section 1.1 we
have discussed that Nlf is countably generated. Thus NW

f is countably generated
and so is X.

Let us now take ζ = {x1, x2, . . . , xn} ∈ X and U ∈ X. The transition probability
kernel P of the Metropolis-Hastings chain then has the form

P(ζ,U) = 1
n

n∑
i=1

∫
W

1 {(ζ \ {xi}) ∪ {y} ∈ U} qi(ζ, y) αi(ζ, y) dy + r(ζ)δζ(U),

where δ is the Dirac measure and

r(ζ) = 1
n

n∑
i=1

∫
W

1 {(ζ \ {xi}) ∪ {y} ∈ U} qi(ζ, y) (1 − αi(ζ, y)) dy

is the probability that we do not leave the configuration ζ within one iteration
step. We will consider another Markov chain with transition probability kernel
Q given by

Q(ζ,U) = 1
n

n∑
i=1

∫
W

1 {(ζ \ {xi}) ∪ {y} ∈ U} qi(ζ, y) dy.

This chain will be refered to as the proposal chain. This transition probability
kernel corresponds to the situation when we always accept the proposed con-
figuration. Now we have prepared the background to state the theorem about
the convergence of the Metropolis-Hastings chain.

Theorem 6. The following properties hold for the Metropolis-Hastings algorithm
described in Section 4.2.

1. The Metropolis-Hastings chain produced by the algorithm described in Sec-
tion 4.2 is reversible with respect to the target distribution π.
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2. Suppose that X = W n and the proposal chain with transition probability
kernel Q is η-irreducible for some η probability measure on X. Assume that
for all ζ = {x1, x2, . . . , xn} ∈ W n, y ∈ W and i ∈ {1, 2, . . . , n} it holds that

qi(ζ, y) > 0 =⇒ qi ((ζ \ {xi}) ∪ {y} , xi) > 0.
Then the Metropolis-Hastings chain is η-irreducible.

3. Suppose that the Metropolis-Hastings chain is η-irreducible (for some η
probability measure on X ) and that there exists ϵ > 0, x2, . . . , xn ∈ W
and D ⊆ W such that |D| > 0 and for all x1, y ∈ D we have that
fn ({x1, x2, . . . , xn}) > 0 and

min
{
qi ({x1, . . . , xn} , y) , fn ({y, x2, . . . , xn}) qi ({y, x2, . . . , xn} , x1)

fn ({x1, x2, . . . , xn})

}
≥ ϵ.

(4.6)

Then C = {{x1, x2, . . . , xn} : x1 ∈ D} is a small set and the
Metropolis-Hastings chain is aperiodic.

4. Suppose that X = W n and that there exists ϵ > 0 such that for all
ζ = {x1, x2, . . . , xn} ∈ W n, i ∈ {1, 2, . . . , n} and y ∈ W we have

min
{
qi (ζ, y) , fn ((ζ \ {xi}) ∪ {y}) qi ((ζ \ {xi}) ∪ {y} , xi)

fn(ζ)

}
≥ ϵ.

Then the Metropolis-Hastings chain is uniformly ergodic and

||Pm(ζ, •) − π(•)||T V ≤
(

1 − n!
(
ϵ|W |
n

)n)m
n

, m = 1, 2, . . .

Remark. As it was mentionde in Section 4.2 we suppose that all of the configu-
rations mentioned in the statements of Theorem 6 have n points, even though it
is not explicitely written.

Proof. See Proposition 7.11 in Section 7.3.1 of the book Møller and
Waagepetersen [2004].

First claim of the Theorem 6 says (without any assumptions) that the Metropolis-
Hastings chain generated by the algorithm described in Section 4.2 is reversible
with respect to the target distribution π given by the Equation 4.5. It means
that π is the invariant distribution of the Metropolis-Hastings chain.

Now we will check the assuptions of the second claim of Theorem 6.We have
already discussed that X = W n. It is due to the choice of fn, see Equation (4.5).
Let us now take η the distribution of a binomial point process on W with n points
and the d-dimensional Lebesgue measure. It means that for any U ∈ X we have

η(U) =
∫

W
· · ·

∫
W

1 {{x1, . . . , xn} ∈ U} dx1 . . . dxn.

We aim to prove that for any ζ ∈ X and U ∈ X such that η(U) > 0 we have
Qm(ζ,U) > 0 for some m ∈ N.

It is important to realize how the n-th probability kernel Qm looks like. Let us
compute Q2. Take ζ = {x1, x2, . . . , xn} ∈ X and U ∈ X.
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Q2(ζ,U) =
∫

X
Q(ξ,U)Q(ζ, dξ) = 1

n2

n∑
i=1

∫
W

∫
W
A(s, z) qi(ζ, y)qi(ξ, z) dy dz,

where

A(s, z) =
∑

s∈(ζ\{xi})∪{y},s ̸=y

1 {(ξ \ {s}) ∪ {z} ∈ U , ξ = (ζ \ {xi}) ∪ {y}} .

It is important to realize that Q(ζ,U) is the probability that the chain moves
in one step from configuration ζ to some configuration from U . Q2(ζ,U) is then
the probability that the chain moves in two steps from the configuration ζ to
some configuration from U , i.e. we first move one point of the configuration ζ
to a new location in W and then we ask if it is possible to move from the new
configuration to some configuration in U .

If we have the configuration ζ we can move 1 or 2 or even more points in order
to obtain a configuration from U . Moreover, if we move all of the n points
of the configuration ζ, we will end up with a completly new configuration of n
points in W . Therefore, we are always able to move some of the points of the
configuration ζ (or all of them) so that we obtain a configuration from U . Thus
we will always find m ∈ N so that Qm(ζ,U) > 0. We have thus proved that the
proposal chain is η-irreducible.

It remains to check the condition on the proposal density qi. Recall that for all
ζ = {x1, . . . , xn} ∈ X and all i ∈ {1, 2, . . . , n} we have qi(ζ, •) = 1

CW,λ

λ̂ϕ(•).

Assume that for all y ∈ W we have λ̂ϕ(y) > 0 (if we use the Gaussian kernel
to estimate the intensity , which is the standard choice, this condition will be
fulfilled for n ≥ 1). Than the condition

qi(ζ, y) > 0 =⇒ qi ((ζ \ {xi}) ∪ {y} , xi) > 0

is trivially fullfiled. We have thus shown that the Metropolis-Hastings chain is
η-irreducible.

Now we aim to verify the assumptions of the third statement of Theorem 6.
Our choice of the density fn ensures that the condition fn ({x1, x2, . . . , xn}) > 0
is trivialy fullfiled for all n-point configurations in W . The observed pattern
ϕ consists of n points, thus we can write ϕ = {s1, s2, . . . , sn}. We can take
xi = si, i ∈ {2, 3, . . . , n} and D = W .

We estimete the intensity function λ using the Gaussian probability kernel (which
is the most often choice) and thus there exist a finite constants Mλ > 0 so that
for all configurations ζ ′ ∈ W n and for all x ∈ W

λ̂ζ′(x) ≥ Mλ.

Thus λ̂ϕ is bounded away from 0 on W . We can thus write

qi ({x1, s2, . . . , sn} , y) = 1
CW,λ

λ̂ϕ(y) ≥ 1
CW,λ

Mλ > 0.
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In the same way we can estimate the term qi ({y, s2, . . . , sn} , x1).

We will now focus on the ratio

fn ({y, s2, . . . , sn})
fn ({x1, s2, . . . , sn}) .

If we use the Equation (4.5), we obtain

fn ({y, s2, . . . , sn})
fn ({x1, s2, . . . , sn}) = exp {−KE (ϕ, {y, s2, . . . , sn})}

exp {−KE (ϕ, {x1, s2, . . . , sn})} . (4.7)

We can rewrite the ratio from Equation 4.7 to the form

exp {−K [E (ϕ, {y, s2, . . . , sn}) − E (ϕ, {x1, s2, . . . , sn})]} .

Let us now estimate the difference

B = E (ϕ, {y, s2, . . . , sn}) − E (ϕ, {x1, s2, . . . , sn}) .

from above in order to estimate the ratio from Equation 4.7 from below. Sup-
pose that the energy functional is based on a functional summary characteristic
S(r), r ∈ (0, R(S)]. We also suppose that the estimator Ŝ(•, r) is a non-negative
function. This assumption involve all of the characteristics we have considered
in Section 3.1. But it excludes some characteristics, for example the centerd
L-function L(r) − r, r > 0. Using the Equation (2.1) we obtain

B =
∫ R(S)

0

[
Ŝ (ϕ, r) − Ŝ ({y, s2, . . . , sn} , r)

]2
−

−
[
Ŝ (ϕ, r) − Ŝ ({x1, s2, . . . , sn} , r)

]2
dr

=
∫ R(S)

0

[
2Ŝ (ϕ, r) − Ŝ ({y, s2, . . . , sn} , r) − Ŝ ({x1, s2, . . . , sn} , r)

]
×

×
[
Ŝ ({x1, s2, . . . , sn} , r) − Ŝ ({y, s2, . . . , sn} , r)

]
dr

≤
∫ R(S)

0

[
2Ŝ (ϕ, r)

] [
Ŝ ({x1, s2, . . . , sn} , r) − Ŝ ({y, s2, . . . , sn} , r)

]
dr

In the second equation we have used that a2 − b2 = (a + b)(a − b). We will now
estimate the difference

[
Ŝ ({x1, s2, . . . , sn} , r) − Ŝ ({y, s2, . . . , sn} , r)

]
. We will

consider three different situations, that correspond to the characteristics we will
use in Subsection 4.2.2. For other characteristics a different proceeding may be
required. Recall that ϕ is one particular realisation from the theoretical model
Φ and we suppose that Ŝ(ϕ, r), r ∈ (0, R(S)] is bounded.

First suppose that Ŝ(•, r) is an empirical distribution function. Then[
Ŝ ({x1, s2, . . . , sn} , r) − Ŝ ({y, s2, . . . , sn} , r)

]
≤ 1. Therefore

B ≤
∫ R(S)

0
2Ŝ (ϕ, r) dr = Bedf .
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Here we integrate a multiple of an empirical distribution function which is
bounded over a bounded interval, hence the constant Bedf is finite.

Consider now that Ŝ(•, r) is the estimator of the inhomogeneous pair correlation
function. Denote by ζ the configuration {x1, s2, . . . , sn} and by ξ the configuration
{y, s2, . . . , sn}. We will now estimate the difference Ŝ (ζ, r) − Ŝ (ξ, r). Using
the Equation (1.2) we obtain

A = Ŝ (ζ, r) − Ŝ (ξ, r) =

=
̸=∑

x,z∈ζ

ub (r − ∥x− z∥)
λ̂ζ(x)λ̂ζ(z)σdrd−1|W |

eW,r(x, z) −
̸=∑

v,t∈ξ

ub (r − ∥v − t∥)
λ̂ξ(v)λ̂ξ(t)σdrd−1|W |

eW,r(v, t),

where ub is the kernel function with bandwidth b and eW,r is the edge correction
factor. First note that both of the sums are non-negative, thus we can estimate
the difference from above by summing up these two terms. We should realize that
we work only with such kernel fuctions that are bounded. It means that there
exists a finite number Mub

upp > 0 such that for all w1, w2 ∈ W and for all values of
r

ub (r − ||w1 − w2||) ≤ Mub
upp.

Recall that for the pair correlation function we work with a kernel function with
bounded support (e.g. the Epanechnikov kernel). We use the pair correlation
function to investigate the interactions among pairs of points. So while using this
characteristic, we should have some idea about the maximal range of interactions
we want to investigate. Based on this information, we choose the size of
the observation window (it should be few times bigger than the maximal range
of interactions) and the constant R(S). Also, while choosing the bandwidth
b of the kernel function ub the information about the range of interactions is
taken into account. So if we observe a pair of points with distance bigger than
the maximal range of interactions (such pairs of points are not of particular
interest, if we wanted to explore so large range of interactions, we would take
bigger observation window and we would choose the constant R(S) differently),
the kernel function ub will be zero. It is due to the choice of the bandwidth b
and the bounded support of ub.

Now focus on the term eW,r(•, •). Imagine for simplicity that we have a translation
edge correction. If we observe a pair of points (w1, w2) with a very large distance
(e.g. they lie close to the different edges of the observation window), the ege
correction factor

|W |
|W ∩ (W + w1 − w2) |

may be close to infinity. But for such a pair of points the kernel function ub

is zero. On the other hand, if we have a pair of points (w1, w2) for which ub is
not zero, than the edge correction factor eW,r(w1, w2) will be bounded. Therefore,
there exists a finite number Mupp > 0 such that for all w1, w2 ∈ W and for all
r ∈ (0, R(S)] the producht ub (r − ||w1 − w2||) eW,r(w1, w2) is bounded, i.e.

ub (r − ||w1 − w2||) eW,r(w1, w2) ≤ Mupp.
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We can thus write

A ≤ Mupp

σdrd−1|W |

⎡⎣ ̸=∑
x,z∈ζ

1
λ̂ζ(x)λ̂ζ(z)

+
̸=∑

v,t∈ξ

1
λ̂ξ(v)λ̂ξ(t)

⎤⎦ .
We have already mentioned that we estimate the intensity function in such a way
that λ̂′

ζ is bounded away form 0 on W irrespective the configuration ζ ′. Thus we
can write

A ≤ 2mMupp

M2
λσdrd−1|W |

,

where m =
(

n
2

)
is the number of pairs of points in an n-point configuration.

Finally we obtain

B ≤
∫ R(S)

0

2mMupp

M2
λσdrd−1|W |

2Ŝ (ϕ, r) dr = Bg.

Note that we integrate a multiple of a bounded function Ŝ(ϕ, r) over a bounded
interval, hence the constant Bg is finite.

Finally, suppose that Ŝ(•, r) is the estimator of the inhomogeneous L-function.
Assume that d = 2 (in Subsection 4.2.2 we will work only with planar point
processes). Thus we have to estimate

Ŝ(ζ, r) − Ŝ(ξ, r) =
(
K̂(ζ, r)
ω2

) 1
2

−
(
K̂(ξ, r)
ω2

) 1
2

≤
(
K̂(ζ, r)
ω2

) 1
2

+
(
K̂(ξ, r)
ω2

) 1
2

.

We can use the second inequation since K̂(ζ, r) and K̂(ξ, r) are non-negative.
The sum can be estimated using

1 ≤
√
x ≤ x, x ≥ 1,

0 ≤
√
x ≤ 1, 0 ≤ x < 1.

The terms K̂(ζ, r) or K̂(ξ, r) then can be estimated in a very similar way as for
the pair correlation function. In this case we do not have to deal with the kernel
function ub, we have just the indicator function instead.

So we have proved that the difference E (ϕ, {y, s2, . . . , sn})−E (ϕ, {x1, s2, . . . , sn})
is (at least for the three different cases discussed above) bounded from above by
some constant which will be denoted by B•. Thus

fn ({y, s2, . . . , sn})
fn ({x1, s2, . . . , sn}) = exp {−KE (ϕ, {y, s2, . . . , sn})}

exp {−KE (ϕ, {x1, s2, . . . , sn})} ≥ exp {−KB•} .

Thus

fn ({y, x2, . . . , xn}) qi ({y, x2, . . . , xn} , x1)
fn ({x1, x2, . . . , xn}) ≥ 1

CW,λ

min
z∈W

λ̂ϕ(z) exp {−KB•} .
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If we realize that 0 < exp {−KB•} ≤ 1 we can put

ϵ = 1
CW,λ

min
z∈W

λ̂ϕ(z) exp {−KB•}

and we will have that the minimum from Equation (4.6) is always greater or
equal to ϵ. Hence we have proven that C = {{x1, s2, . . . , sn} : x1 ∈ D} is a small
set and the Metropolis-Hastings chain is aperiodic.

It is important to realize that in course of the proof of the third statement of The-
orem 6 we have not used the fact that x2, . . . , xn from the definition of the set
C were chosen as s2, . . . , sn, i.e. the points of the configuration ϕ. Moreover,
the set D was chosen as the whole observation window W . Also, qi does not
depend on the choice of i. Thus the fourth statement of Theorem 6 which says
that there exists ϵ > 0 such that for all ζ = {x1, x2, . . . , xn} ∈ W n and for all
i ∈ {1, 2, . . . , n} and y ∈ W we have

min
{
qi (ζ, y) , fn ((ζ \ {xi}) ∪ {y}) qi ((ζ \ {xi}) ∪ {y} , xi)

fn(ζ)

}
≥ ϵ

can be proven using the same ideas. Thus we obtain that the Metropolis-Hastings
chain is uniformly ergodic and

||Pm(ζ, •) − π(•)||T V ≤
(

1 − n!
(
ϵ|W |
n

)n)m
n

, m = 1, 2, . . .

While proving the uniform ergodicity, we should try to find the constant ϵ in such
a way that we get the best upper bound of the rate of convergence. Above we have
just given some general ideas how to deal with some of the terms that have to be
estimated. Better results can be obtained while working with particular kernel
function and the observaion window W . To conclude, we have given the sketch of
the proof (for a special choice of the summary characteristics) that the Metropolis-
Hastings algorithm described in Section 4.2 converges to the target distribution
π which prefers the configurations with low energy. Moreover, we have some idea
about the rate of convergence.

4.2.2 Example – reconstructing thinned Thomas process
In this subsection we will demonstrate the stochastic reconstruction approach
using the Matropolis-Hastings algorithm on a theoretical example – recon-
struction of thinned Thomas process. Thinned Thomas process was defined in
Subsection 3.3.1. So assume that we have ΦT,thin thinned Thomas process with
non-constant intensity function λ given by the Equation (3.1).

As inputs of the algorithm we will take the 15 realisations of ΦT,thin on the ob-
servation window W = [0, 1]2 from Subsection 3.3.1. We will use three different
energy functionals to produce the reconstructions. In the Subsection 3.3.1 we
have discovered that inhomogeneous initial configuration and non-uniform distri-
bution of the proposed new points is not enough to provide reconstructions that

71



corresponds to the observed data. The main problem was the intensity func-
tion. For thinned Thomas process it was sufficient to add the term F̂λ, which is
the empirical distribution function of values of the estimated intensity function
computed in vertices of a pixel grid in the observarion window W , to energy
functional. Thus we have chosen the energy functional only from the 8 variants
which contain the term F̂λ. To compare the use of inhomogeneous summary
characteristics and the empirical distribution function of distances to k-th near-
est neighbours (which contain detailed information about the geometry of the
clusters but do not take into account the non-constant intensity function), we
have chosen the following functionals:

E ′
1 . . . inhomogeneous L-function + F̂λ

E ′
2 . . . inhomogeneous pair correlationfunction + F̂λ

E ′
5 . . . D̂1 up to D̂5 + F̂λ

Note that there is a big difference between the improvement-only algorithm
from Section 3.1 and the Metropolis-Hastings algorithm described in Section 4.2.
While using the improvemet-only approach we aim to reach different local min-
ima of the energy functional. We need to run the algorithm 20 times to obtain 20
outputs and we suppose that these 20 outputs come from different local minima
of the energy functional. On the other hand, we have proved that (for energy
functionals based on summary statistics mentioned in Subsection 4.2.1) the
outputs of the Metropolis-Hastings algorithm approximate (after a sufficiently
large number of iteration steps) sample from the invariant distribution π. The
density fn of the target distribution π have been chosen so that configurations
with low energy are more likely to occur. This density function is, however,
positive on the set of all n-point configurations in the observation window W .
The choice of the density fn and the constant K from Equation 4.5 influences the
dynamic on the chain. We will now investigate whether the samples we obtain
by running the Metropolis-Hastings algorithm corresponds to the theoretical
model ΦT,thin in the sens of the two statistical tests from Section 3.2.

For each of the 15 inputs and each of the selected energy functionals we will
generate 20 reconstruction. Then we will test the hypotheses HAP F (global
rank envelope test) and Hλ (deviation test), that were described in detail
in Section 3.2. Roughly speaking, we will investigate two things. First we
will ask whether the distribution of the accumulated persistence function of
output of the stochastic reconstruction algorithm (with realisations of ΦT,thin

as input) corresponds to the distribution under the null model ΦT,thin. Then
we will investigate whether the intensity function of the output corresponds to
the theoretical intensity function of the null model ΦT,thin. The extremness of
the inputs themselves was discussed in Subcection 3.3.1. Moreover, results of
the tests for inputs can be found in Appendix A.5.

While using the Metropolis-Hastings algorithm the choice of the constant K in
the formula for the probability density of target distribution π (see Equation 4.5)
is crucial. The bigger the constant K is, the more we force the correspondence
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Figure 4.1: Evolution of the values of the energy functional E ′
5 in dependence

on the choice of the constant K (sums of values of the energy functional for 100
consecutive terms are plotted, 200000 iteration steps were executed): K = 1
(top left corner), K = 10 (top right corner) and K = 50 (bottom left corner).
For K = 1 and K = 50 the chain is exploring a region of the state space X with
rather high values of the enrgy functional and in the 200000 executed iteration
steps it does not move into a region with lower energy. For K = 10 the values of
the energy functional decreases rapidly at the begining of the run and then they
oscilates around relatively small numbers.

between the estimated summary characteristics of input and outputs. Also,
the bigger K is, the smaller the values of the energy functional are. We will
illustrate this fact on the energy functional E ′

5. We have executed severel run of
the algorithm with 200000 iterations.

If we take K = 1, the algorithm explores a region of the state space X with rather
high values of the enrgy functional and it seems to be impossible to reach (in
the 200000 executed itaration steps) regions with low energy. If we take K = 10
the energy decreases rapidly in the first few hundred of iteration steps and
then oscilates around relatively small values. But if we take K = 50, the same
situation as for K = 1 occurs. Different choices of K are illustrated in Figure
4.1. If we have some prior knowledge about the desired values of the energy
functional (here we have some experience from the improvement-only algorithm
from Subsection 3.3.1, we know how small the energy of outputs was), we can run
the algorithm wiht different values of K and controle if the algorithm explores
also the states with reasonably small energy. But this experimental approach is
inapplicable when reconstructing real data, since we have no prior information
about the values of the energy functional. So the choice of the constant K in the
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Percentage Mean SD
E ′

1 98% 19.6 0.83
E ′

2 93% 18.5 3.31
E ′

5 29% 5.73 6.69

Percentage Mean SD
E ′

1 25% 5.00 6.16
E ′

2 33% 6.67 6.62
E ′

5 44% 8.80 6.81

Table 4.1: Testing the hypotheses HAP F and Hλ. Three different entries are
given: percentage of the overall rejected reconstructions, mean number of rejected
outputs (per one input) and the standard deviation of the number of rejected
outputs (per one input). Left table corresponds to the global rank envelope test
and hence the hypothesis HAP F , right table corresponds to the deviation test and
thus the hypothesis Hλ.

target distribution of Metropolis-Hastings algorithm makes this approach very
inconvenient for practical use.

After running some experiments we have chosen to take K = 10 for E ′
5, K = 0.9

for E ′
2 and K = 150 for E ′

1. For all of these choices the values of the energy
functional decrease rapidly at the begining of the run of the algorithm. After that
the energy oscillates between relatively small values. We have thus decided to
take the first output after running only 10000 iteration steps and then we sample
each 10000-th iteration step. After running 200000 iterations we will thus obtain
20 samples.

Results of the two statistical tests we have performed are briefly summarised in
Table 4.1. Detailed results can be found in Appendix A.5, see Table A.7 and
A.8.

First we will focus on the energy functional E ′
5. If we test the hypothesis HAP F

this functional gives better results than E ′
1 and E ′

2. But if we compare this
approach and the improvement-only algorithm (see Table 3.2, E ′

5 gives one of
the best results) we can see that for the Metropolis-Hastings algorithm we reject
more reconstructions. The same situation occurs while testing the hypothesis
Hλ (see Table 3.3 to compare). Moreover, if we test the hypothesis Hλ, E ′

5 gives
the worst results from all of the considered energy functionals, see Table 4.1.
Recall that we have set the contant K = 10. After several hundereds of iteration
steps the values of the energy functional stabilise around 1.5. This number
cannot be deduced from Figure 4.1 where the sums of 100 consecutive terms are
plotted. Plotting all the terms would make the figures more obscure. During
our experiments we have examined the evolution of the values of the energy
functional for each of the 200000 itaration steps and thus we were able to find out
on what level the values of the energy functional stabilise. In the Subsection3.3.1
we have seen that the energy of outputs was less than 0.5. For some inputs
(e.g. 1, 2, 10 or 14 – see Table A.7 in Appendix A.5) the Metropolis-Hastings
algorithm provides outputs that more or less correspond to the input. The main
question is whether the algorithm explores in the 200000 iteration steps a major
part of the state space or it stays for a long time in one particular region.
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Based on our knowledge from Subsection 3.3.1 we have expected that for E ′
1 and

E ′
2 will see about 50% of rejected outputs when testing the hypothesis HAP F

(see Table 3.2). But if we look at the Table 4.1, we can see that for both of
the functionals we reject almost all outputs. This may indicate slow mixing
properties of the algorithm – the algorithm stays for a long time in one particular
region and thus the 200000 iteration step may not be enough to explore the
major part of the state space. Recall that we sample each 10000-th iteration
step. If the algorithm really stays for a long time in one region, it is possible
taht we take several samples from this one region. If we then reject on of these
samples, we will probably reject all of them. On the other hand we have seen in
Section 3.3.1 that neither the inhomogeneous L-function nor the pair correlation
function contain enough information to reproduce successfully the geometric
structure of clusters. This may cause the big number of rejections as well.

Recall that for these two energy functionals we have chosen K to be 150 for
E ′

1 and 0.9 for E ′
2. Values of the energy functional then stabilise on the level

0.1 for E ′
1 and 15 for E ′

2. We can compare these numbers with the resuls of
the experiments made in Subsection 3.3.1. We have observed that the values of
the energy functional of outputs of the improvement-only algorithm are lower
than 0.1 for E ′

1 and around 5 for E ′
2.

When testing the hypothesis Hλ, energy functionals E ′
1 and E ′

2 gives better
results that E ′

1. But the numbers of rejected outputs are bigger than for
improvement-only algorithm, see Table 3.3. So it seems that some of the outputs
has the correct form of the intensity function, but for almost all outputs the
interactions among pairs of points are not well reproduced. Examples of outputs
of all of the three energy functionals can be seen in Figure 4.2.

To conclude this Section, let us say that we are aware that the number
of executed iteration steps presented here may be insufficient to make relevant
conclusions about the behavior of the algorithm. Also the experiments were done
in a limited manner. Our priority was to show that even though Tscheschel and
Stoyan [2006] suggest to use the Metropolis-Hastings algorithm in the context
of stochastic reconstruction and we are able to prove (for a concrete choice
of summary characteristics used in the energy functional) the uniform ergodicity,
the practical use the algorithm is not straitforward and it is rather complicated.
The constant K, that influence the mixing properties of the chain (i.e. how
long it would take to move from one part of the state space to another), must
be chosen experimentally and also we have to decide how many iteration steps
will be executed. Also evaluating the upper bound of the rate of the conver-
gence form the fourth statement of Theorem 6 was not the main aim of this work.

From our experiments it seems that even if for our choices of K the values of
the energy functional decreases rapidly at the beginning of the run of the algo-
rithm, then we may stay for a long time in one part of the state stpace. Also, the
200000 iterations may not be sufficient to reach the invariant distribution with
some given accuracy. But even if we approximate the invarinat distribution in a
satisfactory manner, it only means that the outputs will be more likely configu-
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Figure 4.2: Input (on the left, same for all the rows) and three outputs (after
10000, 100000 and 150000 iteration steps) of the stochastic reconstruction algo-
rithm based on the energy functional E ′

1 and K = 150 (first row), E ′
2 and K = 0.9

(second row) and E ′
5 and K = 10 (last row). For E ′

1 and E ′
2 the geometric struc-

ture of clusters is not well reproduced. For E ′
5 the size and shape of the clusters

of the outputs is more or less correct but there is a problem with the intensity
function. Moreover, we are not able to decide whether the samples produced by
the Metropolis-Hastings algorithm comes from a different parts of the state space
or the mixing properties of the algorithm are slow and we stay in one part of the
state space for a long time.

rations with low energy. We do not claim that the outputs will come from local
minima of the enrgy functional as in the improvement-only case. On the other
hand, we have seen that for the energy functional E ′

5 we were able to produce
outputs that do not contradict the hypotheses HAP F and Hλ. Another key point
is that it is not obvious (except the visual inspection of the chain) how to decide
whether the outputs we have obtained comes from different parts of the state
space or the mixing properties are slow and we have explore (during the executed
iteration steps) only a small part of the statespace.
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Conclusion
It this text we have discussed the possibility of extension of the stochastic
reconstruction approach for inhomogeneous point processes.

In the first chapter we have stated basic definitions for spatial point processes,
we have discussed the difference between a homogeneous and an inhomogeneous
point process and we have mentioned some examples of point process models.
We have also listed selected summary characteristics for spatial point processes,
e.g. the pair correlation function or the L-function. Most of the definitions have
been taken from Møller and Waagepetersen [2004].

In the second chapter we have described the stochastic reconstruction algo-
rithm from Tscheschel and Stoyan [2006]. Then we have stated two obvious
modifications for the inhomogenous case, namely the inhomogeneous initial
configuration and the non-uniform distribution of the proposed new points.
These modifications are also described in the litterature, see Wiegand et al.
[2013].

The main contribution of this work is the simulation study we have made –
stochastic reconstruction of three different planar point process models, namely
the thinned Thomas process, inhomogeneous Poisson process and transformed
Matérn hard-core process of type II. We have suggested two statistical tests
which may be used to control the quality of outputs of the modified stochastic
reconstruction algorithm. These tests were used to compare quality of recon-
structions based on 8 different variants of the energy functional. We have
discovered that two obvious modifications of the algorithm mentioned above do
not assure that the intensity function of output of the stochastic reconstruction
algorithm (with a realisation from the corresponding theoretical model as input)
does not deviate a lot from the theoretical intensity function on the observation
window. Hence the approach from Wiegand et al. [2013] may not be sufficient
to produce point patterns that actually correspond to the observed data.
Based on this result, we have decided to add a new term to each of the energy
functionals. This term contains information about how big or low the values
of the estimated intensity function should be and how large are the areas with
small/large values, but tells nothing about how to place the areas with high
or low intensity function in the observation window. This modification may
be useful while reconstructing clusterd data. For regular data or the Poisson
point process more sophisticated method for controlling the intensity function is
needed. Also for the transformed Marétn hard-core process of type II another
choices of the initial configuration should be examined.

Second and third chapter have treated the stochastic reconstruction algorithm
as an optimization problem – we have tried to minimize the energy functional E
in order to obtain outputs that corresponds to the observed point pattern. The
last chapter is devoted to the situation when also the configurations with higher
energy are accepted (with some probability). First some basic definitions and re-
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sults from the theory of Markov chains on a general state space are given. Then
a special case of the Metropolis-Hastings algorithm described in Section 7.1.1
in Møller and Waagepetersen [2004] is adapted to the stochastic reconstruction
context. This approach is suggested in Tscheschel and Stoyan [2006] but without
further detais. The proof of the uniform ergodicity of the Markov chain produced
by this version of Metropolis-Hastings algorithm for a special choice of the sum-
mary characteristics used in the energy functional is given in Subsection 4.2.1.
We have also given a brief example of use of the Metropolis-Hastings algorithm
while reconstructing thinned Thomas process. Since there are no further details
about the use of the Metropolis-Hasting algorithm in the stochastic reconstruction
context, we have aimed to present the theoretical background of this approach.
Concerning the practical application we wanted to show that this approach is less
straightforward than the improvement-only algorithm and we wanted to mention
the difficulties arising when running the Metropolis-Hastings algorithm.
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A. Attachments

A.1 Accumulated persistence function
Let us now give a more detailed description of the accumulated persistence
function mentioned in Section 3.2. Recall tha ϕ is a point pattern such that
N (ϕ ∩W ) = n ∈ N. Thus we can write ϕ = {x1, x2, . . . , xn}. By Cr =

n⋃
i=1
Ci

r we
have denoted the union of discs with radius r centered at points of ϕ. We are
interested in how the s-dimensional topological features of Cr vary for different
values of parameter r and for s = 1, 2, . . . , d− 1. In case of planar point patterns
it is only relevant to take s = 0 and s = 1.

For the accumulated persistence function, birth and death times of k-dimensional
topological features of Cr, r ∈ [0, rmax] are of particular interest. Let us now re-
duce the problem only on k = 0, i.e. on the connected components. If r = 0, C0
is in fact just the union of points x1, x2, . . . , xn. So for r = 0 we have n connected
components. As the value of r grows, some of the discs starts overlaping each
other and hence some of the components will disappear. Suppose we have two
connected components A and B that are disjoint up to some time r0. At the time
r0 their intersection is no longer empty, so we choose one of these components,
for example A, and we set its death time to be r0. The other component is from
now defined as the union of A and B. It can be seen that under this conditions
all of the birth times are equal to zero. We suppose that coordinates of all
points are unique, so the death times of different components are unique too.
For sufficiently large r there will be just one connected component and its death
time is set to be infinity. The situation is more or less the same for k = 1, but
as the value of r grows, some of the loops may disappear and new loops may
appear. Thus for each loop we have a birth time that is not necessairly zero.

Denote the birth time of i-th connected component by bi and its death time by
di. Its lifetime is then given by li = di − bi. We can also compute a meanage
mi = bi+di

2 . The accumulated persistence function for connected components is
then defined as

APF0(ϕ,m) =
M∑

j=1
lj1 {mj ≤ m} , m ≥ 0,

where M is the overall number of connected components (for large values of r
there is just one component with an infinite lifetime which represents the whole
space, but we ignore this infinite lifetime since it does not give us any important
information).
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A.2 Reconstructing thinned Thomas process
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A.3 Reconstructing inhomogeneous Poisson
process
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A.4 Reconstructing transformed Matérn hard-
core process of type II

In
pu

t
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

M
ea

n
SD

Pe
rc

en
ta

ge
P-

va
lu

e
0.

84
5

0.
85

2
0.

17
5

0.
30

4
0.

94
3

0.
89

4
0.

55
1

0.
49

7
0.

21
0

0.
45

2
0.

41
9

0.
37

2
0.

35
2

0.
77

8
0.

11
3

E
1

0
1

11
2

1
1

3
2

3
0

2
0

0
0

4
2.

00
2.

80
10

%
E

′ 1
14

17
19

18
12

13
16

15
18

16
18

13
18

16
14

15
.8

2.
21

79
%

E
2

7
5

19
10

6
7

9
8

10
8

10
8

11
7

11
9.

07
3.

28
45

%
E

′ 2
20

19
20

20
20

20
20

19
20

20
20

20
20

20
20

19
.8

6
0.

35
99

%
E

3
20

20
20

20
20

20
20

20
19

20
20

20
20

20
20

19
.9

3
0.

26
10

0%
E

′ 3
20

20
20

20
20

20
20

20
20

20
20

20
20

20
20

20
.0

0.
00

10
0%

E
4

20
20

20
20

20
20

20
20

20
20

20
20

20
20

20
20

.0
0.

00
10

0%
E

′ 4
20

20
20

20
20

20
20

20
20

20
20

20
20

20
20

20
.0

0.
00

10
0%

E
5

15
12

20
18

10
10

14
12

15
12

18
12

17
12

17
14

.2
6

3.
15

71
%

E
′ 5

16
19

20
17

19
17

18
17

15
19

17
17

18
15

16
17

.3
3

1.
50

87
%

E
6

20
20

20
20

19
16

19
19

20
19

20
19

19
18

17
19

.0
1.

20
95

%
E

′ 6
20

20
20

20
20

20
20

20
20

20
20

20
20

20
20

20
.0

0.
00

10
0%

E
7

15
14

17
15

16
9

14
15

18
15

18
12

15
10

14
14

.4
7

2.
56

72
%

E
′ 7

17
19

20
20

18
16

19
20

18
20

20
19

19
19

20
18

.9
3

1.
22

95
%

E
8

20
19

20
20

19
17

20
20

19
20

20
20

20
17

20
19

.4
1.

06
97

%
E

′ 8
20

20
20

20
20

20
20

20
20

20
20

20
20

20
20

20
.0

0.
00

10
0%

Ta
bl

e
A

.5
:

Te
st

in
g

th
e

hy
po

th
es

is
H

A
P

F
.

Fi
ve

di
ffe

re
nt

en
tr

ie
s

ar
e

gi
ve

n:
up

pe
r

bo
un

d
of

th
e
p-

in
te

rv
al

fo
r

th
e

in
pu

ts
,

nu
m

be
r

of
re

je
ct

ed
ou

tp
ut

s
fo

r
ea

ch
in

pu
t,

m
ea

n
nu

m
be

r
of

re
je

ct
ed

ou
tp

ut
s

(p
er

on
e

in
pu

t)
,

st
an

da
rd

de
vi

at
io

n
of

th
e

nu
m

be
r

of
re

je
ct

ed
ou

tp
ut

s
(p

er
on

e
in

pu
t)

an
d

pe
rc

en
ta

ge
of

th
e

ov
er

al
lr

ej
ec

te
d

re
co

ns
tr

uc
tio

ns
.

T
he

gl
ob

al
ra

nk
en

ve
lo

pe
te

st
ba

se
d

on
24

99
sim

ul
at

io
ns

of
th

in
ne

d
T

ho
m

as
pr

oc
es

s
wa

s
us

ed
.

89



In
pu

t
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

M
ea

n
SD

Pe
rc

en
ta

ge
P-

va
lu

e
0.

55
8

0.
04

3
0.

99
4

0.
28

9
0.

82
9

0.
42

3
0.

12
5

0.
29

8
0.

65
0

0.
49

6
0.

93
5

0.
46

9
0.

66
6

0.
32

8
0.

55
7

E
1

10
19

1
9

6
15

17
12

4
10

6
11

4
15

10
9.

93
5.

15
50

%
E

′ 1
9

16
2

7
3

10
20

8
3

4
3

5
3

4
10

7.
13

5.
24

36
%

E
2

13
19

3
11

7
15

17
14

7
12

7
11

7
15

12
11

.3
3

4.
42

57
%

E
′ 2

9
15

1
5

3
12

20
9

5
5

0
9

7
11

12
8.

2
5.

36
41

%
E

3
14

20
2

11
7

17
18

16
4

6
6

11
3

13
15

10
.8

7
5.

85
54

%
E

′ 3
1

14
1

5
4

7
16

3
2

2
1

2
4

8
8

5.
20

4.
66

26
%

E
4

2
17

1
3

2
7

17
6

3
1

2
8

1
6

6
5.

47
5.

24
27

%
E

′ 4
4

10
0

5
1

6
16

4
4

1
0

9
1

5
4

4.
67

4.
34

23
%

E
5

10
19

1
15

11
19

19
18

8
6

11
14

7
18

16
12

.8
5.

62
64

%
E

′ 5
6

18
0

4
3

6
19

7
3

3
1

6
2

2
4

5.
6

5.
60

28
%

E
6

11
20

7
7

5
12

19
16

6
2

5
11

3
8

12
9.

6
5.

51
48

%
E

′ 6
3

16
0

4
2

4
16

7
2

2
2

2
2

4
5

4.
73

4.
86

24
%

E
7

12
19

2
10

11
16

17
17

11
5

4
14

4
16

15
11

.5
3

5.
50

58
%

E
′ 7

4
12

2
7

0
6

18
9

2
7

0
4

2
6

9
5.

87
4.

84
29

%
E

8
3

17
0

7
4

6
15

6
2

1
2

5
2

8
11

5.
93

5.
04

30
%

E
′ 8

3
13

2
5

1
8

15
7

3
1

1
9

1
4

4
5.

13
4.

44
26

%

Ta
bl

e
A

.6
:

Te
st

in
g

th
e

hy
po

th
es

is
H

λ
.

Fi
ve

di
ffe

re
nt

en
tr

ie
s

ar
e

gi
ve

n:
p-

va
lu

e
of

th
e

in
pu

ts
,

nu
m

be
r

of
re

je
ct

ed
ou

tp
ut

sf
or

ea
ch

in
pu

t,
m

ea
n

nu
m

be
ro

fr
ej

ec
te

d
ou

tp
ut

s(
pe

ro
ne

in
pu

t)
,s

ta
nd

ar
d

de
vi

at
io

n
of

th
en

um
be

ro
fr

ej
ec

te
d

ou
tp

ut
s

(p
er

on
e

in
pu

t)
an

d
pe

rc
en

ta
ge

of
th

e
ov

er
al

lr
ej

ec
te

d
re

co
ns

tr
uc

tio
ns

.
T

he
de

vi
at

io
n

te
st

ba
se

d
on

24
99

sim
ul

at
io

ns
of

th
in

ne
d

T
ho

m
as

pr
oc

es
s

wa
s

us
ed

.

90



Figure A.1: Reconstructing transformed Matérn hard-core process of type II.
Observed data to be reconstructed (top left corner), initial configuration, inter-
mediate states of the stochastic reconstruction algorithm after 50, 100, 150, 200,
250, 300, 400, 500, and 600 iteration steps (from left to right and from top to
bottom), output of the stochastic reconstruction algorithm (bottom right corner).
Evolution of values of the energy functional (we have used the energy functional
E1) can be seen in Figure A.2.
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Figure A.2: Values of the energy functional E1 during the run of the stochastic
reconstruction algorithm from Figure A.1.
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A.5 Reconstructing thinned Thomas process
using Metropolis-Hastings algorithm
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A.6 Electronic attachments
The electronic version of this text contains also the electronic attachement – the R
scripts illustrating the implementation of the stochastic reconstruction algorithm
for inhomogeneous point processes.
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